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Abstract 

Background  Health status is closely linked to both healthcare access and utilization. While previous research 
has identified associations between health status and DNA methylation-based biomarkers of aging (epigenetic 
aging), studies exploring these relationships in the context of healthcare access and utilization remain limited. 
To address this gap, we analyzed cross-sectional associations in a representative sample of 2,343 U.S. adults 
from the 1999–2000 and 2001–2002 cycles of the National Health and Nutrition Examination Survey (NHANES). Our 
study examined the relationships of self-rated health status, healthcare access, and healthcare utilization with seven 
epigenetic aging biomarkers: HannumAge, HorvathAge, SkinBloodAge, PhenoAge, GrimAge2, DNAm Telomere 
Length (DNAmTL), and DunedinPoAm.

Results  After adjusting for chronological age, demographics, lifestyle factors, and health insurance, participants 
with good–excellent self-rated health had a 1.58-year lower PhenoAge (95% CI − 2.54, − 0.62 P = 0.006) and a 1.16-
year lower GrimAge2 (95% CI − 1.80, − 0.53, P = 0.004) than participants with poor-fair health. Participants who 
reported having a routine place where they received healthcare had a lower GrimAge2 (β = − 1.44-years, 95% CI 
− 2.66, − 0.22, P = 0.03) than participants without a routine healthcare location. Participants with ≥ 10 healthcare visits 
in the prior year had a shorter DNAmTL (β = − 0.05-kb, 95% CI − 0.09, − 0.01, P = 0.02) than participants with < 10 
visits. After including additional adjustments for estimated leukocyte proportions, participants who were hospitalized 
overnight in the prior year had a shorter DNAmTL (β = − 0.05-kb, 95% CI − 0.08, − 0.01, P = 0.02) than non-hospitalized 
individuals.

Conclusions  Our findings reinforce previous reports linking better health status to lower epigenetic aging and pro‑
vide new evidence of associations of epigenetic aging with measures of healthcare access and utilization. If validated, 
these findings suggest that epigenetic aging biomarkers may be useful in studying disease processes and assessing 
health outcomes related to access and utilization.
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Background
Since gaining prominence in 2013 [1, 2], DNA 
methylation-based biomarkers of aging (also known 
as epigenetic clocks) have demonstrated robust utility 
for studying environmental, lifestyle, behavioral, and 
molecular factors that can impact the aging process [1–
7]. Beyond the public health impact of these biomarkers, 
their robust relationships with morbidity and mortality 
continues to spur immense interest in their potential 
usefulness in clinical practice. However, a key question 
remains: can epigenetic aging measures one day play a 
role in patient care [8]? Not only will it be important to 
determine which individual or combination of epigenetic 
aging biomarkers are clinically useful, but understanding 
what clinical contexts to apply these biomarkers in is 
equally important. Disease screening, monitoring of 
preventative lifestyle habits, risk stratification of patients 
with disease, and evaluating the impacts of therapeutic 
interventions are among the clinical contexts with 
ongoing promise. For screening, evidence suggests that 
epigenetic age when paired with neuroimaging in healthy 
adults may help identify individuals at risk for cognitive 
decline later in life [9]. In the context of preventative 
lifestyle habits, a trial of 43 healthy adult males 
randomized to no intervention or an 8-week regimen 
of probiotics, phytonutrients, and guidance on diet, 
exercise, relaxation, and sleep demonstrated a 3.23-year 
lower HorvathAge in the treatment arm [10]. Considering 
risk stratification in disease, epigenetic age acceleration 
(PhenoAge and GrimAge) has been associated with time 
to relapse in chronic lymphocytic leukemia [11]. From 
the perspective of evaluating therapeutic interventions, 
women with breast cancer who were treated with 
chemotherapy demonstrated epigenetic age acceleration 
(PhenoAge, GrimAge, and DunedinPACE) from their 
baseline, reflecting the cytotoxicity of this therapy [12].

While the aforementioned research has focused on 
clinical interventions, the direct relationship of epigenetic 
aging measures with fundamental healthcare access and 
utilization patterns remains understudied. Although 
these relationships represent a public health rather than 
clinical focus, establishing these baseline associations is 
critical for: (1) understanding how healthcare disparities 
may become biologically embedded, and (2) properly 
contextualizing future clinical applications of epigenetic 
clocks in healthcare settings. It is well appreciated 
that access to healthcare is intertwined with health 
status as access is important for obtaining treatments 
and general health maintenance [13, 14]. Similarly, 
healthcare utilization is often related to health status as 
individuals with serious ailments, chronic disease, and 
disabilities often need more healthcare services [15, 16]. 
Although research exists documenting relationships of 

epigenetic age with objective and self-rated measures of 
health status [3, 17, 18], evidence of direct relationships 
with healthcare access and utilization could prompt 
additional important considerations of these variables as 
confounders or mediators in future research, including 
clinical-studies.

In the present study, we analyze data from the National 
Health and Nutrition Examination Survey (NHANES), a 
nationally representative sample of United States (U.S.) 
adults, to investigate the cross-sectional relationship 
between self-rated health status and epigenetic age. We 
then examine the relationships of measures of healthcare 
access and utilization with epigenetic aging. Given the 
established associations of greater epigenetic aging with 
increased morbidity and mortality [19], we hypothesize 
that poorer self-rated health will be associated with 
greater epigenetic aging. Similarly, under the premise 
that limited healthcare access and higher healthcare 
utilization are often associated with worse health status, 
we also hypothesize that both will be associated with 
greater epigenetic aging.

Methods
Study population
The National Center for Health Statistics (NCHS) 
assesses the health of the noninstitutionalized U.S. 
population through NHANES interviews, physical 
examinations, and laboratory tests. In this study, 
we examined the relationships of self-rated health, 
healthcare access, and healthcare utilization with 
epigenetic age using publicly available data from the 
1999–2000 and 2001–2002 NHANES cycles. Our 
sample included 2,532 adults aged 50  years and older. 
To protect participant privacy, NHANES top-coded 
the ages of individuals 85  years and older as 85  years 
(n = 130), making their exact chronological ages 
unknown. We excluded these participants to prevent 
misclassification errors in epigenetic age measures. We 
also removed individuals whose DNAm-predicted sex 
did not match their self-reported sex (n = 56), resulting 
in a final sample of 2,346 participants. Of these, 2,343 
had data on self-rated health status (n = 3 missing). All 
participants provided written informed consent, and the 
NCHS Research Ethics Review Board approved the study 
protocols (protocol #98–12).

Self‑rated health
As part of the “Hospital Utilization & Access to Care” 
questionnaire [20, 21], participants provided information 
on self-rated health by answering the question, “Would 
you say your health in general is …” with possible 
responses of “Excellent”, “Very good”, “Good”, “Fair” 
or “Poor.” Participants who declined to respond, were 
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unsure of their health status, or had missing data were 
excluded from the analyses. To increase statistical power 
for comparisons across groups, we dichotomized self-
rated health into two categories: “Good–Excellent” 
health and “Poor-Fair” health.

Although our analysis is based on cross-sectional data, 
we considered changes in health status over time by 
including a measure of self-reported health compared to 
the previous year. Participants were asked,  “Compared 
with 12  months ago, would you say your health is 
now…”  with response options:  “Better”,  “Worse”, 
or  “About the same.” Those who declined to respond, 
were unsure of their health status, or had missing data 
were excluded from the analyses.

Healthcare access
Our analysis included two measures of healthcare access 
available in both 1999–2000 and 2001–2002 NHANES 
cycles. First, participants were asked, “Is there a place 
that you usually go when you are sick or need advice 
about your health?” Responses were coded as “Yes” if 
participants responded “Yes” or “There is more than one 
place.” Responses were coded as “No” if they responded, 
“There is no place.” Subsequently, participants were 
asked, “What kind of place do you go to most often: is 
it a clinic, doctor’s office, emergency room, or some 
other place?” Responses were, “Clinic or health center,” 
“Doctor’s office or HMO,” “Hospital emergency room,” 
“Hospital outpatient department,” or “Some other place.” 
For this variable, “hospital emergency room” was set as 
the reference group because emergency departments 
are never closed and cannot deny treatment based on a 
patient’s ability to pay [22]. For both healthcare access 
measures, participants who declined to respond, were 
unsure of their response, or had missing data were 
excluded from the analyses.

Healthcare utilization
We included two measures of healthcare utilization 
available in both 1999–2000 and 2001–2002 NHANES 
cycles. First, participants were asked, “During the past 
12  months, how many times have you seen a doctor or 
other health professional about your health at a doctor’s 
office, a clinic, hospital emergency room, at home or some 
other place? Do not include times you were hospitalized 
overnight.” Responses included “None”, “1,” “2 to 3,” “4 to 
9,” “10 to 12,” “13 or more.” After analyzing all participant 
answers, “4 to 9” was the median, so we dichotomized the 
variable as “ < 10” and “ ≥ 10 visits” as a way of designating 
high visit utilizers. Second, participants were asked, 
“During the past 12  months, were you a patient in a 
hospital overnight? Do not include an overnight stay in 
the emergency room.” Responses were coded as “Yes” or 

“No.” For all healthcare utilization measures, participants 
with missing data, uncertain responses, or who declined 
to answer were excluded from the analyses.

DNA methylation and epigenetic age
We obtained epigenetic age measures and DNA 
methylation-based leukocyte proportion estimates from 
the NHANES website (https://​wwwn.​cdc.​gov/​nchs/​
nhanes/​dnam/), which also provides detailed information 
on DNA methylation analysis and processing. Briefly, 
DNA was extracted from whole blood samples collected 
from NHANES participants aged 50  years and older 
during the 1999–2000 and 2001–2002 cycles. Genome-
wide DNA methylation was then assessed using the 
Illumina EPIC BeadChip array.

Our study included seven epigenetic age measures: 
HannumAge, HorvathAge, SkinBloodAge, PhenoAge, 
GrimAge2, DunedinPoAm, and DNA methylation-
based Telomere Length (DNAmTL). These measures 
were selected a priori based on their well-established 
associations with health outcomes [1–6, 23, 24].  The 
HannumAge, HorvathAge, and SkinBloodAge measures 
primarily predict chronological age based on DNA 
methylation patterns, although research has linked them 
to broader health indicators [1, 2, 24, 25]. PhenoAge, a 
leading biomarker of healthspan, was developed using a 
composite measure of nine clinical variables: albumin, 
creatinine, glucose, C-reactive protein, lymphocyte 
percentage, mean cell volume, red cell distribution width, 
alkaline phosphatase, and white blood cell count [6]. 
GrimAge2, a lifespan biomarker, integrates chronological 
age, gender, and ten DNA methylation surrogates 
for cigarette pack-years and plasma protein markers, 
including adrenomedullin (ADM), beta-2-microglobulin 
(B2M), C-reactive protein (CRP), cystatin C, growth 
differentiation factor-15 (GDF-15), hemoglobin A1c 
(A1c), leptin, plasminogen activator inhibitor-1 (PAI1), 
and tissue inhibitor metalloproteinase-1 (TIMP1) [4]. 
DNAmTL estimates telomere length based on DNA 
methylation patterns [5]. DunedinPoAm measures the 
pace of biological aging by assessing morbidity-related 
biomarkers. This metric was developed by analyzing 
longitudinal changes in 18 organ function biomarkers 
among individuals of the same chronological age, offering 
a robust indicator of aging pace [3]. As our analysis 
utilized epigenetic aging measures publicly available in 
NHANES, we could not include more recent clocks like 
DunedinPACE, which were not available at the time of 
this study.

Statistical analysis
We used the R  ‘Survey’  package to perform generalized 
linear regression models, incorporating NHANES-provided 

https://wwwn.cdc.gov/nchs/nhanes/dnam/
https://wwwn.cdc.gov/nchs/nhanes/dnam/
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participant sample weights designed for the epigenetic clock 
subsample [26]. To examine the associations between self-
rated health, healthcare access, and healthcare utilization 
with each epigenetic age measure, we applied the  svyglm 
function in R, which accounts for the survey’s complex 
design. Our main model covariates were determined  a 
priori and included chronological age (continuous, in years) 
and its quadratic term, sex (female vs. male), and self-
identified ethnicity/race (Non-Hispanic White, Mexican 
American, Other Hispanic, Non-Hispanic Black, Other 
Race). We also adjusted for health insurance (yes vs. no), 
education level (less than high school, high school diploma/
GED, more than high school), occupation (white-collar/
professional, white-collar/semi-routine, blue-collar/high-
skill, blue-collar/semi-routine, or no work), and poverty-
to-income ratio (continuous), alcohol intake (abstainer, 
moderate drinker, heavy drinker), body mass index (BMI [kg/
m2]; continuous), smoking status (never, former, current), 
and physical activity (moderate/vigorous activity in the last 
30 days: yes vs. no). Health access and utilization models also 
included self-rated health status as a covariate. When self-
rated health, healthcare access, and healthcare utilization 
were associated with GrimAge2, we used the same covariate 
adjustments in models examining associations with DNAm-
predicted blood biomarker components of GrimAge2 to 
test drivers of associations. To address missing covariate 
data, we used multiple imputation via the MICE  function 
in R, generating 10 imputed datasets. The estimates from 
these datasets were then pooled using the pool  function in 
R [27]. Because healthcare utilization is strongly correlated 
with chronological aging, we conducted a secondary analysis 
where we employed the same modeling framework—
omitting adjustments for chronological age—to compare 
associations of self-rated health, healthcare access, and 
healthcare utilization with chronological age versus those 
observed with epigenetic age biomarkers.

We performed five sensitivity analyses. To assess 
the impact of leukocyte proportions on our results, 
the first sensitivity analysis involved models that 
included additional adjustments for estimated 
leukocyte proportions (B cells, CD4 cells, CD8 cells, 
NK cells, monocytes, and neutrophils). To evaluate 
the impact of health insurance on our results, the 
second sensitivity analysis involved models that did 
not include health insurance as a covariate. Given that 
health status has strong relationships with healthcare 
access and utilization, the third sensitivity analysis 
involved healthcare access and utilization models that 
did not include self-rated health status as a covariate. 
To assess the impact of dichotomization of self-rated 
health status on our analysis, we conducted a fourth 
sensitivity analysis exploring associations of self-rated 
health status in its discrete categories with epigenetic 

aging. Finally, given previously reported differences in 
directly measured telomere length versus DNAmTL 
[28], for measures associated with DNAmTL, we 
applied the same covariate framework to examine 
their relationships with directly measured leukocyte 
telomere length available in NHANES. Directly 
measured telomere length was quantified from whole 
blood DNA using quantitative PCR, which determines 
the relative telomere repeat copy number to single-
copy gene copy number (T/S ratio) [29]. The T/S 
ratio was then converted to kilobase (kb) pairs using 
the formula: 3,274 + 2,413 × (T/S)/1,000 [30]. These 
methods have been previously described [31]. All 
statistical analyses were conducted using R Version 
4.4.1 (R Core Team, Vienna, Austria). To account 
for multiple comparisons across seven independent 
epigenetic clocks, statistical significance was set at 
a Bonferroni-adjusted p-value of < 0.007 (0.05/7). 
P-values < 0.05 were considered marginal.

Results
Study sample characteristics
Figure S1 presents a flow chart describing how the 
final study sample was achieved. Table  1 presents 
the study sample characteristics prior to the applica-
tion of survey weights. Participants had a mean (sd) 
chronological age of 65.1 (9.3) years. Most partici-
pants had at least a high school diploma (55%), were 
blue-collar workers (52%), and were male (51%). 
39% of participants were non-Hispanic White. With 
respect to health status and utilization, most partici-
pants reported having good–excellent health (67%), 
the same health as compared to last year (71%), having 
a routine place where they receive healthcare (92%), 
and that their routine place for healthcare was not the 
emergency department (91%). Few participants saw a 
doctor ≥ 10 times last year (17%) or had an overnight 
hospital stay in the last year (15%). With respect to 
health behaviors, most patients consumed alcohol 
(52%), were not physically active (51%), and reported 
having health insurance (88%). 45% of participants 
were never smokers. Figure 1 describes strong correla-
tions of chronological age with epigenetic biomarkers 
in study sample. DNAmTL was negatively correlated 
with chronological age (r = −  0.58, P < 0.001) while 
SkinBloodAge (r = 0.87, Median Absolute Error 
[MAE] = 3.44-years, P < 0.001) had the strongest posi-
tive correlation with chronological age.

Table  S1 presents unweighted relationships of health-
care access and utilization variables by self-rated health 
status. A greater proportion of participants with poor-
fair health had worse health compared to the past year 
than was observed in participants with good–excellent 
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health (24% vs. 7%, P < 0.001). When compared to their 
counterparts with good–excellent health, a higher pro-
portion of poor-fair health participants had ≥ 10 visits in 
the last year (28% vs 11%, P < 0.001) and had an overnight 
hospitalization in the last year (23% vs 10%, P < 0.001). We 
observed no statistically significant relationship of having 
a routine place for healthcare with self-rated health.

Relationships of health status with epigenetic age
Table 2 describes adjusted associations of self-rated health 
status with epigenetic aging. In participants reporting 
good–excellent health, a significantly lower PhenoAge 
(β = − 1.58-years, 95% CI − 2.54, − 0.62, P = 0.006), Grim-
Age2 (β = −  1.16-years, 95% CI −  1.80, -0.53, P = 0.004), 
and DunedinPoAm (β = −  0.02, 95% CI −  0.03, −  0.003, 
P = 0.02) were observed compared to participants report-
ing poor-fair health. In the sensitivity analysis, the Phe-
noAge (β = − 1.15-years, 95% CI − 1.95, − 0.34, P = 0.01) 

Table 1  Unweighted Summary Statistics Among U.S. Adults 
from NHANES 1999–2002 (n = 2343)

Demographic variables

 Chronological Age (years), mean (sd) 65.1 (9.3)

Epigenetic Age/Clocks, mean (sd)

 HannumAge (years) 66.3 (9.2)

 HorvathAge (years) 66.1 (8.6)

 SkinBloodAge (years) 63.6 (9.1)

 PhenoAge (years) 54.9 (10.1)

 GrimAge2 (years) 71.5 (8.4)

 DNAm Telomere Length (TL) (kb) 6.6 (0.3)

 DunedinPoAm 1.1 (0.1)

Education, n (%)

 Less Than High School 1060 (45)

 High School Diploma (including GED) 487 (21)

 More Than High School 794 (34)

 Missing 2 (0)

Occupation, n (%)

 Blue-collar (high skill) 312 (13)

 Blue-collar (semi-routine) 919 (39)

 White-collar (high skill) 520 (22)

 White-collar (semi-routine) 396 (17)

 Never worked 60 (3)

 Missing 136 (6)

Poverty to Income Ratio, mean (sd)

2.6 (1.6)

 Missing 267

Race/Ethnicity Category, n (%)

 Mexican American 680 (29)

 Other Hispanic 151 (7)

 Non-Hispanic White 921 (39)

 Non-Hispanic Black 511 (22)

 Other Race 80 (3)

Sex, n (%)

 Male 1201 (51)

 Female 1142 (49)

Health Status, Access, and Utilization Variables

 Health Status, n (%)

 Good–Excellent 1559 (67)

 Poor-Fair 784 (33)

Health Compared to Last Year, n (%)

 Better 370 (16)

 Same 1667 (71)

 Worse 305 (13)

 Missing 1 (0)

Has Routine Place for Healthcare, n (%)

 Yes 2164 (92)

 No 179 (8)

Routine Place is not the Emergency Department, n (%)

 Yes 2126 (91)

 No 36 (1)

 Missing 181 (8)

Table 1  (continued)

Demographic variables

 ≥ 10 Visits in the Last Year, n (%)

 Yes 395 (17)

 No 1947 (83)

 Missing 1 (0)

Overnight Hospital Patient in the Last Year, n (%)

 Yes 342 (15)

 No 2000 (85)

 Missing 1 (0)

Health Behavior Variables

 Alcohol Intake, n (%)

 Abstainer 1008 (43)

 Moderate Drinker 1135 (48)

 Heavy Drinker 84 (4)

 Missing 116 (5)

Body Mass Index (kg/m2), mean (sd)

28.8 (5.8)

 Missing 83

Health Insurance, n (%)

 Yes 2047 (88)

 No 265 (11)

 Missing 31 (1)

Smoking, n (%)

 Current 373 (16)

 Former 903 (39)

 Never 1062 (45)

 Missing 5 (0)

Physically Active, n (%)

 Yes 1145 (49)

 No 1196 (51)

 Missing 2 (0)
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Fig. 1  Pearson Correlations (r) and Median Absolute Error (MAE) of Epigenetic Age with Chronological Age. Presents the chronological age 
and epigenetic age correlation coefficients and median absolute errors for the study sample (n = 2343) for HannumAge (A), HorvathAge (B), 
SkinBloodAge (C), PhenoAge (D), GrimAge2 (E), DNAmTL (F), and DunedinPoAm (G). Values for participants with good–excellent and poor–fair 
self-rated health are in green and yellow respectively

Table 2  Adjusted associations of Self-Rated Health Status with Epigenetic Aging Biomarkers (n = 2343)†

Model estimates are for participants with good–excellent self-rated health status (participants with poor–fair self-rated health status serve as the reference group)
† Models adjusted for chronological age, chronological age2, sex, race/ethnicity, alcohol intake, BMI, education, occupation, physical activity, PIR, health insurance, and 
smoking. Models with additional adjustments for estimated leukocyte proportions are noted

P < 0.007: Bonferroni significant

P < 0.05: marginally significant

Main model Leukocyte-adjusted model
Biomarker Estimate (95% CI) P-value Estimate (95% CI) P-value

 HannumAge (years) − 0.58 (− 1.65, 0.48) 0.23 − 0.30 (− 1.35, 0.76) 0.52

 HorvathAge (years) − 0.20 (− 1.08, 0.68) 0.60 − 0.07 (− 0.91, 0.77) 0.85

 SkinBloodAge (years) − 0.26 (− 1.01, 0.50) 0.44 − 0.13 (− 0.93, 0.67) 0.71

 PhenoAge (years) − 1.58 (− 2.54, − 0.62) 0.006 − 1.15 (− 1.95, − 0.34) 0.01

 GrimAge2 (years) − 1.16 (− 1.80, − 0.53) 0.004 − 0.82 (− 1.38, − 0.26) 0.01

 DNAmTL (kb) 0.01 (− 0.03, 0.05) 0.52 0.01 (− 0.02, 0.05) 0.41

 DunedinPoAm − 0.02 (− 0.03, − 0.003) 0.02 − 0.01 (− 0.02, 0.0004) 0.06

GrimAge2 components

 A1c − 0.005 (− 0.01, 0.0005) 0.07 − 0.005 (− 0.01, 0.0005) 0.07

 ADM − 2.56 (− 5.59, 0.46) 0.08 − 1.97 (− 4.82, 0.87) 0.14

 B2M − 14,933.17 (− 28777.27, − 1089.07) 0.04 − 10261.59 (− 24409.55, 3886.36) 0.13

 CRP − 0.10 (− 0.18, − 0.01) 0.03 − 0.08 (− 0.15, − 0.01) 0.04

 Cystatin C − 3677.57 (− 7726.6, 371.46) 0.07 − 2388.38 (− 5303.76, 527.01) 0.09

 GDF15 − 9.14 (− 25.59, 7.32) 0.23 − 6.41 (− 24.24, 11.43) 0.42

 Leptin − 221.52 (− 493.07, 50.03) 0.09 − 359.08 (− 692.38, − 25.78) 0.04

 Packyears − 1.54 (− 3.04, − 0.04) 0.045 − 1.26 (− 2.75, 0.23) 0.08

 PAI1 − 320.81 (− 778.98, 137.36) 0.14 − 279.61 (− 703.69, 144.48) 0.16

 TIMP1 − 90.77 (− 189.84, 8.3) 0.07 − 37.81 (− 122.8, 47.19) 0.32
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and GrimAge2 (β = −  0.82-years, 95% CI −  1.38, −  0.26, 
P = 0.01) relationships were slightly attenuated but 
remained significant after adjusting for estimated leu-
kocyte proportions. Participants reporting good–excel-
lent health had lower GrimAge2 cigarette packyears 
(β = − 1.54, 95% CI − 3.04, − 0.04, P = 0.045) and lower lev-
els of GrimAge2 components B2M (β = −  14933.17, 95% 
CI −  28777.27, −  1089.07, P = 0.04) before adjusting for 
leukocyte proportions and lower levels of CRP (β = − 0.08, 
95% CI − 0.15, − 0.01, P = 0.04) and leptin (β = − 359.08, 
95% CI −  692.38, −  25.78, P = 0.04) after adjusting for 
leukocyte proportions compared to individuals report-
ing poor-fair health. We observed similar relationships 

in models that were not adjusted for health insurance 
(Table  S2). Similar trends were also observed with more 
granular categories of self-rated health status (Table  S3). 
We did not observe any statistically significant relation-
ships of self-rated health compared to the prior year with 
any epigenetic age measure (Table S4).

Relationships of access to care and utilization 
with epigenetic age
Table  3 presents the results of models examining the 
relationships of access to healthcare and utilization with 
epigenetic age. Participants who reported having a rou-
tine place where they received healthcare had marginally 

Table 3  Adjusted Associations of Healthcare Access and Utilization with Epigenetic Aging Biomarkers†

† Models adjusted for chronological age, chronological age2, sex, race/ethnicity, self-rated health, alcohol intake, BMI, education, occupation, physical activity, PIR, 
health insurance, and smoking. Models with additional adjustments for estimated leukocyte proportions or without adjustments for self-rated health status are noted

P < 0.007: Bonferroni significant

P < 0.05: marginally significant and highlighted in bold italic

Main model Not adjusted for 
self-rated health 
model

Leukocyte-
adjusted model

Utilization metric Biomarker Estimate (95% CI) P-value Estimate (95% CI) P-value Estimate (95% CI) P-value n

Has Routine Place HannumAge (years) − 0.26 (− 1.87, 1.35) 0.70 − 0.25 (− 1.82, 1.32) 0.72 − 0.39 (− 1.71, 0.92) 0.49 2343

Has Routine Place HorvathAge (years) − 0.19 (− 1.53, 1.14) 0.73 − 0.19 (− 1.48, 1.1) 0.74 − 0.27 (− 1.59, 1.04) 0.62 2343

Has Routine Place SkinBloodAge (years) − 0.20 (− 1.28, 0.89) 0.67 − 0.19 (− 1.23, 0.85) 0.68 − 0.26 (− 1.33, 0.82) 0.57 2343

Has Routine Place PhenoAge (years) − 0.33 (− 2.99, 2.34) 0.77 − 0.29 (− 2.95, 2.38) 0.80 − 0.36 (− 2.45, 1.73) 0.68 2343

Has Routine Place GrimAge2 (years) − 1.44 (− 2.66, − 0.22) 0.03 − 1.41 (− 2.61, − 0.22) 0.03 − 1.33 (− 2.66, 0.01) 0.05 2343

Has Routine Place DNAmTL (kb) 0.03 (− 0.06, 0.12) 0.40 0.03 (− 0.05, 0.12) 0.40 0.03 (− 0.05, 0.1) 0.39 2343

Has Routine Place DunedinPoAm − 0.02 (− 0.04, 0.004) 0.09 − 0.02 (− 0.04, 0.004) 0.09 − 0.02 (− 0.04, 0.01) 0.19 2343

Routine Place Not ED HannumAge (years) − 0.34 (− 1.89, 1.21) 0.60 − 0.28 (− 1.72, 1.16) 0.66 0.05 (− 1.24, 1.34) 0.93 2162

Routine Place Not ED HorvathAge (years) − 0.06 (− 1.39, 1.26) 0.91 − 0.05 (− 1.31, 1.22) 0.93 0.3 (− 1.36, 1.97) 0.67 2162

Routine Place Not ED SkinBloodAge (years) − 0.42 (− 2.03, 1.2) 0.54 − 0.38 (− 1.95, 1.18) 0.58 − 0.03 (− 2.08, 2.02) 0.98 2162

Routine Place Not ED PhenoAge (years) − 0.13 (− 3.66, 3.41) 0.93 0.07 (− 3.30, 3.44) 0.96 0.08 (− 3.34, 3.5) 0.96 2162

Routine Place Not ED GrimAge2 (years) 0.27 (− 1.72, 2.25) 0.75 0.42 (− 1.39, 2.23) 0.60 0.43 (− 1.35, 2.21) 0.57 2162

Routine Place Not ED DNAmTL (kb) 0.05 (− 0.07, 0.16) 0.38 0.04 (− 0.07, 0.16) 0.39 0.01 (− 0.08, 0.11) 0.73 2162

Routine Place Not ED DunedinPoAm 0.0002 (− 0.04, 0.04) 0.99 0.002 (− 0.03, 0.04) 0.88 0.001 (− 0.03, 0.03) 0.94 2162

 ≥ 10 Visits Last Yr HannumAge (years) 0.45 (− 0.69, 1.59) 0.36 0.56 (− 0.55, 1.66) 0.27 0.06 (− 0.96, 1.09) 0.88 2342

 ≥ 10 Visits Last Yr HorvathAge (years) 0.44 (− 0.68, 1.57) 0.37 0.47 (− 0.66, 1.59) 0.35 0.11 (− 0.97, 1.19) 0.81 2342

 ≥ 10 Visits Last Yr SkinBloodAge (years) 0.26 (− 0.78, 1.3) 0.56 0.30 (− 0.72, 1.32) 0.50 − 0.12 (− 1.11, 0.87) 0.77 2342

 ≥ 10 Visits Last Yr PhenoAge (years) 0.24 (− 1.01, 1.48) 0.66 0.55 (− 0.67, 1.78) 0.32 − 0.05 (− 1.22, 1.11) 0.92 2342

 ≥ 10 Visits Last Yr GrimAge2 (years) 0.36 (− 0.4, 1.11) 0.29 0.58 (− 0.12, 1.29) 0.09 0.18 (− 0.78, 1.14) 0.66 2342

 ≥ 10 Visits Last Yr DNAmTL (kb) − 0.05 (− 0.09, − 0.01) 0.02 − 0.05 (− 0.09, − 0.01) 0.02 − 0.03 (− 0.07, 0.003) 0.06 2342

 ≥ 10 Visits Last Yr DunedinPoAm 0.01 (− 0.01, 0.02) 0.38 0.01 (− 0.005, 0.02) 0.16 0.01 (− 0.01, 0.02) 0.22 2342

Hospitalized Last Yr HannumAge (years) 0.26 (− 1.12, 1.64) 0.65 0.37 (− 1.01, 1.76) 0.54 0.64 (− 0.52, 1.81) 0.22 2342

Hospitalized Last Yr HorvathAge (years) 0.65 (− 0.48, 1.78) 0.21 0.67 (− 0.47, 1.81) 0.20 0.96 (− 0.21, 2.13) 0.09 2342

Hospitalized Last Yr SkinBloodAge (years) − 0.08 (− 1.06, 0.91) 0.85 − 0.02 (− 1.00, 0.96) 0.96 0.26 (− 0.84, 1.36) 0.58 2342

Hospitalized Last Yr PhenoAge (years) − 0.29 (− 1.63, 1.05) 0.62 0.04 (− 1.34, 1.43) 0.94 0.2 (− 1.22, 1.61) 0.74 2342

Hospitalized Last Yr GrimAge2 (years) 0.28 (− 0.64, 1.21) 0.48 0.51 (− 0.42, 1.44) 0.23 0.68 (− 0.20, 1.56) 0.11 2342

Hospitalized Last Yr DNAmTL (kb) − 0.04 (− 0.08, 0.01) 0.07 − 0.04 (− 0.08, 0.004) 0.07 − 0.05 (− 0.08, − 0.01) 0.02 2342

Hospitalized Last Yr DunedinPoAm 0.01 (− 0.01, 0.03) 0.35 0.01 (− 0.01, 0.03) 0.21 0.01 (− 0.01, 0.03) 0.15 2342
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lower GrimAge2 levels (β = − 1.44, 95% CI − 2.66, − 0.22, 
P = 0.03) when compared to participants without a rou-
tine place for healthcare. Furthermore, marginally lower 
levels of the epigenetic estimates for CRP (β = −  0.13, 
95% CI − 0.26, − 0.01, P = 0.04) and leptin (β = − 415.41, 
95% CI − 784.04, − 46.78, P = 0.03) were observed in par-
ticipants with a routine place for healthcare (Table  S5). 
Compared to their counterparts with less healthcare 
visits per year, participants with ≥ 10 visits had margin-
ally lower DNAmTL levels (β = −  0.05, 95% CI −  0.09, 
−  0.01, P = 0.02). Furthermore, only after adjusting for 
leukocytes, participants who were hospitalized over-
night in the last year had marginally lower DNAmTL 
levels (β = − 0.05, 95% CI − 0.08, − 0.01, P = 0.02) when 
compared to their counterparts who did not have an 
overnight hospitalization. We observed similar trends 
in models that were not adjusted for self-rated health 
status (Table  3) and not adjusted for health insurance 
(Table S6).

Directly measured telomere relationships
Measured telomere length was moderately correlated 
with DNAmTL (r = 0.36, P < 0.001). Having ≥ 10 visits in 
the past year was not associated with directly measured 
telomere levels (β = 0.01, 95% CI −  0.09, 0.10, P = 0.89). 
In models including leukocytes, being hospitalized 
overnight in the past year was not associated with 
directly measured telomere levels (β = −  0.03, 95% CI 
− 0.13, 0.08, P = 0.54).

Relationships of health status, access to care, 
and utilization with chronological age
For comparison, we tested associations with 
chronological age and these relationships were largely 
null (Table S7).

Discussion
In this analysis of a nationally representative cross-
sectional sample of U.S. adults aged 50–84  years, we 
examined relationships of self-rated health status, 
healthcare access, and healthcare utilization with 
epigenetic aging. After adjusting for chronological 
age, lifestyle factors, and health variables, we found 
statistically significant associations of self-rated health 
status with three measures of epigenetic aging that are 
strong predictors of morbidity and mortality (PhenoAge, 
GrimAge2, and DunedinPoAm). Furthermore, we 
identified DNA methylation predicted cigarette 
packyears, B2M levels, and CRP levels as factors that may 
explain the association of health status with GrimAge2. 
Independent of health status, health insurance, lifestyle 
factors, and health behaviors, we found largely null 
relationships of healthcare access and utilization with 

epigenetic aging. Reporting having a routine place 
where one receives healthcare was marginally associated 
with having a lower GrimAge2 while having ≥ 10 health 
visits in the last year and being hospitalized in the last 
year were marginally associated with having a shorter 
DNAmTL. These same measures of healthcare utilization 
were not associated with directly measured telomere 
length, suggesting that DNAmTL may be more sensitive 
to health status than directly measured telomere length. 
Comparative relationships of health status, healthcare 
access, and utilization with chronological age were largely 
null further suggesting that epigenetic aging biomarkers 
are more sensitive indicators of health processes.

Many studies have described relationships of epigenetic 
aging with objective measures of disease severity [19], 
but fewer studies have demonstrated that similar 
relationships exist with self-reported measures of health. 
One notable example is research in 1,175 participants 
of the United Kingdom’s Understanding Society Study 
(ages 29–95 years) that demonstrated associations of self-
rated health with second and third generation clocks like 
DunedinPoAm and PhenoAge, but not first generation 
clocks like HannumAge and HorvathAge [3]. Similarly, 
work from 560 Australian ASPREE study participants 
(ages 70  years and older) reported statistically 
significant associations of PhenoAge, GrimAge2, and 
DunedinPACE, an updated version of the DunedinPoAm 
pace of aging measure used in our study but not available 
in NHANES, with self-rated health but only in women. 
Again, these authors observed no associations with first 
generation measures of HannumAge and HorvathAge. 
Moreover, the etiology of their observed sex difference 
was not obviously clear, but the authors postulated that 
it may be related to baseline age acceleration in males 
that is frequently attributed to hormonal and lifestyle/
behavioral differences between males and females [18]. 
A different study of 1,059 Australians in the Melbourne 
Collaborative Cohort (mean age of 69  years) identified 
significant effect modification of the associations of 
GrimAge and DunedinPACE epigenetic age measures 
with mortality by self-rated health. Specifically, the 
authors observed greater hazard ratios in participants 
with fair-poor health [17]. Our observations of lower 
epigenetic aging (particularly with second and third 
generation measures) in participants with good–
excellent health agree with this prior literature and with 
the broader paradigm of better health being associated 
with lower epigenetic aging. It is worth noting that 
these relationships are likely more robust with second 
and third generation clocks, because these latter clocks 
are trained on clinical measures [3, 4, 6]. Because DNA 
methylation estimates of some of these clinical variables 
were available, we were able to identify estimated 
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lower cigarette packyears (a measure of smoking) and 
lower levels of B2M (involved in immune function), 
CRP (a non-specific marker of inflammation), and 
leptin (a hormone produced by fat tissue) as GrimAge2 
components associated with good–excellent self-
reported health status [32–34].

It has been hypothesized that epigenetic age measures 
may one day play a role in the clinical management of 
patients [8], but there is very sparse literature examining 
epigenetic aging relationships with measures of 
healthcare access and utilization that are important for 
shaping health status and clinical care. To the best of our 
knowledge, the present study addresses this research gap 
by reporting these relationships for the first time. Still, we 
observed largely null relationships of healthcare access 
and utilization with epigenetic aging. We suspected 
that this was due to health status, which we show as 
independently associated with epigenetic aging, being 
a primary driver of healthcare access and utilization. 
Given that measures of healthcare access and utilization 
were associated with self-rated health status in our 
study sample, we ran access and utilization models both 
including and not including health status as a covariate. 
Understanding the impact of health insurance on health, 
access, and utilization [35], we did the same for health 
insurance as a covariate. Still, our results were largely 
unchanged across these models for reasons that remain 
unclear. One possibility is the cross-sectional nature of 
our study as utilization and access relationships may be 
more apparent in longitudinal data. We attempted to 
explore longer-term relationships in our limited data, 
but observed no significant findings with the variable 
that considered changes in participants’ health in the 
last year. Still, we believe that there is some connection 
of self-rated health status with access and utilization 
based on our observation of a marginal association 
of having a routine place for healthcare with lower 
GrimAge2 levels. CRP and leptin are the GrimAge2 
components marginally associated with this measure of 
healthcare access, and they were previously identified 
as components associated with self-rated health status. 
Future studies with truly longitudinal data will be useful 
for better characterizing the relationships of epigenetic 
age with healthcare access and utilization.

With specific attention to healthcare utilization, we 
observed marginal associations of having ≥ 10 health-
care visits in the last year and being hospitalized over-
night in the last year with shorter DNAmTL. Consistent 
with prior studies [36, 37], we observed differences in the 
associations detected by DNAmTL and directly meas-
ured telomere length, further supporting the notion that 
DNAmTL may be more sensitive to health status. Most 
compellingly, an independent NHANES analysis revealed 

that DNAmTL has a stronger association with cardio-
vascular disease and long-term mortality than measured 
telomere length [28]. Additional evidence that these two 
measures are related but different comes from our study, 
where DNAmTL showed only a moderate correlation 
with measured telomere length—consistent with corre-
lations reported in the original manuscript introducing 
DNAmTL [5]. While some theories suggest DNAmTL 
may better reflect processes like telomere maintenance 
mechanisms [23] and/or cell turnover and proliferation 
[5] rather than actual telomere length, the underlying 
mechanisms to explain the differences with measured 
telomere length remain an active area of research. Still, 
our findings are in agreement with the notion of shorter 
telomeres being associated with increased morbidity as 
individuals with more serious ailments are likely to have 
more doctor’s visits and be hospitalized [38]. More spe-
cifically, shorter directly measured telomere length has 
been associated with general hospitalization [39] and 
COVID-19 hospitalization [40] while shorter DNAmTL 
has been associated with hospitalizations in chronic 
obstructive pulmonary disease [41]. In our study, we did 
not have access to data describing why patients were hos-
pitalized but future studies examining this question may 
reveal useful insights.

Our study has several strengths, including the use of 
DNA methylation-based biomarkers to directly assess 
relationships of health status, healthcare access, and 
healthcare utilization. However, certain limitations 
should be acknowledged. First, while NHANES includes a 
broad range of demographic and lifestyle variables, some 
data were missing for certain participants. To address 
this, we performed analyses using imputed covariates. 
Second, as our study is cross-sectional, it cannot 
capture longitudinal relationships, which are crucial for 
understanding many health processes, including chronic 
disease management and general health maintenance. 
There remains a need for future studies with longitudinal 
data to study these longitudinal relationships. Third, our 
dataset was limited in its measures of healthcare access 
and utilization. While our results are promising, they 
may not generalize to all dimensions of these constructs. 
Future studies could further explore the relationship of 
epigenetic aging with additional metrics of healthcare 
access (e.g., timeliness of care, transportation barriers, 
referral follow-up rates) and utilization (e.g., hospital 
length of stay, home healthcare use, rehabilitation 
service engagement). Fourth, the data used in our study 
are approximately 20  years old at the time of analysis, 
which may limit the generalizability of our findings given 
significant changes in the U.S. healthcare landscape over 
time. However, this remains the most recent methylation 
data available in NHANES. Despite these limitations, 
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our study addresses novel questions, and the findings 
from this nationally representative sample can help guide 
future research using more recent data.

Conclusions
In conclusion, among a representative sample of U.S. 
adults aged 50–84  years, we observed associations 
of self-rated health status with second and third 
generation epigenetic aging biomarkers (PhenoAge, 
GrimAge2, and DunedinPoAm). We also observed 
weaker relationships of healthcare access (having 
a routine place for receiving healthcare) with 
GrimAge2 and utilization (≥ 10 visits a year and being 
hospitalized overnight) with DNAmTL. If validated in 
future research, these findings suggest that epigenetic 
aging measures may be valuable for understanding 
healthcare access and utilization patterns that influence 
health outcomes. These findings also underscore the 
importance of accounting for healthcare access and 
utilization patterns in studies of epigenetic aging and 
disease processes, whenever possible and when not 
already addressed. Additionally, as health systems 
transition away from fee-for-service models (where 
health systems are paid for individual services/
procedures) towards value-based care models (where 
payment is determined based on quality of care rather 
than quantity of services) epigenetic aging measures 
may be useful for monitoring the impact of this 
transition on patient health [42, 43].
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