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Abstract 

Background  Diabetes ranks as the ninth leading cause of death globally, and DNA-methylation age acceleration 
(DNAmAA) is closely linked to lifespan. However, the impact of DNAmAA on long-term outcomes in specific popula-
tions with diabetes and pre-diabetes has not yet been comprehensively studied.

Methods  This retrospective cohort study utilized data from the National Health and Nutrition Examination Sur-
vey (NHANES) 1999–2002, including participants aged 20 years or older diagnosed with diabetes or pre-diabetes. 
DNAmAA was defined as the difference between epigenetic age and chronological age. Multiple generations 
of DNAmAA measures were included. Cox proportional hazards regression models were employed to estimate 
the associations between DNAmAAs and all-cause, cardiovascular, and non-cardiovascular mortality.

Results  A total of 1,199 participants were included, with a mean age of 64.20 (0.46) years; 621 (51.8%) were male. 
Significant correlations were observed between chronological age and all DNA-methylation ages in both diabetes 
and pre-diabetes groups. Over a mean follow-up of 14.13 (5.90) years, 662 deaths were recorded. AgeAccelGrim2 
exhibited the strongest association with mortality. Each 5-unit increase in AgeAccelGrim2 was associated with an ele-
vated risk of all-cause mortality (HR 1.35, 95% CI 1.23–1.49), cardiovascular mortality (HR 1.50, 95% CI 1.25–1.80), 
and non-cardiovascular mortality (HR 1.30, 95% CI 1.16–1.46). These associations remained significant in participants 
with diabetes and pre-diabetes. Mediation analysis revealed that AgeAccelGrim2 significantly mediates the associa-
tion between health-related exposures (including the Oxidative Balance Score, Life’s Simple 7 score, and frailty score) 
and all-cause mortality in diabetes and pre-diabetes populations.

Conclusions  AgeAccelGrim2 could serve as a valuable biomarker for mortality risk specific to populations with dia-
betes and pre-diabetes, offering potential applications in personalized management strategies and risk stratification.
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Introduction
Type 2 diabetes (T2D) is a metabolic disorder associ-
ated with aging, characterized by chronic hypergly-
cemia and insulin resistance and is one of the most 
prevalent and serious chronic diseases worldwide [1, 
2]. Individuals with T2D face a significantly higher risk 
of mortality and complications, including cardiovas-
cular disease, kidney failure, neurodegenerative dis-
orders, retinopathy, and neuropathy [3, 4]. The global 
rise in diabetes prevalence, driven by urbanization, 
sedentary lifestyles, and aging populations, has cre-
ated a substantial health and economic burden, par-
ticularly in low- and middle-income countries where 
healthcare resources are limited [5]. The pathogenesis 
of T2D is complex, and DNA methylation (DNAm) may 
play a role in its development. Studies have shown that 
DNAm alterations occur in the pancreatic islets, liver, 
and skeletal muscle of individuals with diabetes, which 
disrupt gene expression and impair insulin secretion, 
ultimately leading to metabolic dysregulation [6]. 

DNAmAge, which estimates biological age based on 
predictable changes in DNAm patterns with age, has 
demonstrated strong correlations with morbidity, mor-
tality, and a wide range of age-related diseases [7]. The 
evolution of biological clocks from first- to third-gen-
eration models marks significant progress: first-gen-
eration clocks (e.g., HorvathAge [8], HannumAge [9]) 
aim to predict chronological age; second-generation 
clocks (e.g., PhenoAge [10], ZhangAge [11]) estimate 
biological age using health biomarkers; third-genera-
tion clocks (e.g., GrimAge2Mort [12], DunedinPoAm 
[13]) aim to predict mortality, disease outcomes, and 
aging pace by integrating disease-specific biomarkers. 
DNAmAge acceleration (DNAmAA), defined as the 
discrepancy between biological age, as estimated by 
these clocks, and chronological age, is also linked to 
elevated risks of age-related diseases and mortality [14].

PhenoAge, developed by Levine et  al. in 2018, pre-
dicts aging rates and health risks by analyzing DNAm 
patterns combined with clinical biomarkers such as 
inflammation, metabolism, and organ function indi-
cators [10]. GrimAge, constructed based on seven 
DNAm-based plasma protein markers and pack-years 
of smoking, showing superior performance in predict-
ing lifespan, healthspan and age-related conditions 
such as cardiovascular diseases and cognitive decline 
[15, 16]. GrimAgeV2, as its enhanced version by incor-
porating two additional DNAm-based estimators 
(logCRP and logA1C), further improves its predictive 
performance on mortality and age-related conditions 
[12]. DunedinPoAm, as a third-generation epige-
netic clock, measures the pace of biological aging by 

analyzing DNAm patterns and offers insights into the 
rate of aging rather than just biological age [13].

In the field of diabetes, these epigenetic clocks have 
been extensively studied for their associations with 
disease onset, progression, and related complica-
tions. Multiple studies have shown that GrimAgeV2 is 
strongly linked to both the onset of diabetes and the 
development of diabetes-related complications [17–
20]. Regarding mortality outcomes, Sabbatinelli et  al. 
conducted a case–control study involving 50 individu-
als with T2D, revealing that elevated DNAmPhenoAge 
and accelerated DunedinPoAm were independently 
associated with increased mortality risk [21]. Similarly, 
Jiang et  al. investigated the role of biological aging in 
cardiometabolic multimorbidity development and mor-
tality among 341,159 UK Biobank participants, show-
ing that PhenoAge was strongly associated with higher 
risks of progression from cardiometabolic disease to 
multimorbidity and mortality [22]. 

Despite these advancements, the predictive ability 
of DNAmAA measures for mortality in diabetes and 
pre-diabetes populations remains underexplored. In 
this longitudinal study, we focused on individuals with 
diabetes and pre-diabetes, comprehensively evaluating 
the impact of ten epigenetic clock accelerations, includ-
ing AgeAccelGrim2 and DunedinPoAm, on long-term 
outcomes. Additionally, we investigated the poten-
tial mediating role of DNAmAA in the relationships 
between health-related exposures and mortality risk.

Methods
Study design and dataset generation
The data used in this study were derived from the 
1999–2002 National Health and Nutrition Examination 
Survey (NHANES). NHANES is an ongoing national 
program overseen by the National Center for Health 
Statistics under the Centers for Disease Control and 
Prevention, focusing on US non-institutionalized civil-
ians. NHANES utilizes a complex, multistage probabil-
ity sampling design, integrating face-to-face interviews, 
physical examinations, and laboratory tests to collect 
data. For this study, we included 1,199 eligible partici-
pants. Detailed description of the inclusion/exclusion 
criteria is provided in eFigure 1.

NHANES received ethical approval from the National 
Center for Health Statistics Ethics Review Board, and 
all participants provided written informed consent. 
This study was followed the Strengthening the Report-
ing of Observational Studies in Epidemiology reporting 
guideline (eTable 1).
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Outcome definition
The primary outcome in this study was all-cause mor-
tality. Secondary outcomes included cardiovascular 
and non-cardiovascular mortality. The date and cause 
of death were linked to National Death Index records 
through December 31st, 2019. We used the 10th revision 
of the International Classification of Diseases to deter-
mine the cause of death. The participants were followed 
from the date of their survey participation until death or 
the end of the follow-up period.

Laboratory methodology
DNA was extracted from whole blood and stored at 
−80  °C. Bisulfite conversion was performed on 500  ng 
of DNA using the Zymo EZ DNA Methylation Kit (cat# 
D5001, Zymo Research, Irvine, CA, USA). Methylation 
profiling was conducted using the Illumina Infinium 
MethylationEPIC BeadChip v1.0 (cat# WG317-1001, Illu-
mina, San Diego, CA, USA), following standard protocols 
for hybridization, amplification, and labeling. The raw 
methylation data underwent quality control procedures, 
including outlier detection, imputation, and normaliza-
tion, and were subsequently used to generate epigenetic 
biomarkers based on established algorithms: HorvathAge 
[8], HannumAge [9], SkinBloodAge [23], Vidal-BraloAge 
[24], WeidnerAge [25], PhenoAge [10], ZhangAge [11], 
LinAge [26], GrimAge2Mort [12], and DunedinPoAm 
[13]. Additional details on the DNA-methylation data 
processing are available at https://​wwwn.​cdc.​gov/​nchs/​
nhanes/​dnam/.

These DNAmAge algorithms can be categorized into 
first-generation, second-generation, and third-genera-
tion clocks, each with distinct methodologies, biologi-
cal focuses, and applications. First-generation clocks 
(e.g., HorvathAge, HannumAge, SkinBloodAge) predict 
chronological age using DNAm patterns. Second-gener-
ation clocks (e.g., PhenoAge, ZhangAge, LinAge) incor-
porate health-related biomarkers to estimate biological 
age and assess disease risk. Third-generation clocks (e.g., 
GrimAge2Mort) integrate disease-related biomark-
ers and longitudinal data to predict mortality risk and 
the pace of biological aging (e.g., DunedinPoAm). These 
algorithms differ in their CpG site selection, which 
may reflect unique biological pathways or tissue-spe-
cific methylation patterns, and were trained on diverse 
datasets, ranging from multi-tissue samples (e.g., Hor-
vathAge) to blood-specific samples (e.g., HannumAge) or 
longitudinal cohorts (e.g., DunedinPoAm). These differ-
ences in CpG site selection, training datasets, prediction 
targets, and biological focus collectively contribute to the 
variations observed among DNAmAge values. Detailed 
procedures for each DNAmAge algorithm are provided 

in the Supplemental eMethods. In this study, DNAmAA 
was calculated as the residuals from the regression of 
DNAmAge on chronological age, as described in the pre-
vious work [2, 7].

Variables collection
In addition to variable related to DNAmAA, we collected 
a range of variables for analysis including chronological 
age, sex, body mass index (BMI), race and ethnicity, pov-
erty-to-income ratio (PIR), smoking status, systolic blood 
pressure, diastolic blood pressure, systemic immune 
inflammation index (SII), Oxidative Balance Score (OBS), 
Life’s Simple 7 (LS7) score, frailty score, Geriatric Nutri-
tional Risk Index (GNRI), comorbidities (atherosclerotic 
cardiovascular disease [ASCVD], hypertension, hyper-
cholesterolemia, chronic kidney disease [CKD]), hemo-
globin A1c, total cholesterol, high-density lipoprotein 
cholesterol, estimated glomerular filtration rate (eGFR), 
urine albumin-to-creatinine ratio (UACR).

Race and ethnicity were categorized as non-Hispanic 
White, non-Hispanic Black, Mexican American, Hispanic 
and other race (which included participants who identi-
fied as non-Hispanic multiracial). Race and ethnicity data 
were collected as a confounding factor to account for dif-
ferences among racial and ethnic groups in susceptibility 
to diabetes, pre-diabetes, and related health outcomes. 
Therefore, controlling for race and ethnicity helps ensure 
that any observed associations between DNAmAA and 
mortality are not confounded by these factors.

SII, calculated as (platelet count × neutrophil count)/
lymphocyte count, is a marker of systemic inflamma-
tion and immune response. It has been associated with 
increased risks of chronic diseases and mortality, mak-
ing it a valuable prognostic tool [28]. OBS is a compos-
ite measure of pro-oxidant and antioxidant exposures, 
including dietary and lifestyle factors. Higher OBS values 
indicate a greater antioxidant capacity, which has been 
linked to reduced risks of oxidative stress-related condi-
tions, such as cardiovascular disease and diabetes [29]. 
LS7, developed by the American Heart Association, is a 
composite score based on seven modifiable cardiovas-
cular health factors, including smoking, diet, and physi-
cal activity. Higher LS7 scores are associated with better 
cardiovascular health and reduced risks of diabetes and 
mortality [30]. Frailty index was developed by Searle and 
colleagues and constructed using 40 variables associated 
with health status, covering multiple physiological sys-
tems, This approach generates a continuous score rang-
ing from total fitness (0) to total frailty (1), providing a 
comprehensive measure of an individual’s vulnerability 
to adverse health outcomes [31]. GNRI is a nutritional 
assessment tool calculated from serum albumin levels, 
body weight, and height. It is widely used to evaluate 

https://wwwn.cdc.gov/nchs/nhanes/dnam/
https://wwwn.cdc.gov/nchs/nhanes/dnam/
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malnutrition risk in older adults and has been associated 
with mortality, frailty, and other adverse health outcomes 
[32]. Detailed definitions of these covariates are provided 
in Supplemental eMethod.

Statistical analysis
NHANES initially employed a complex survey design, 
with all results weighted to yield estimates that are 
nationally representative of the non-institutionalized 
civilian population of the USA. In this study, we used the 
‘WTDN4YR’ weights from the NHANES 1999–2000 and 
2001–2002 DNA-methylation array and epigenetic bio-
markers dataset for analysis. Data analysis was conducted 
between August 1st and October 14th, 2024.

The extent of missing data for each variable is detailed 
in eTable 2, with PIR exhibiting the highest proportion of 
missing values at 11.59%, whereas other variables demon-
strated missing rates between 0.1% and 0.5%. To address 
these missing data, we employed the ‘mice’ package in R 
for multiple imputation using chained equations. A total 
of 20 imputed datasets were generated through iterative 
imputation. For each variable, we selected the imputed 
dataset that minimized the relative difference between 
the imputed mean and the original mean of the incom-
plete data. These selected values were combined to con-
struct a single complete dataset, which was used for all 
subsequent analyses. For the descriptive statistics, contin-
uous variables are expressed as mean (standard deviation 
[SD]), and categorical variables are expressed as numbers 
and percentages. Pearson’s correlation analysis was per-
formed to analyze the relationships between chronologi-
cal age with each DNAmAge and each DNAmAA, and 
the correlation coefficients (r) were given. Additionally, 
the relationships between each DNAmAA with labora-
tory indicators (e.g., eGFR, UACR), multidimensional 
scores (e.g., SII, OBS), and vital signs were analyzed by 
partial correlation analysis adjusted by chronological age, 
sex, and smoking, and the r values were given.

We examined whether each DNAmAA and covari-
ates met the proportional hazards assumption of the 
Cox proportional hazards model. We adjusted for con-
founders (including chronological age, sex, race and 
ethnicity, PIR, smoking status, BMI, GNRI, ASCVD, 
hypertension, hyperlipidemia, and CKD). These covari-
ates were selected based on literature, clinical rel-
evance, and our data characteristics [33]. Laboratory 
indicators (e.g., CRP, HbA1c) and multidimensional 
score (e.g., OBS, SII) were not included into models 
due to potential multicollinearity with DNAmAA. We 
reported hazard ratios (HR) with 95% confidence inter-
vals (CI) for each 5-unit increase in the DNAmAAs and 
for 10% increases in the DunedinPoAm pace of aging 

to quantify the associations between each DNAmAA 
and mortality outcomes. For DNAmAAs significantly 
associated with all-cause mortality, these variables were 
also analyzed categorically in tertiles, with the first ter-
tile serving as the reference for calculating HRs and 
95% CIs. To further validate the robustness of our find-
ings, we conducted the following sensitivity analyses. 
First, we adjusted for all variables listed in Table  1 in 
the Cox regression model to account for their potential 
influence on the association between each DNAmAA 
and mortality outcomes. Second, we excluded par-
ticipants with missing data to minimize the impact of 
missing values on the results. Finally, we removed par-
ticipants who died within the first two years of follow-
up to reduce the risk of reverse causality.

Given the significance of AgeAccelGrim2 and Dun-
edinPoAm in predicting mortality, we compared their 
predictive performance using DeLong’s test, evaluating 
the area under the curve of the receiver operating char-
acteristic curves across overall participants, as well as 
subgroups with diabetes and pre-diabetes. Our results 
indicate that AgeAccelGrim2 shows a stronger predic-
tive advantage over DunedinPoAm for all-cause mor-
tality (eFigure 2). We conducted restricted cubic spline 
(RCS) analyses with three knots to examine potential 
nonlinear associations between AgeAccelGrim2 and 
mortality outcomes. Subgroup analyses were performed 
to evaluate the association between AgeAccelGrim2 
and all-cause mortality, stratified by chronological age 
(≥ 65 and < 65  years), sex (male and female), and BMI 
(≥ 30 and < 30 kg/m2). We also evaluated the predictive 
effect of AgeAccelGrim2 on mortality in non-diabetic/
non-pre-diabetic populations to compare whether dif-
ferences exist relative to diabetic populations.

We investigated the potential mediating role of 
AgeAccelGrim2 in the association between health-
related exposures (in diabetes population: HbA1c, 
eGFR, OBS, LS7, frailty; in pre-diabetes population: 
OBS, LS7, frailty) and all-cause mortality using the 
mediation package in R. As AgeAccelGrim2 serves as 
a biomarker of biological aging, reflecting accumulated 
physiological damage, its use as a mediator helps elu-
cidate how health-related factors influence mortality 
risk by accelerating or decelerating epigenetic aging. 
Adjusted models were applied, and mediation analyses 
with 500 bootstrap resamples were conducted to esti-
mate the direct and indirect effects of AgeAccelGrim2.

All analyses were conducted using R version 3.5.2 (R 
Project for Statistical Computing, Vienna, Austria). P 
values were two-tailed, and < 0.05 was considered sta-
tistically significant.
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Results
Baseline characteristics
A total of 1,199 eligible patients were included, com-
prising 542 patients with diabetes and 657 patients with 
pre-diabetes (mean [SD] age: 64.20 (0.46) years; 621 
males [51.8%]). During a mean follow-up period of 14.13 
(5.90) years, 662 participants (55.2%) died (diabetes: 347 
[64.0%]; pre-diabetes: 315 [47.9%]). In terms of race and 
ethnicity, 364 (30.36%) were non-Hispanic White, 313 
(26.11%) were non-Hispanic Black, 392 (32.69%) were 
Mexican American, and 130 (10.84%) were other His-
panic or other race. The baseline characteristics of all 
participants are presented in Table 1; the details for those 

with diabetes and pre-diabetes are outlined in eTable  3 
and eTable 4, respectively.

Chronological age, DNAmAge, and DNAmAA
eTable  5 shows the distribution of each DNAmAge 
and DNAmAA. Figure  1 presents the correlations 
between chronological age and all DNAmAges. In 
the diabetes population, significant correlations were 
found between chronological age and all DNAmAges, 
with r ranging from 0.51 to 0.92 (all P < 0.001). Among 
them, the correlation between Horvath DNAmAge 
and chronological age was the strongest (r = 0.92). 
Similarly, in the pre-diabetes population, significant 

Table 1  Baseline characteristics of all participants categorized by survival status

eGFR, estimated glomerular filtration rate; HDL-C, high-density lipoprotein cholesterol; SD, standard deviation; SII, Systemic immune inflammation index; UACR, urine 
albumin-to-creatinine ratio

Characteristics Overall participants
N = 1199

Survivors
N = 537

Non-survivors
N = 662

Age, mean (SD), years 64.20 (0.46) 58.73 (0.41) 69.55 (0.53)

Male, n (%) 621 (51.79) 266 (47.40) 355 (46.45)

Ethnicity, n (%)

Non-Hispanic White
Non-Hispanic Black
Mexican American
Hispanic and Other

364 (30.36)
313 (26.11)
392 (32.69)
130 (10.84)

136 (67.26)
127 (11.98)
194 (5.06)
80 (15.69)

228 (73.62)
186 (13.10)
198 (4.35)
50 (8.93)

Body mass index, mean (SD), kg/m2 30.64 (0.28) 30.77 (0.45) 30.50 (0.36)

Systolic blood pressure, mean (SD), mmHg 135.20 (0.75) 132.14 (1.28) 138.17 (1.13)

Diastolic blood pressure, mean (SD), mmHg 71.53 (0.68) 75.89 (0.93) 67.19 (0.88)

Poverty income ratio, mean (SD) 2.85 (0.09) 3.22 (0.15) 2.47 (0.09)

Smoking status, n (%)

Never smoker
Former smoker
Current smoker

575 (48.08)
434 (36.29)
187 (15.64)

272 (43.91)
188 (37.47)
75 (18.62)

303 (44.87)
246 (37.08)
112 (18.04)

Comorbidities, n (%)

Cardiovascular disease 258 (21.52) 63 (11.17) 195 (33.60)

Hypertension 829 (69.14) 329 (60.43) 500 (74.03)

Hypercholesterolemia 1016 (84.74) 452 (87.61) 564 (88.63)

Chronic kidney disease 412 (34.86) 110 (20.23) 302 (42.16)

Laboratory indicators

HDL-C, mean (SD), mmol/L 1.24 (0.01) 1.23 (0.02) 1.24 (0.02)

Total Cholesterol, mean (SD), mmol/L 5.55 (0.05) 5.60 (0.06) 5.51 (0.08)

eGFR, mean (SD), ml/min/1.73 m2 77.94 (0.83) 84.37 (0.95) 71.65 (1.10)

Hemoglobin A1c, mean (SD), % 6.36 (0.06) 6.09 (0.08) 6.63 (0.09)

UACR, mean (SD), mg/g 86.86 (16.71) 35.24 (8.04) 138.19 (30.71)

C-reactive protein, mean (SD), mg/dl 0.66 (0.06) 0.57 (0.07) 0.75 (0.10)

SII, mean (SD) 638.00 (22.71) 625.84 (38.78) 650.02 (26.41)

Multidimensional score

Life’s Simple 7 score, mean (SD) 5.92 (0.11) 6.21 (0.13) 5.63 (0.12)

Frailty score, mean (SD) 0.19 (0.00) 0.16 (0.01) 0.21 (0.00)

Oxidative Balance Score, mean (SD) 17.27 (0.29) 18.23 (0.54) 16.32 (0.33)

Geriatric Nutritional Risk Index, mean (SD) 121.53 (0.52) 122.19 (0.76) 120.85 (0.75)
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relationships were observed between chronological age 
and each DNAmAge, with r ranging from 0.50 to 0.93 
(all P < 0.001). In addition, the correlations among the 
various DNAmAAs were also significant (P < 0.001), as 
illustrated in eFigure 2.

DNAmAAs with laboratory indicators, multidimensional 
scores, and vital signs
eFigure 3 presents the results of partial correlation analy-
ses between different DNAmAAs and multiple variables. 
For both diabetes and pre-diabetes populations, the 

Fig. 1  The correlation analyses between chronological age and all DNA-methylation ages. Participants with diabetes A and pre-diabetes B. * 
P < 0.05; ** P < 0.01; *** P < 0.001
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correlations between DNAmAAs and laboratory indica-
tors, multidimensional scores, and vital signs varied. In 
the diabetes population, SII showed a significant positive 
correlation with multiple DNAmAAs, particularly with 
DunedinPoAm (r = 0.311, P < 0.001) and Vidal-BraloAA 
(r = 0.296, P < 0.001). Conversely, the OBS was signifi-
cantly negatively correlated with AgeAccelGrim2 (r = 
−0.086, P < 0.05). The frailty score and UACR demon-
strated positive correlations with AgeAccelGrim2, with r 
of 0.171 and 0.135, respectively. In the pre-diabetes pop-
ulation, SII was also correlated with various DNAmAAs, 
especially with Vidal-BraloAA (r = 0.280, P < 0.001) and 
LinAA (r = 0.209, P < 0.001). Additionally, AgeAccel-
Grim2 was correlated with the OBS (r = −0.103, P < 0.01) 
and C-reactive protein (r = 0.174, P < 0.001).

DNAmAAs and mortality in participants with diabetes 
and pre‑diabetes
In the fully adjusted Cox proportional hazards models, 
significant associations were found between multiple 
DNAmAAs and all-cause mortality (Table  2). Notably, 
for every 5-unit increase in AgeAccelGrim2 in the total 
population, it was associated with 35% increased risk 
of all-cause death (95% CI: 1.23–1.49), 50% increased 
risk of cardiovascular death (95% CI: 1.25–1.80) and 
30% increased risk of non-cardiovascular death (95% 
CI: 1.16–1.46). When analyzed as a categorical variable, 
the highest AgeAccelGrim2 tertile was associated with a 
62% increase in the risk of all-cause mortality (95% CI: 
1.30–2.02), a 80% increase in the risk of cardiovascular 
mortality (95% CI: 1.19–2.72), and a 55% increase in the 
risk of non-cardiovascular mortality (95% CI: 1.19–2.01) 
compared to the lowest AgeAccelGrim2 tertile (Table 2). 
These associations were also significant in participants 
with diabetes and pre-diabetes (Table 2 & Table 3). Addi-
tionally, the results from sensitivity analyses were broadly 
consistent with those of the initial analyses, support-
ing the robustness of our findings (eTable 6—eTable 10). 
AgeAccelGrim2 was also significantly associated with 
mortality in non-diabetes populations, with HRs demon-
strating predictive power similar to that observed in dia-
betes populations (eTable 11).

As shown in Fig.  2, the results of the RCS analysis 
further confirmed the relationships between AgeAc-
celGrim2 and all-cause, cardiovascular, and non-cardi-
ovascular mortality outcomes (all P-overall < 0.05 and 
P-non-linear > 0.05). Although other DNAmAAs (includ-
ing HannumAA, PhenoAA and Vidal-BraloAA) were also 
significantly associated with all-cause mortality, their 
relative hazard ratios and statistical significance were 
weaker than AgeAccelGrim2, and they showed inconsist-
ent results in participants with diabetes and pre-diabetes. 
Moreover, the results of the subgroup analyses showed 

no significant interactions between AgeAccelGrim2 
and mortality outcomes across the various subgroups in 
participants with diabetes (eTable  12) and pre-diabetes 
(eTable 13).

Mediation of DNAmAA in mortality risk
Our analysis identified AgeAccelGrim2 as a significant 
mediator in the relationships between health-related 
exposures with all-cause mortality in both diabetes and 
pre-diabetes populations (eTable  14). In the diabetes 
group (Fig.  3A), AgeAccelGrim2 showed its mediation 
effects through five pathways, with the strongest three 
corresponding to the following exposures: (1) frailty 
score, where AgeAccelGrim2 mediated 24.9% of the 
association (95% CI: 10.0%-62.0%); (2) LS7 score, where 
AgeAccelGrim2 mediated 23.4% (95% CI: 7.6%-58.0%) of 
the association between AgeAccelGrim2 and all-cause 
mortality; (3) OBS, where AgeAccelGrim2 mediated 
19.4% of the association (95% CI: 10.3%-51.0%). AgeAc-
celGrim2 significantly mediated 18.3% and 14.4% of the 
associations between Hemoglobin A1c and eGFR and all-
cause mortality, respectively. In the pre-diabetes group 
(Fig. 3B), AgeAccelGrim2 as a mediator variable mediates 
the associations between LS7 score, OBS, frailty score 
with all-cause mortality, respectively. (LS7 score: 49.8%, 
95% CI: 27.4%-128.0%; OBS: 27.7%, 95% CI: 14.9%-66.0%; 
frailty score: 13.9%, 95% CI: 6.7%-46.0%).

Discussion
Main findings
This cohort study aimed to evaluate the associations of 
DNAmAAs with the risk of all-cause/cardiovascular/
non-cardiovascular mortality in populations with diabe-
tes and pre-diabetes and to explore potential mediating 
mechanisms. AgeAccelGrim2 showed stronger predic-
tive performance than the other DNAmAAs, especially 
as each 5-unit increase in AgeAccelGrim2 was associated 
with a 35%, 50%, and 30% increase in the risk of all-cause, 
cardiovascular, and non-cardiovascular mortality, respec-
tively. Additionally, although other DNAmAAs (e.g., 
HannumAA) also showed significant associations with 
the risk of all-cause mortality, their effect strengths were 
weaker and inconsistent in the diabetes and pre-diabetes 
populations. This suggests that AgeAccelGrim2 may be a 
more reliable biomarker for assessing the risk of mortal-
ity in this high-risk population. Moreover, our mediation 
analysis revealed that AgeAccelGrim2 statistically medi-
ates the associations between several important health-
related exposures (including LS7 score, frailty score, and 
OBS) and the risk of all-cause mortality in both diabetes 
and pre-diabetes populations. This suggests that AgeAc-
celGrim2 may serve as a biomarker reflecting the cumu-
lative biological impact of these exposures on mortality 
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risk. Whether AgeAccelGrim2 could be a viable target 
for interventions requires further investigation in future 
studies.

Comparison with the existing literature
T2D is a complex metabolic disorder with multifac-
eted pathogenesis, in which DNAm plays a critical role 
in disease development and progression. Research has 
demonstrated that significant DNAm alterations occur 
in key metabolic tissues, including pancreatic islets, 

skeletal muscle, adipose tissue, and the liver of individu-
als with T2D. These epigenetic modifications regulate 
gene expression patterns, thereby disrupting insulin 
secretion and metabolic homeostasis. For instance, in 
the pancreatic islets of T2D patients, promoter regions 
of genes critical for β-cell function, such as INS, PDX1, 
PPARGC1A, and GLP1R, exhibit hypermethylation, 
leading to their transcriptional silencing and subsequent 
impairment of insulin secretion [6]. Although blood sam-
ples reflect systemic changes rather than tissue-specific 

Table 2  Associations between DNAmAA and mortality outcomes among participants with diabetes and pre-diabetes

Cox proportional hazards models were adjusted for chronological age, sex, ethnicity, poverty income ratio, smoking status, body mass index, geriatric nutritional risk 
index, cardiovascular disease, hypertension, hyperlipidemia, and chronic kidney disease

Bold indicates significant at P < 0.05

CI, confidence interval; DNAmAA, DNA-methylation age acceleration; HR, hazard ratio

Overall participants Participants with diabetes Participants with pre-diabetes

HR (95% CI) P HR (95% CI) P HR (95% CI) P

Overall survival 662 deaths 347 deaths 315 deaths

HorvathAge Accel 1.072 (0.998, 1.151) 0.056 1.035 (0.939, 1.142) 0.485 1.094 (0.985, 1.215) 0.092

HannumAge Accel 1.081 (1.003, 1.165) 0.042 1.046 (0.947, 1.156) 0.375 1.090 (0.973, 1.220) 0.140

SkinBloodAge Accel 0.995 (0.920, 1.075) 0.898 0.972 (0.881, 1.073) 0.580 0.990 (0.876, 1.119) 0.872

PhenoAge Accel 1.106 (1.043, 1.173) 0.001 1.039 (0.962, 1.122) 0.332 1.184 (1.080, 1.299)  < 0.001
AgeAccelGrim2 1.354 (1.230, 1.491)  < 0.001 1.309 (1.142, 1.500)  < 0.001 1.345 (1.171, 1.545)  < 0.001
ZhangAge Accel 1.102 (0.879, 1.381) 0.401 0.996 (0.753, 1.316) 0.976 1.170 (0.813, 1.685) 0.398

LinAge Accel 1.018 (0.968, 1.071) 0.494 0.988 (0.923, 1.057) 0.722 1.038 (0.960, 1.122) 0.347

WeidnerAge Accel 1.004 (0.960, 1.051) 0.847 1.002 (0.937, 1.071) 0.954 1.020 (0.958, 1.087) 0.528

Vidal-BraloAge Accel 1.098 (1.016, 1.186) 0.018 1.083 (0.973, 1.207) 0.145 1.114 (0.994, 1.250) 0.064

DunedinPoAm 1.157 (1.055, 1.270) 0.002 1.096 (0.967, 1.243) 0.150 1.184 (1.032, 1.358) 0.016
Cardiovascular death 187 deaths 103 deaths 84 deaths

HorvathAge Accel 0.990 (0.868, 1.129) 0.880 1.068 (0.893, 1.278) 0.470 0.827 (0.672, 1.016) 0.071

HannumAge Accel 1.052 (0.914, 1.211) 0.478 1.032 (0.863, 1.235) 0.728 1.015 (0.812, 1.270) 0.893

SkinBloodAge Accel 0.998 (0.863, 1.153) 0.973 1.007 (0.835, 1.215) 0.941 0.898 (0.718, 1.124) 0.347

PhenoAge Accel 1.105 (0.987, 1.237) 0.082 1.081 (0.938, 1.246) 0.284 1.097 (0.910, 1.322) 0.330

AgeAccelGrim2 1.501 (1.252, 1.799)  < 0.001 1.411 (1.100, 1.810) 0.007 1.524 (1.169, 1.985) 0.002
ZhangAge Accel 0.984 (0.663, 1.458) 0.935 0.981 (0.601, 1.600) 0.937 0.794 (0.427, 1.475) 0.466

LinAge Accel 0.991 (0.901, 1.090) 0.853 1.006 (0.889, 1.137) 0.929 0.910 (0.779, 1.064) 0.239

WeidnerAge Accel 1.014 (0.933, 1.102) 0.742 1.036 (0.915, 1.172) 0.578 1.003 (0.887, 1.133) 0.966

Vidal-BraloAge Accel 1.005 (0.870, 1.160) 0.948 1.041 (0.858, 1.264) 0.682 0.911 (0.723, 1.147) 0.429

DunedinPoAm 1.235 (1.041, 1.465) 0.160 1.062 (0.842, 1.340) 0.609 1.357 (1.054, 1.747) 0.018
Non-cardiovascular death 475 deaths 244 deaths 231 deaths

HorvathAge Accel 1.103 (1.015, 1.200) 0.022 1.020 (0.907, 1.147) 0.741 1.200 (1.065, 1.352) 0.003
HannumAge Accel 1.091 (0.998, 1.192) 0.054 1.047 (0.929, 1.182) 0.451 1.118 (0.980, 1.275) 0.096

SkinBloodAge Accel 0.991 (0.904, 1.087) 0.855 0.955 (0.851, 1.072) 0.437 1.022 (0.884, 1.182) 0.765

PhenoAge Accel 1.103 (1.029, 1.182) 0.006 1.018 (0.928, 1.117) 0.702 1.207 (1.085, 1.342) 0.001
AgeAccelGrim2 1.299 (1.160, 1.456)  < 0.001 1.263 (1.073, 1.486) 0.005 1.288 (1.095, 1.515) 0.002
ZhangAge Accel 1.147 (0.874, 1.506) 0.323 0.992 (0.708, 1.390) 0.964 1.358 (0.874, 2.110) 0.173

LinAge Accel 1.027 (0.968, 1.090) 0.372 0.979 (0.902, 1.063) 0.618 1.082 (0.990, 1.184) 0.083

WeidnerAge Accel 0.999 (0.946, 1.054) 0.957 0.987 (0.911, 1.069) 0.747 1.024 (0.951, 1.103) 0.524

Vidal-BraloAge Accel 1.134 (1.035, 1.243) 0.007 1.100 (0.966, 1.252) 0.149 1.195 (1.047, 1.364) 0.008
DunedinPoAm 1.130 (1.012, 1.261) 0.030 1.112 (0.958, 1.290) 0.163 1.120 (0.952, 1.318) 0.173
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alterations, there is growing evidence suggesting a direct 
relationship between white blood cell methylation and 
diabetes pathology. White blood cells are key players in 
chronic low-grade inflammation and immune dysregu-
lation, which are hallmarks of diabetes. Methylation 
changes in immune-related genes (e.g., TXNIP, ABCG1) 
have been associated with inflammatory pathways, insu-
lin signaling, and glucose metabolism, thereby contribut-
ing to diabetes progression [34].

Diabetes, a metabolic disease closely linked to aging. 
Fraszczyk et  al. investigated DNA DNAm trajectories, 
epigenetic age, and age acceleration in relation to T2D 
onset using four epigenetic clocks (GrimAge, Hannum, 
Horvath, PhenoAge) in a nested case–control study, and 
revealed distinct DNAm patterns and accelerated epige-
netic aging in T2D cases up to 10 years before diagnosis, 
highlighting the potential of DNAm markers and epige-
netic clocks for early prediction of T2D and age-related 
diseases [18]. In young adults, Kim et al. found that both 
increased and accelerated GrimAge are associated with a 
higher risk of T2D and partially mediated the relationship 
between cumulative obesity and T2D development, high-
lighting its potential as a biomarker for T2D risk predic-
tion [17]. In addition, Vetter et al. found that DNAmAA, 
particularly measured by the 7-CpG clock, is associated 
with an increased risk of diabetes complications in male 
patients with T2D [19]. Consistent with our findings, 
Sabbatinelli et al. reported that deceased individuals with 
diabetes exhibited significantly higher DNAmPhenoAge 
and accelerated DunedinPoAm pace of aging [21]. While 
their study did not directly examine DNAmAA, their 
use of age-adjusted models for DNAmAge allowed for a 

comparable assessment of mortality risk. This approach 
aligns with the findings of Krieger et al., [35] who dem-
onstrated that DNAmAge and DNAmAA can provide 
overlapping insights into mortality risk when age is 
appropriately controlled for in statistical models.

Although Sabbatinelli et  al. identified DNAmPheno-
Age and accelerated DunedinPoAm as independent 
predictors of increased mortality risk in T2D patients, 
their study was limited by its small-sample case–con-
trol design, and the predictive utility of these DNAmAA 
measures has not yet been thoroughly validated in diabe-
tes- and pre-diabetes-specific populations. In contrast, 
our study, leveraging a larger cohort, further substanti-
ates the predictive efficacy of DNAmAA, particularly 
AgeAccelGrim2, in assessing mortality risk in individu-
als with diabetes. Notably, this is the first study to dem-
onstrate that DNAmAA may also serve as a potential 
biomarker for predicting mortality risk in pre-diabetes 
populations. These findings not only reinforce the util-
ity of DNAmAA in mortality risk prediction but also 
broaden its potential applications, offering valuable 
insights for future research in this field.

Mediation mechanisms
This study revealed that AgeAccelGrim2 significantly 
mediated the associations between OBS, LS7 score, and 
frailty score and all-cause mortality in both diabetic and 
pre-diabetic populations, with mediating effects rang-
ing from 10 to 60%. However, it is important to note 
that these findings represent statistical mediation and 
do not imply a causal relationship. The potential biologi-
cal mechanisms underlying these associations remain 

Table 3  Associations between AgeAccelGrim2 tertiles and mortality outcomes among participants with diabetes and pre-diabetes

Cox proportional hazards models were adjusted for chronological age, sex, ethnicity, poverty income ratio, smoking status, body mass index, geriatric nutritional risk 
index, cardiovascular disease, hypertension, hyperlipidemia, and chronic kidney disease

CI, confidence interval; HR, hazard ratio

Overall participants Participants with diabetes Participants with pre-diabetes

HR (95% CI) P HR (95% CI) P HR (95% CI) P

Overall survival 662 deaths 347 deaths 315 deaths

AgeAccelGrim2 T1 Reference Reference Reference Reference Reference Reference

AgeAccelGrim2 T2 1.113 (0.906, 1.367) 0.310 1.022 (0.775, 1.349) 0.875 1.171 (0.863, 1.590) 0.310

AgeAccelGrim2 T3 1.619 (1.298, 2.019)  < 0.001 1.515 (1.128, 2.036) 0.006 1.568 (1.119, 2.199) 0.009

Cardiovascular Death 187 deaths 103 deaths 84 deaths

AgeAccelGrim2 T1 Reference Reference Reference Reference Reference Reference

AgeAccelGrim2 T2 1.039 (0.700, 1.542) 0.849 1.001 (0.594, 1.687) 0.997 1.153 (0.616, 2.159) 0.791

AgeAccelGrim2 T3 1.802 (1.194, 2.720) 0.005 1.815 (1.065, 3.094) 0.028 1.995 (1.026, 3.878) 0.042

Non-Cardiovascular Death 475 deaths 244 deaths 231 deaths

AgeAccelGrim2 T1 Reference Reference Reference Reference Reference Reference

AgeAccelGrim2 T2 1.139 (0.895, 1.449) 0.290 1.029 (0.741, 1.428) 0.865 1.176 (0.829, 1.668) 0.365

AgeAccelGrim2 T2 1.548 (1.192, 2.012) 0.001 1.396 (0.978, 1.993) 0.066 1.450 (0.978, 2.149) 0.065
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hypothetical. Possible pathways may include: (1) Oxida-
tive stress, as a key factor in cellular damage, promotes 
cellular dysfunction and accelerated aging by inducing 
DNA damage, protein and lipid oxidation [36, 37]. (2) 
Frailty may lead to chronic inflammation and immune 
senescence, which further exacerbate the decline in 
physiological functions [38, 39]. (3) Unhealthy lifestyles 
(e.g., smoking, low physical activity) may worsen meta-
bolic control and increase oxidative stress and inflam-
matory responses [40, 41]. These pathways may explain 
the observed statistical associations, but causal infer-
ence cannot be drawn from this observational mediation 
analysis.

Clinical implications and future directions
Our study proves the potential of AgeAccelGrim2 as 
a robust biomarker for assessing risk of all-cause/car-
diovascular/non-cardiovascular mortality in individuals 

with diabetes and pre-diabetes. AgeAccelGrim2 could be 
integrated into current models to improve performance 
of predicting mortality in diabetes/pre-diabetes popula-
tions. However, the observed mediating effects of AgeAc-
celGrim2 with health-related exposures (such as LS7 
score, frailty score, and OBS) should not be interpreted 
as evidence of a causal pathway. As such, any potential 
interventions targeting biological aging or DNAmAA 
remain hypothetical and require further investigation. 
For diabetes/pre-diabetes patients, reducing oxidative 
stress, improving lifestyle, strengthening strength train-
ing, and emphasizing nutritional supplementation may 
have potential to influence biological aging or mortality 
risk. However, our study does not directly evaluate the 
impact of these interventions on epigenetic clocks or 
mortality outcomes. Further research, including inter-
ventional trials, is warranted to determine whether such 
strategies can effectively slow epigenetic age acceleration 

Fig. 2  Restricted cubic spline analyses for associations between AgeAccelGrim2 and mortality outcomes. All-cause A, cardiovascular B, 
and non-cardiovascular C mortality for overall participants. All-cause D, cardiovascular E, and non-cardiovascular F mortality for diabetes 
participants. All-cause G, cardiovascular H, and non-cardiovascular I mortality for pre-diabetes participants. Abbreviations: CI, confidence interval; 
HR, hazard ratio
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and reduce mortality risk in populations with diabetes or 
pre-diabetes.

Future studies are critical to validate the role of AgeAc-
celGrim2 as a clinical biomarker in diabetes/pre-diabetes 
populations. Although our results are encouraging, the 
generality of AgeAccelGrim2 still requires further confir-
mation in different populations (including different eth-
nic groups, different age groups, different settings, and 
different regions) through larger and more diverse cohort 
studies. Furthermore, prospective studies are an excit-
ing direction for future research to observe how lifestyle 
improvements or other interventions affect the biological 
aging of diabetes/pre-diabetes individuals and whether 
they can effectively reduce mortality.

Limitations
Several limitations were identified in this study. First, 
the NHANES data are exclusively based on the USA, 
which may limit the generalizability of the findings to 
populations in other regions. Second, although multiple 
confounders were considered in this analysis, the ret-
rospective observational study design means that some 

important variables (e.g., environmental exposures, 
genetic factors) may have been overlooked. Third, while 
our results suggested that AgeAccelGrim2 mediated 
the relationship between exposures and mortality out-
comes, these exposures were only measured at baseline. 
Consequently, the dynamic changes in these exposures 
over time were not taken into account, which may fur-
ther impact our results. Fourth, although this study 
provides reliable evidence for DNAmAA as a biomarker 
in populations with diabetes and pre-diabetes, external 
validation in independent cohorts would enhance the 
robustness of the findings. Fifth, we utilized Dunedin-
PoAm instead of the more reliable version of Dunedin-
PACE due to data availability constraints in NHANES, 
which may somewhat limit the usability of our find-
ings. In addition, some of our results showed wide 
CIs, which might be attributed to the limited sample 
size and subgroup stratification. Future studies with 
larger sample sizes are needed to address this limita-
tion. Sixth, multiple statistical tests were performed in 
this study, and no formal corrections for multiple com-
parisons (e.g., Bonferroni adjustment) were applied due 

Fig. 3  Mediation effects of AgeAccelGrim2 on the relationships between health-related exposures with all-cause mortality risk in participants 
with diabetes A and pre-diabetes B. Abbreviations: CI, confidence interval; eGFR, estimated glomerular filtration rate; LS7, Life’s Simple 7; OBS, 
Oxidative Balance Score
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to the exploratory nature of the analyses. Therefore, 
the possibility of type I error cannot be excluded. To 
enhance transparency, all p-values are reported with 
full precision in Supplementary Excel file, enabling 
readers to perform their own multiple testing correc-
tions if needed. Future studies with larger sample sizes 
are warranted to validate these findings, incorporat-
ing appropriate multiple testing corrections to ensure 
robust results. Last, we conducted sensitivity analyses 
by excluding participants who died within two years of 
follow-up; however, the possibility of reverse causality 
cannot be entirely ruled out. Further rigorous prospec-
tive studies are needed to address these limitations.

Conclusion
DNAmAA can serve as a potential biomarker for risk 
of all-cause/cardiovascular/non-cardiovascular mortal-
ity in both diabetes and pre-diabetes populations, with 
AgeAccelGrim2 standing out as particularly significant. 
While AgeAccelGrim2 demonstrated statistical media-
tion effects in the relationship between health-related 
exposures (OBS, LS7 score, frailty score) and all-cause 
mortality, these findings do not establish a causal path-
way. These findings highlight the potential importance 
of biological aging in pre-diabetes/diabetes-related 
mortality and suggest that AgeAccelGrim2 may offer 
insights into future research directions. However, any 
intervention strategies targeting DNAmAA remain 
speculative and require validation in prospective inter-
ventional studies.
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