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Abstract 

Background Epigenetic aging estimators commonly track chronological and biological aging, quantifying its accu-
mulation (i.e., epigenetic age acceleration) or speed (i.e., epigenetic aging pace). Their scores reflect a combination 
of inherent biological programming and the impact of environmental factors, which are suggested to vary at different 
life stages. The transition from adolescence to adulthood is an important period in this regard, marked by an increas-
ing and, then, stabilizing epigenetic aging variance. Whether this pattern arises from environmental influences 
or genetic factors is still uncertain. This study delves into understanding the genetic and environmental contribu-
tions to variance in epigenetic aging across these developmental stages. Using twin modeling, we analyzed four 
estimators of epigenetic aging, namely Horvath Acceleration, PedBE Acceleration, GrimAge Acceleration, and Dun-
edinPACE, based on saliva samples collected at two timepoints approximately 2.5 years apart from 976 twins of four 
birth cohorts (aged about 9.5, 15.5, 21.5, and 27.5 years at first and 12, 18, 24, and 30 years at second measurement 
occasion).

Results Half to two-thirds (50–68%) of the differences in epigenetic aging were due to unique environmental fac-
tors, indicating the role of life experiences and epigenetic drift, besides measurement error. The remaining variance 
was explained by genetic (Horvath Acceleration: 24%; GrimAge Acceleration: 32%; DunedinPACE: 47%) and shared 
environmental factors (Horvath Acceleration: 26%; PedBE Acceleration: 47%). The genetic and shared environmen-
tal factors represented the primary sources of stable differences in corresponding epigenetic aging estimators 
over 2.5 years. Age moderation analyses revealed that the variance due to individually unique environmental sources 
was smaller in younger than in older cohorts in epigenetic aging estimators trained on chronological age (Horvath 
Acceleration: 47–49%; PedBE Acceleration: 33–68%). The variance due to genetic contributions, in turn, potentially 
increased across age groups for epigenetic aging estimators trained in adult samples (Horvath Acceleration: 18–39%; 
GrimAge Acceleration: 24–43%; DunedinPACE: 42–57%).

Conclusions Transition to adulthood is a period of the increasing variance in epigenetic aging. Both environmental 
and genetic factors contribute to this trend. The degree of environmental and genetic contributions can be partially 
explained by the design of epigenetic aging estimators.
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Background
Estimators of epigenetic aging offer insights into how 
individuals age over time and across age groups [30]. 
Their increased estimates are associated with age-related 
diseases and mortality in adults [45, 60], and with worse 
cognitive functioning [61] and more socioeconomic dis-
advantage in adolescents and children [62]. By measuring 
DNA methylation (DNAm) levels at specific DNA loci, 
epigenetic aging estimators address, along universal, spe-
cific aspects of aging processes.

Understanding epigenetic aging measures and the 
aging processes underlying them requires considering 
their training models with a variable number of CpGs, 
training markers, and age ranges. The Horvath clock, 
for example, was trained to predict chronological age in 
samples with a large age range. It considers the discrep-
ancy between chronological and epigenetic age to indi-
cate accelerated or decelerated aging across the whole 
life span [28]. Similarly, in buccal samples of children 
and adolescents, the pediatric-buccal-epigenetic (PedBE) 
clock illuminates the specific aging processes in younger 
age groups [49]. Alternatively, epigenetic aging estima-
tors have been developed on the basis of links between 
aging and biological health indicators. Two examples of 
such measures are the biomarker of human mortality 
risk GrimAge [42, 43] and the biomarkers of the pace of 
aging, DunedinPoAm and DunedinPACE [5, 6]. These 
measures account for DNAm at locus-specific sites asso-
ciated, for example, with plasma proteins and smoking 
(GrimAge) or biomarkers of organ systems integrity, such 
as blood pressure or serum leptin levels (Dunedin). In 
addition, Dunedin measures are trained on longitudinal 
data and represent, in contrast to the degree of epigenetic 
aging, the pace of epigenetic aging [5, 6].

The strength of the prediction by epigenetic aging 
measures stems from their ability to represent both 
genetically driven aging processes and the cumulative 
effects of the environment on DNAm [37]. The contri-
butions of genetic factors to the variance in epigenetic 
aging can be reflected in the narrow- and broad-sense 
heritability, the proportion of the phenotypic variance 
attributable to genetic differences at the time and age 
of measurement in a certain population. Narrow-sense 
heritability quantifies only the contribution of additive 
genetic factors, whereas broad-sense heritability also 
includes the interactions between genetic factors such as 
allelic dominance (i.e., interactions within specific gene 

loci of chromosomes) and epistasis (i.e., interactions 
across genetic variants between gene loci).

Figure  1 summarizes previously reported estimates 
of SNP-1, pedigree-2, and twin-based3 heritability for 
the aforementioned epigenetic aging measures (see also 
Additional file 1: Table S1). As shown in Fig. 1, the nar-
row-sense heritability of the Horvath clock measured 
in blood is not constant across particular ages. Accord-
ing to previous studies, heritability estimates vary from 
39 to 61% in older adults, which is on average lower than 
the estimates obtained for young adults, ranging from 
60 to 77% [27, 28, 32, 35, 50, 69]. Further, prior research 
revealed a lower heritability of the Horvath clock in ado-
lescent than in young adult samples, with a range from 37 
to 43% [45, 70]. However, the estimates in the adolescent 
samples were derived from pedigree- and SNP-based 
studies, whereas the estimates in the young adult samples 
were derived from twin studies, which typically result in 
higher heritability estimates. Given that the twin-based 
heritability of the Horvath clock appears to peak at birth 
[28], the lower heritability estimates for adolescence may 
potentially represent missing heritability besides the age-
associated pattern [81].

The possibility of extrapolating the potential age-asso-
ciated trend in the heritability of the Horvath clock to 
other epigenetic aging measures has just started to be 
explored. So far, heritability comparisons are confined 
mainly to emerging adults [36] or older individuals [27]. 
In the sample of emerging adults, the Horvath clock, 
GrimAge, and pace of aging demonstrated similar herit-
ability estimates of 62–73% [36]. Later in life, the Horvath 
clock, in comparison with GrimAge and DunedinPACE, 
demonstrated higher estimates until age 66 [27]. Study-
ing the age-associated patterns of heritability across 
a broader age range and spectrum of epigenetic aging 
measures that vary in training ages and phenotypes, 
therefore, would allow to elucidate trends that are com-
mon and specific to certain epigenetic aging measures.

Knowledge on the possible comparability of heritability 
estimates between tissues and resources of DNAm is lim-
ited. The comparisons between studies used blood tissue 

Keywords Epigenetic aging, Age moderation, Adolescence, Gene‒environment interaction, Horvath clock, PedBE 
clock, GrimAge, DunedinPACE

1 The proportion of the variance explained by all single nucleotide polymor-
phisms (SNPs) used in a genome-wide association study in conventionally 
unrelated individuals [81].
2 The proportion of the variance explained by the patterns of genetic 
resemblance among not-too-distantly related family members [25].
3 The proportion of the variance explained by the patterns of genetic 
resemblance between monozygotic and dizygotic twins.
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and postmortem brain demonstrate lower heritability of 
epigenetic aging for the latter (Additional file 1: Table S1). 
Heritability estimates of epigenetic aging based on 
another more noninvasive resource, saliva DNAm, were 
not available so far. DNAm from saliva can be assumed 
to correlate with DNAm based on both blood and buccal 
cells [10]. When measured in saliva, Horvath or PedBE 
clocks are shown to be also predictive of chronological 
age [29, 49, 58] and biological sex [29], while trained in 
blood Dunedin estimates and GrimAge, associated in 
saliva with psychosocial stress [61–63] or clinically rel-
evant measures, such as metabolic stress and insulin 
resistance [42]. This suggests that saliva-based epigenetic 
aging remains reflective of the impacts of biological and 
environmental factors. Meanwhile, most epigenetic aging 
measures demonstrate low within-individual correlations 
across blood- and oral-based tissues [2], suggesting lower 
precision of the epigenetic aging measures when they 
are applied in tissues different from the trained ones. 
The examination of the age-associated patterns of herit-
ability based on DNAm derived from noninvasive saliva 
samples, therefore, may also be indicative of cross-tissue 
accuracy and tissue-specific differences in heritability.

The trend of epigenetic aging heritability across par-
ticular ages may arise from environmental sources and 
their interaction with genetic factors. A design of twins 

reared together allows to disentangle environmental 
factors shared by twins, which increase twin siblings’ 
similarity, from non-shared or individually unique envi-
ronmental factors, which increase twin siblings’ dissimi-
larity in DNAm. Particularly in younger age, when twins 
live together in one household, shared environments may 
be more important. These environments can encompass, 
for instance, prenatal factors, social backgrounds, com-
mon parental and peer influences, and shared neighbor-
hoods. Research on complex traits suggests that shared 
environmental and genetic factors may interact, particu-
larly in younger individuals [7, 34]. With respect to the 
variance in epigenetic aging, the role of shared environ-
mental factors was found to increase before adulthood 
when twins lived together [39]. Individually unique envi-
ronmental factors are assumed to be important across 
the whole life span and can obtain greater importance 
when twins live in different households and have more 
life experiences of their own. These environments can 
include non-shared perinatal factors, stochastic changes 
in life circumstances, and individual-specific experiences, 
such as different peer groups or differences in experi-
ences of objectively shared environments. Individually 
unique environmental factors have been shown to mod-
erate the influences of genetic factors on DNAm [23] and 
possibly have the same effect on DNAm-based epigenetic 

Fig. 1 The SNP-, pedigree-, and twin-based heritability of epigenetic aging estimated in previous studies. Note The estimates of SNP-, 
pedigree-, and twin-based heritability measured in blood DNAm are presented for Horvath Acceleration (purple), GrimAge Acceleration (green), 
and epigenetic aging pace measures, DunedinPoAm and DunedinPACE (yellow)
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aging during adulthood [32]. These shifts in genetic and 
environmental contributions to the variance in epigenetic 
aging over the life course suggest a possible link between 
life stage processes and gene‒environment interplay in 
epigenetic aging.

Adolescence and the transition to adulthood, so-called 
emerging adulthood, are potential periods of dynamic 
genetic and environmental contributions to the variance 
of epigenetic aging. The time before transition is a period 
of growth and development with a faster change rate in 
DNAm and epigenetic age [1, 30]. Studies have shown, 
for instance, that this change rate peaks in infancy, 
decreases nonlinearly until approximately age 20, and 
then stabilizes [28, 30]. Variance in epigenetic aging can 
also undergo changes. Starting small at birth, the vari-
ance in the epigenetic age of the Horvath clock increases 
with chronological age until adulthood onset, and then 
stabilizes [39]. It remains unclear whether these trends 
of later stabilization in change rates correspond to trends 
in the relative contributions of genetic and non-genetic 
factors and which sources, genetic or environmental, are 
responsible for the growing and stabilizing variance of 
epigenetic aging during adolescence and the transition to 
adulthood.

To address these gaps in the epigenetic literature, this 
study aimed to investigate the trends in genetic and 
environmental contributions to the variance in epige-
netic aging across adolescence, emerging, and young 
adulthood. With our design, which includes four twin 
birth cohorts and saliva-based DNAm from two meas-
urement occasions, it is possible to examine how 
genetic and environmental sources contribute to the 
variance in epigenetic aging and how these sources 
shift or remain stable over time (approximately two 
and a half years in this study) and across age groups. 
DNAm was obtained from DNA extracted from saliva 
samples of early adolescent (M(age) = 10.7  years), 
late adolescent (M(age) = 16.6  years), emerg-
ing adult (M(age) = 22.7  years), and young adult 
(M(age) = 28.8  years) twins. The epigenetic aging esti-
mators included two acceleration measures trained on 
chronological age, the Horvath clock [28] and the PedBE 
clock [49], and two epigenetic aging measures trained 
on biological indicators of aging, one of which, GrimAge 
[42], represents biological age acceleration and the other, 
DunedinPACE, represents the pace of biological aging 
[6].

With the use of these epigenetic aging estimators, we 
were able to answer the following research questions: 
(a) Do genetic and environmental contributions to the 
variance differ between differently developed epigenetic 
aging estimators? (b) To what extent do genetic and envi-
ronmental contributions account for stable differences 

in epigenetic aging estimators across two measurement 
occasions? (c) Are there age-associated trends in the 
genetic and environmental contributions to the vari-
ance in epigenetic aging from early adolescence to young 
adulthood and do they differ for different epigenetic 
aging estimators? In addition, the findings allow compari-
sons of heritability estimates of epigenetic aging in young 
adults assessed using saliva samples with those that have 
previously been reported in other studies based on blood 
samples (see Fig. 1 and Additional file 1: Table S1).

Methods
Sample
The research questions were examined in a sample of 
976 twins from the TwinLife Epigenetic Change Satellite 
(TECS) project, which is a subsample of the German twin 
family panel TwinLife. TwinLife is a longitudinal study 
of four cohorts of same-sex twin pairs and their families 
recruited as a representative sample from the general 
population of Germany [16]. The study focuses on lon-
gitudinal measures of social inequality and the potential 
underlying biopsychosocial mechanisms [26]. The cur-
rent analysis sample consisted of 263 monozygotic (MZ) 
and 225 dizygotic (DZ) complete twin pairs aged 8 to 
29 years at the time of the first epigenetic measurement 
(M = 16.0) and aged 10 to 31 years at the second measure-
ment (M = 18.3). Zygosity was confirmed by genotyping. 
The age difference between cohorts was approximately 
6 years. At the time of assessment, members of the four 
cohorts were in the ages of early adolescence, late ado-
lescence, emerging adulthood, and young adulthood, 
respectively (for more details see Table 1).

DNA methylation
Saliva sampling and DNA extraction
Saliva sampling for DNA extraction was conducted as 
a part of two TwinLife satellite projects, namely Twin-
SNPs and TECS. Twins and their family members were 
invited to participate in the molecular genetic analysis 
during TwinLife face-to-face interviews carried out in 
2018–2020. During face-to-face interviews, interview-
ers offered to participate in the molecular genetic stud-
ies, which involved genotyping and epigenetic profiling. 
A short video explaining the study goals and procedures 
of the saliva sampling accompanied the recruitment pro-
cedure. The second saliva collection took place in 2021. 
This time, participants were contacted by mail. In addi-
tion to the invitation to participate, respondents received 
consent forms, saliva collection toolkits, and correspond-
ing instructions. For all participants who provided valid 
consent, saliva samples were sent to the researchers at 
the University Hospital Bonn, Germany. The samples 
were collected using Oragene® saliva self-collection kits 
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(OG-500 and OG-600; DNA Genotek, Canada) and DNA 
was extracted following the manufacturer’s protocol.

DNA methylation assessment
The assessment of DNA methylation profiles was con-
ducted in a set of 2 128 samples, of which the present 
sample constituted a subset. The samples were rand-
omized by age, sex, zygosity, and complete versus sin-
gle twin pair across 23 plates (266 arrays) using the R 
package “Omixer” (version 1.4.0; [71]). The family iden-
tifier was used as a blocking variable to ensure that all 
samples and timepoints of a twin pair ran on the same 
batch/array. Bisulfite-conversion of 500  ng of DNA was 
performed using the D5033 EZ-96 DNA Methylation-
Lightning Kit (Deep-Well; Zymo Research Corp., Irvine, 
USA), and methylation profiles were assessed using the 
Infinium MethylationEPIC BeadChip v1.0 (Illumina, San 
Diego, CA, USA).

Preprocessing of the methylation samples (n = 2 128) 
was performed following a standard pipeline by Mak-
simovic et  al. [44] using the R package “minfi” (version 
1.40.0; [3]). The following sample exclusion criteria were 
applied: a mean detection p value > 0.05 (n = 3) and sex 
mismatches between estimated sex from methylation 
data and confirmed phenotypic sex (n = 14). To normal-
ize the beta values, we applied stratified quantile normal-
ization4 [75], followed by BMIQ [73]. In further analysis, 
we removed probes containing SNPs (n = 24 038), X or 
Y chromosome probes (n = 16 263), cross-hybridizing 
probes (n = 46 867) and polymorphic probes (n = 297) 
according to Chen et al. [12] and McCartney et al. [47], 
and probes with a detection p value > 0.01 in at least one 
sample (n = 79 922). Afterward, beta values were trans-
formed into M-values, and batch effects were removed 
using Combat [38]. For this purpose, we examined the 
strength of associations between three possible batches 
(plate, slide, and array) and the first five principal com-
ponents via principal component analysis. The strongest 
batch effects were iteratively removed. Sample mix-ups 
were checked with MixupMapper [77]. The comparison 
of beta values with the existing genotype data (assessed 
using Global Screening Arrays [GSA + MD-24v3.0-
Psych-24v1.1, Illumina, San Diego, CA, USA]; for further 
details see [14]) revealed four mix-ups. For these four 
cases, both samples (first and second measurements) 
were removed (total of n = 8 individual samples). The 

resulting DNA methylation dataset comprises 2 102 sam-
ples of n = 1 055 participants (among which n = 488 com-
plete twin pairs or 976 individuals with two timepoints of 
DNAm data) and 698 472 probes.

The cell type composition was estimated using the R 
package “EpiDish” (version 2.10; [74]) and the epidish() 
function. Because estimated cell type proportions of 
saliva consisted of three (highly correlated) cell types 
(leukocytes, epithelial cells, and fibroblasts), we obtained 
the first principal component (for each epigenetic meas-
urement, explaining 99.6% and 99.7% of cell type vari-
ation in the three estimated cell types at the first and 
second epigenetic measurements, respectively) to control 
for cell type composition in the following analyses.

Calculating epigenetic age, epigenetic age acceleration, 
and pace of epigenetic aging
There are several types of epigenetic aging estimators, 
each based on a unique training model with a variable 
number of CpGs, source tissues, and age ranges [4, 8]. 
To capture potential differences in genetic and environ-
mental contributions between different epigenetic aging 
measures, we selected four commonly used ones (two 
trained on chronological age, and two trained on bio-
logical health indicators) for our analysis: the Horvath 
clock [28], the PedBE clock [49], GrimAge2 (an improved 
version of the original GrimAge; [42, 43]), and Duned-
inPACE ([6]; Additional file  2: Table  S2 and Figure S1). 
All four epigenetic aging measures have previously been 
shown to be associated with aging-related outcomes and 
to be sensitive to external drivers of aging (e.g., stress; 
[13, 20, 43, 48, 52, 66]). In particular, GrimAge and Dun-
edinPACE have previously been associated with external 
drivers of aging in saliva of children and adolescents [18, 
61, 62]. The specific background of the training sample of 
each epigenetic aging estimator is provided in Additional 
file 2: Table S2.

By the inclusion of the Horvath clock and the PedBE 
clock, we could address how differences in the training 
age range and tissue can potentially correspond to the 
estimates of the genetic and environmental contribu-
tions to the variance in epigenetic aging. The Horvath 
clock was trained as a pantissue epigenetic aging estima-
tor in a large age range (from 0 to 101 years; [28]), while 
the PedBE clock was developed in buccal cells in younger 
age groups (from 0 to 20 years; [49]). By the inclusion of 
GrimAge2 and DunedinPACE, we addressed differences 
in the effects of the training phenotypes: both of these 
estimators, in contrast to Horvath and PedBE clocks, 
were trained on biological health indicators. In particu-
lar, GrimAge is trained on plasma proteins and smoking 
[43] and DunedinPACE is trained on biomarkers of organ 
systems integrity, such as blood pressure or serum leptin 

4 The chemical chip used to measure DNA methylation signal from 
extracted DNA consists of two types of probes (I and II). These two types of 
probes produce different distributions of signals that can introduce a tech-
nical noise when analyzed together. Stratified quantile normalization fixes 
this by stratifying the probes into type I and II, then using type I signals as 
‘anchors’ to normalize Infinium II signals at the level of probe coverage cat-
egories [75].



Page 6 of 22Kuznetsov et al. Clinical Epigenetics           (2025) 17:78 

levels [6]. Finally, the inclusion of DunedinPACE allowed, 
in addition, to address the differences in the study design. 
Namely, the Horvath and PedBE clock, as well as Grim-
Age, are trained on the cross-sectional data, while Dun-
edinPACE accounts for longitudinal patterns of aging.

Epigenetic aging measures were calculated based on 
the normalized batch-corrected beta values. The Horvath 
and the PedBE epigenetic age were calculated using the 
R package “methylclock” (version 1.01; [56]). A total of 
334 (94.6%) of the original 353 Horvath clock CpG sites 
and all 94 CpG sites of the PedBE clock were present in 
the dataset. Version 2 of GrimAge was computed based 
on 1 029 CpG sites present in our dataset (out of 1 030 
mentioned in the publication) using analysis code from 
Lu et al. [42] provided by A. Lu and S. Horvath via per-
sonal correspondence. The DunedinPACE values were 
calculated with the DunedinPACE R package (https:// 
github. com/ danbe lsky/ Duned inPACE/) using all of 173 
CpG sites.

The four epigenetic age estimators were significantly 
positively correlated with chronological age (r(Horvath 
epigenetic age) = 0.80, p < 0.001; r(PedBE epigenetic 
age) = 0.77, p < 0.001; r(GrimAge) = 0.80, p < 0.001; and 
r(DunedinPACE) = 0.08, p < 0.001; Additional file  2: Fig-
ure S2). For the Horvath epigenetic age, the Median 
Absolute Error (MAE) estimates ranged from 2.75 to 3.70 
(3.26–3.65 for early adolescents, from 2.75 to 2.93 for late 
adolescents, from 3.33 to 3.34 for emerging adults, and 
from 2.89 to 3.71 for young adults). For the PedBE epige-
netic age, the MAE estimates ranged from 1.07 to 12.72 
(2.22–2.91 for early adolescents, from 1.08 to 2.01 for late 
adolescents, from 6.49 to 7.51 for emerging adults, and 
from 11.61 to 12.72 for young adults). For GrimAge, the 
MAEs ranged from 19.38 to 25.60 (22.96–24.38 for early 
adolescents, from 25.42 to 25.60 for late adolescents, 
from 21.84 to 22.57 for emerging adults, and from 19.39 
to 20.25 for young adults; Additional file 2: Figure S3).

Acceleration estimates for the Horvath, PedBE, and 
GrimAge epigenetic ages were obtained as follows: epi-
genetic age was regressed on chronological age (in years 
and decimal months), biological sex, and cell type com-
position within each measurement occasion. In addition, 
the Horvath and PedBE epigenetic ages were regressed 
on smoking exposure (i.e., beta values of the cg05575921 
probe which has previously been shown to predict ciga-
rette consumption in both blood and saliva [57]). This 
method has been chosen to overcome the missing data 
on smoking exposure in our sample (especially in the age 
group of the onset of adolescence), the limited reliabil-
ity of the self-reports on smoking status and to capture, 
beyond active smoking, the possible effects of passive 
smoking exposure. The resulting residuals (i.e., Hor-
vath Acceleration, PedBE Acceleration, and GrimAge 

Acceleration), defined as age acceleration (positive score) 
or age deceleration (negative score) according to the 
direction of the deviation, were used in our analyses. The 
DunedinPACE values were controlled for smoking probe, 
biological sex, and cell type composition. For Dunedin-
PACE, a value of one reflects a pace of aging in line with 
one year of chronological aging. Correspondingly, values 
greater than one reflect an increased and values lower 
than one a decreased pace of aging.

Analytical strategy
Main analyses
To examine the contributions of genetic and environ-
mental factors to the variance in epigenetic aging, we 
applied three biometrical variance decomposition mod-
els, including (1) univariate twin models, (2) bivariate 
twin models across measurement occasions, and (3) 
univariate twin models with age as a linear continuous 
moderator (Additional file 3: Figure S4; [53]). MZ twins 
share close to 100% of their genetic makeup, while DZ 
twins share, on average, 50% of genetic variants that dif-
fer among humans. As a consequence, the correlation of 
any genetic factors is approximately 1 for MZ twins, and 
is assumed to approach 0.50 for additive genetic factors 
and 0.25 for non-additive genetic factors due to allelic 
dominance deviation for DZ twins. Therefore, a greater 
correlation within MZ twin pairs than within DZ twin 
pairs signals the presence of genetic influences on the 
variance in a specific phenotype, such as epigenetic aging 
in the current study.

Furthermore, both MZ and DZ twins are assumed to 
share some prenatal, early life familial, and extra-familial 
factors [9] that act to increase their resemblance beyond 
genetic factors. These shared environmental factors are 
assumed to contribute to the similarity within MZ twins 
to the same degree as within DZ twins. Only individually 
unique environmental factors are assumed to increase 
the dissimilarity between MZ twin siblings. Under the 
fulfillment of these assumptions, the classical biometri-
cal model allows for a decomposition of the observed 
variance into variance attributable to genetic factors (A – 
additive genetic and D – non-additive genetic), environ-
mental influences shared by twins (C), and environmental 
influences unique to each twin (E, including random 
error of measurement; [9]). For identification purposes, 
only three of the variance components can be estimated 
simultaneously in the classical twin model. Depending 
on the pattern of the correlations within the MZ and DZ 
twins, either D (if rMZ < 2 × rDZ) or C (if rMZ > 2 × rDZ) 
components have to be fixed to zero, resulting in the 
specification of either ACE or ADE models [17].

As outlined, we started our analysis with univari-
ate twin models to decompose the variance in each 

https://github.com/danbelsky/DunedinPACE/
https://github.com/danbelsky/DunedinPACE/
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epigenetic aging estimator into genetic and environmen-
tal components (Additional file 3: Figure S4a). Here, we 
pooled the data for the twin pairs across the two meas-
urement occasions, resulting in a sample of 976 twin 
pairs for each univariate twin model. We set the variance 
of all variance components (A, C/D, and E) to 1 for iden-
tification purposes and ensured that the statistical condi-
tions specified for twin modeling, namely nonsignificant 
differences in means and variances across co-twins and 
zygosity groups, were met in our sample. Then, we 
decided for each of the four epigenetic aging measures 
whether to use ACE or ADE models.

After that, among the different possible model vari-
ants (ACE, AE, CE, and E; or ADE, AE, and E), we iden-
tified the respective model that provided the best fit to 
the data considering model parsimony based on the Chi-
square difference test. In cases where alternative mod-
els (e.g., AE and CE) were nested in one more complex 
model (ACE) and did not differ significantly from the lat-
ter model based on the Chi-square test, the model with 
a lower Akaike information criterion (AIC) was consid-
ered to fit the data better. Among the two nested mod-
els (e.g., AE vs. ADE) that differed significantly based on 
the Chi-square test, the model with the higher number 
of parameters (e.g., ADE) was considered as the model 
that fits the data best [22]. For the best-fitting models, we 
calculated the standardized coefficients with 90% confi-
dence intervals.

In the second step, we specified bivariate twin models 
across the two measurement occasions (488 twin pairs) 
to examine the genetic and environmental sources of var-
iance in epigenetic aging considering the repeated meas-
urement (Additional file 3: Figure S4b). In this bivariate 
factor model, we analyzed the first measurement of epige-
netic aging as the first variable and the second measure-
ment of epigenetic aging as the second variable. Genetic 
and environmental factors were specified for each meas-
urement occasion and were allowed to correlate over 
time in the sense of a correlated factors model [41]. For 
identification purposes, the path coefficients of the latent 
factors were set to 1. This model specification allowed us 
to estimate, along with genetic and environmental contri-
butions to the variance in epigenetic aging at the first and 
second measurement occasions, the genetic and environ-
mental covariances between the two timepoints. First, we 
ensured that the statistical conditions specified for twin 
modeling were met in our sample and specified the full 
model. The full model included three estimates per factor 
and two estimates of expected means. As was done for 
the univariate twin models, we have chosen among the 
ACE, AE, CE, and E models or, alternatively, among the 
ADE, AE, and E models which of these models provided 
the best balance between parsimony and fit. The most 

parsimonious model showed the lowest AIC and did 
not significantly fit the data worse than a more complex 
model based on the Chi-square difference test. Using the 
most parsimonious model, unstandardized and stand-
ardized variance components and genetic and environ-
mental correlations were estimated. To examine whether 
or not the genetic and environmental contributions to 
the variance could be considered constant over time, 
we then restricted the genetic and environmental vari-
ance components to be equal across the first and second 
measurements of epigenetic aging. The model with equal 
variances was compared to the less constrained model 
with unequal variance components over time using the 
Chi-square difference test.

In the third step, we specified twin models with age as 
a linear continuous moderator of the variance compo-
nents. Four age cohorts with two measures each were 
pooled together, resulting in eight unique age groups 
from 9.5 to 30 (see Table 1) with age gaps of about two 
and a half years between measurement occasions and age 
gaps of about three and a half years between the second 
measure of the younger cohort and the first measure of 
the subsequent cohort. Here, we tested whether the age 
of participants moderated genetic and environmental 
contributions to the variance in epigenetic aging to unveil 
possible hints on gene‒environment interactions (Addi-
tional file  3: Figure S4c; [59]). Since gene‒environment 
interaction effects cannot be directly assessed in classical 
twin models, the estimates of genetic and environmen-
tal contributions could be confounded with interaction 
effects [59]. In the case of interactions between addi-
tive genetic factors (A) and environmental factors that 
are shared by siblings reared together (C), unconsidered 
interaction effects would be confounded with estimates 
of additive genetic effects. Potential but unconsidered 
interaction effects between genetic factors (A) and envi-
ronmental factors not shared by siblings reared together 
(E) would be confounded with estimates of non-shared 
environmental effects. While the first interaction pattern 
is more plausible in younger twins, who are still living 
in a common household, the latter is more plausible in 
adult years, when twins live in different households and 
gain more separate life experiences. As a consequence, 
increasing estimates of genetic contributions to the vari-
ance in epigenetic aging are more plausible in adoles-
cence and emerging adulthood than in adulthood when 
accumulating effects of individually unique experiences 
of twins may or may not interact with genetic factors [11, 
34].

To investigate the age-related moderation of the genetic 
and environmental variance components of epigenetic 
aging, age was added as a continuous linear modera-
tor to the univariate models. This partitioned the ACE/
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ADE variance components into non-moderated base-
line ACE/ADE components, age-moderated ACE/ADE 
components, a baseline intercept level, and independent 
linear and quadratic effects of age, producing a model 
with 9 parameters in total. The model was still identified 
as the saturated model had in total 10 measured param-
eters. We started with the full models (with 9 estimated 
parameters) and then dropped nonsignificant paths to 
obtain more parsimonious models with more degrees of 
freedom. We excluded parameters until we reached the 
model that fitted the data best, taking model parsimony 
into account (i.e., a reduced model with a lower AIC that 
did not fit the data significantly worse based on the Chi-
square test). The variance components, confidence inter-
vals, and standardized estimates were then derived.

Sensitivity analyses
In the final step, two sensitivity analyses were performed. 
As a first sensitivity analysis, we scrutinized the models 
of the main analysis further not controlling the epige-
netic aging measures either for sex, smoking probe, or 
cell type composition. We repeated the univariate, bivari-
ate, and univariate age moderation analyses, first, for all 
chosen epigenetic aging measures unadjusted for sex, 
second, for three epigenetic aging measures unadjusted 
for smoking, and, finally, for four epigenetic aging meas-
ures unadjusted for cell type composition. For the second 
sensitivity analysis, we rerun the age-moderated univari-
ate models excluding the second timepoint to support 
the patterns observed in age-moderated univariate twin 
models using the pooled sample. By doing this, we could 
check if the trends in the genetic and environmental con-
tributions to the variance in epigenetic aging across age 
cohorts were similar to what we observed in the main 
analysis with the pooled data across age cohorts and 
measurement occasions, ensuring that drawing the same 
participants twice in the analysis sample, using the first 
and second timepoints, did not affect the main analysis 
results.

The analyses were performed in R studio 2023.06.2 
with R version 4.2.3. For data preparation, we used the 
R packages “tidyverse” [78], “ltm” [65], “dlyr” [24], and 
“psych” [64]. For the variance decomposition, we used 
“OpenMX” [54].

Power analyses
For the estimation of power to detect the model with the 
best balance between parsimony and fit to the data, we 
applied the functions proposed by Verhulst [76]. In detail, 
we applied the function powerValue() along with ace-
Pow() function for univariate and bivPow() for bivariate 
twin models. To address moderation, we applied a func-
tion developed for binary moderators, sexLimPower(), 

and fitted paired age groups. We formulated two pos-
sible expectations regarding genetic factors (A) based 
on estimates obtained in larger sample studies. Previ-
ous research suggests that the contribution of genetic 
factors (A) to the variance of the Horvath clock is 13% 
across the lifespan [39] or equals 37% at age 15 (combi-
nation with middle-aged mothers; [70]). Our expectation 
regarding shared environmental factors (C) was based on 
plots for MZ and DZ twins in Li et al. ([39]; page 8, Fig. 4, 
cohabitation-dependent CE model). Here, we identified 
approximated estimates of C for our sample’s mean age 
(17.1 years) of about 35%. The expectations for A and C 
were set to be the same across time. A power calculation 
for the univariate models without moderation demon-
strated that 976 pairs (526 MZ and 450 DZ twin pairs) 
were sufficient for detecting the C component (power 
0.99), while power for detecting the A component var-
ied from 0.40 to 0.99 depending on the estimates of A. 
In the bivariate case without moderation, 488 pairs (263 
MZ and 225 DZ twin pairs) were sufficient (0.96–0.99) 
to detect the C component. For the detecting of the A 
component, the power ranged from 0.27 to 0.99 depend-
ing on the estimates of A. Finally, power calculation for 
models with moderation based on the power calculation 
for the binary moderation demonstrated that the power 
to detect the A component across the age groups varied 
in the univariate analysis from 0.12 to 0.61. The power to 
detect C varied from 0.52 to 0.94.

Results
Descriptive analysis
The means and standard deviations for the epigenetic 
aging measures across age groups are presented in 
Table 1. The twin correlations of epigenetic aging meas-
ures for MZ and DZ twins for each cohort and timepoint 
separately are given in Table 2 (see also Additional file 3: 
Table  S3 for 95% confidence intervals). Rank-order sta-
bility estimates within and across twins’ measurements 
for MZ and DZ twins are shown in Additional file  3: 
Table S4.

Horvath and PedBE Acceleration, clocks trained on 
the chronological age, demonstrated age acceleration in 
the groups of late adolescents and emerging adults and 
age deceleration in the two other groups of early ado-
lescents and young adults (see Table  1). For GrimAge 
Acceleration, estimates were higher across several peri-
ods, including the onset of adolescence, late adolescence, 
and young adulthood. The estimates of DunedinPACE 
showed a faster pace during young adulthood compared 
to other age periods.

The standard deviations of the four epigenetic aging 
estimators across age groups indicated patterns of 
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increased variance across time and age stages (Table 1 and 
Additional file  3: Figure S5). The two measures trained 
on chronological age, Horvath and PedBE Acceleration, 
showed a slightly decreasing trend during young adult-
hood, though. In the eldest age group (M = 29.92) com-
pared to the youngest age group (M = 9.51), the standard 
deviation was 60% greater for Horvath Acceleration, 43% 
greater for PedBE Acceleration, and 29% greater for both 
GrimAge Acceleration and DunedinPACE.

The twin correlations for Horvath and PedBE Accelera-
tion demonstrated substantial similarity for adolescent 
twins, with only marginal differences between MZ and 
DZ twins (Table  2), indicating contributions of shared 
environmental influences to the variance in epigenetic 
aging during this period of life. In groups of emerg-
ing adults and later, the correlations for MZ twins were 
greater than the correlations for DZ twins (except the 
nonsignificant MZ and DZ twin correlations for PedBE 
Acceleration in young adulthood), indicating genetic 
influences on the variance in epigenetic aging in adult-
hood. In contrast, Spearman correlations for GrimAge 
Acceleration and DunedinPACE were greater for MZ 
twins than for DZ twins across almost all age groups, 
indicating genetic contributions to the variance in these 
epigenetic aging measures.

The rank-order stability across two measurement 
points was approximately r = 0.50 with no differences 
between ages and between MZ and DZ twin groups for 
all measures except for GrimAge Acceleration, where 
rank-order stability was lower in younger age groups, 
and PedBE Acceleration, where rank-order stability was 
greater for DZ twins as compared to MZ twins in young 
adulthood (Additional file 3: Table S4). Rank-order stabil-
ity across matched MZ twin and co-twin measurements 
tended to be greater than those of DZ twins in adulthood, 
indicating declining contributions of shared environmen-
tal factors and increasing genetic contributions to rank-
order stability with age.

Univariate twin model analyses of epigenetic aging
To perform univariate twin modeling, we first examined 
whether the statistical conditions specified for twin mod-
eling were met (Additional file 3: Table S5). We observed 
small differences in means across co-twins for Horvath 
Acceleration and DunedinPACE, but the models with the 
expected means and variances constrained to be equal 
across twin siblings’ order and zygosity did not fit the 
data significantly worse.

To make a choice regarding the ACE or ADE model, 
we examined if the correlations for MZ twins were more 
than two times higher than the DZ twin correlations. For 
Horvath, PedBE, and GrimAge Acceleration, the cross-
cohort MZ twin correlations were not more than twice as 
strong as the DZ twin correlations, indicating the absence 
of non-additive genetic factors (D) and the presence of 
additive genetic factors (A) and shared environmental 
factors (C) instead: rMZ = 0.51 and rDZ = 0.37 regarding 
Horvath Acceleration, rMZ = 0.45 and rDZ = 0.49 regard-
ing PedBE Acceleration, rMZ = 0.32 and rDZ = 0.17 
regarding GrimAge Acceleration (see Table 2). The cross-
cohort correlations for MZ twins for DunedinPACE were 
more than two times higher than correlations for DZ 
twins indicating, besides additive genetic factors (A), the 
presence of non-additive genetic factors (D): rMZ = 0.48 
and rDZ = 0.19.

The results of the univariate twin model analyses 
of the epigenetic aging measures are presented in the 
Additional file 3: Tables S6–S7. Cross-cohort standard-
ized genetic and environmental variance components 
for the full models are presented in Additional file  3: 
Figure S6 and the best-fitting models in Fig. 2. For Hor-
vath Acceleration, we observed a better fit of the full 
model (ACE), indicating that the variance in Horvath 
Acceleration was best explained by additive genetic as 
well as environmental factors shared and not shared by 
twins. PedBE Acceleration, GrimAge Acceleration, and 
DunedinPACE estimates in the univariate analysis were 

Table 1 Descriptive statistics for epigenetic aging measures

Four cohorts (early adolescents, late adolescents, emerging adults, and young adults) were measured twice, approximately 2.5 years apart

MZ, monozygotic; DZ, dizygotic; M, mean; SD, standard deviation; Accel., Acceleration

Variable Early adolescence Late adolescence Emerging adulthood Young adulthood

Time 1:
age 9.5

Time 2:
age 12

Time 1:
age 15.5

Time 2:
age 18

Time 1:
age 21.5

Time 2:
age 24

Time 1:
age 27.5

Time 2:
age 30

N (MZ pairs/DZ pairs) 326 (82/81) 372 (87/99) 152 (42/34) 126 (52/11)

Chronological Age M (SD) 9.51 (0.33) 11.83 (0.58) 15.48 (0.31) 17.75 (0.58) 21.58 (0.37) 23.89 (0.62) 27.60 (0.70) 29.92 (1.04)

Horvath Accel. M (SD) − 0.02 (2.64) − 0.25 (3.35) − 0.07 (3.56) 0.28 (3.99) 0.47 (4.30) 0.29 (4.38) − 0.30 (4.17) − 0.52 (4.20)

PedBE Accel. M (SD) − 0.10 (0.91) − 0.21 (0.98) 0.10 (0.95) 0.24 (1.14) 0.16 (1.21) 0.17 (1.36) − 0.22 (1.24) − 0.39 (1.30)

GrimAge Accel. M (SD) 0.31 (2.03) − 0.08 (2.41) − 0.44 (2.32) 0.11 (2.40) 0.09 (2.23) 0.01 (2.35) 0.37 (2.59) − 0.14 (2.61)

DunedinPACE M (SD) 0.00 (0.07) − 0.01 (0.08) − 0.01 (0.08) 0.00 (0.08) 0.00 (0.08) 0.00 (0.08) 0.02 (0.08) 0.02 (0.09)
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better represented by restricted models: a CE model for 
PedBE Acceleration and an AE model for both Grim-
Age Acceleration and DunedinPACE. The variance in 
PedBE Acceleration was thus best explained by envi-
ronmental factors shared and not shared by twins, 
whereas the variance in GrimAge Acceleration and 
DunedinPACE was best explained by additive genetic 
and individually unique environmental factors.

Bivariate twin model analyses of epigenetic aging
In a further step, we decomposed the variance in the two 
repeated measurements of epigenetic aging with the use 
of bivariate twin models. The models with the expected 
means and variances to be equal across co-twins and 
zygosity within each measurement occasion did not fit 
the data significantly worse than the saturated models 
(Additional file 3: Table S5). Thus, the results confirmed 
that the statistical conditions specified for bivariate twin 
modeling were met.

Following the previously reported MZ and DZ twin 
correlations (Table 2), we similarly specified ACE models 
for Horvath, PedBE, and GrimAge Acceleration, and an 
ADE model for DunedinPACE. As for the univariate anal-
yses, a bivariate ACE model for Horvath Acceleration, a 
CE model for PedBE Acceleration, and an AE model for 
GrimAge  Acceleration and DunedinPACE provided the 
best balance between parsimony and fit (see Additional 
file  3: Tables S8–S9). Figure  3 presents the results from 
the variance decompositions of both timepoints based 
on the best-fitting reduced models. The results from the 
full models can be found in Additional file 3: Figure S7. 
The best-fitting reduced models were used as a basis to 
test whether genetic and environmental variance compo-
nents could be constrained to be equal over time.

For each of the four epigenetic aging measures, 
restricting the variance components of all three or two 
genetic and environmental factors (A, C, and E) to be 
equal across the two timepoints, respectively, resulted 
in a significantly worse fit to the data (see Additional 
file  3: Table  S8). Accordingly, our results suggested that 
the relative contributions of the genetic and/or environ-
mental factors changed over time. However, setting only 

Fig. 2 Cross-cohort standardized genetic and environmental 
variance components of epigenetic aging measures 
in the best-fitting model. Note The estimates are derived 
from the best-fitting models in the univariate twin models analyses: 
ACE for Horvath Acceleration, CE for PedBE Acceleration, and AE 
for GrimAge Acceleration and DunedinPACE (see Additional file 3: 
Tables S6–S7)

Fig. 3 Unstandardized genetic and environmental variance components of epigenetic aging measures over 2.5 years. Note The estimates are 
derived from the best-fitting bivariate twin models: ACE for Horvath Acceleration, CE for PedBE Acceleration, and AE for GrimAge Acceleration 
and DunedinPACE (see also Additional file 3: Tables S8–S9). tp1, timepoint 1; tp2, timepoint 2
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the variance component due to additive genetic factors 
to be equal across the two timepoints did not result in a 
significantly worse fit to the data for the epigenetic aging 
measures trained in adult samples (i.e., Horvath, Grim-
Age, DunedinPACE). These results suggested almost 
equal absolute contributions of additive genetic factors 
over time. In contrast, variance components due to envi-
ronmental factors that are not shared by twins increased 
from the first to the second measurement timepoint for 
all epigenetic aging measures, resulting in increasing 
variance over time (see Fig. 3). In addition, for epigenetic 
aging measures trained on the chronological age, the 
variance components due to shared environmental fac-
tors seemed to increase over time. This pattern was not 
observed for the epigenetic aging measures trained on 
health biomarkers, for which shared environmental fac-
tors were negligible.

Then, we estimated the degree to which genetic and 
environmental factors correlated over time. The three 
epigenetic aging measures trained in adult samples 
demonstrated significant positive genetic correlations 
from the first to the second measurement timepoint. 
The highest positive correlation of additive genetic fac-
tors was observed for Horvath Acceleration (rA = 0.90, 
p < 0.001), followed by GrimAge Acceleration (rA = 0.82, 
p < 0.001) and DunedinPACE (rA = 0.74, p < 0.001). Epi-
genetic aging estimators trained to predict chronologi-
cal age, in turn, demonstrated statistically significant 
positive correlations of the shared environmental fac-
tors over time (rC = 0.92, p < 0.001 for Horvath Accel-
eration and rC = 0.87, p < 0.001 for PedBE Acceleration). 
Unique environmental factors correlated significantly for 
PedBE Acceleration (rE = 0.22, p < 0.001), DunedinPACE 
(rE = 0.18, p < 0.001), and Horvath Acceleration (rE = 0.15, 
p < 0.001), but not significantly for GrimAge Acceleration 
(rE = 0.06, p = 0.19). Generally, the correlations of individ-
ually unique environmental factors were weak (≤ 0.22), 
while the correlations of additive genetic factors and 
shared environmental factors were substantial (≥ 0.74). 
In line with the a priori power analysis, the power to dis-
tinguish between the ACE/ADE, CE, and AE models var-
ied from 0.41 to 1 for Horvath Acceleration, from 0.40 to 
1 for PedBE Acceleration, from 0.39 to 0.93 for GrimAge 
Acceleration, and from 0.41 to 0.76 for DunedinPACE. 
The power to distinguish the best-fitting model from the 
E model was 1 for all epigenetic aging measures (Addi-
tional file 3: Table S8).

Age moderation of genetic and environmental differences 
in epigenetic aging
In the final step, we explored whether the contributions 
of the A, C (or D), and E components to the variance of 
epigenetic aging differed across age groups (Table  3, 

Fig. 4, Additional file 3: Tables S10–S11, Figure S8). Here, 
we only present the parameter estimates of the models 
that fitted the data best. The model fit statistics can be 
found in Additional file 3: Table S10.

When moderation by age in the univariate models was 
allowed, statistically significant moderation was observed 
for all epigenetic aging measures resulting in generally 
increasing variance across age groups for all epigenetic 
aging measures. However, different factors turned out to 
be relevant for this increase in different epigenetic aging 
measures. For acceleration measures trained on chrono-
logical age, including Horvath and PedBE Acceleration, 
we observed the moderation of the individually unique 
environmental component (E). That is, the unique envi-
ronmental variance increased across age groups regard-
ing both estimators. The contribution of the unique 
environmental factors to the variance in the Horvath and 
PedBE Acceleration was larger for the oldest age group 
(young adults) compared to the youngest ones (4.18 at 
the onset of adolescence versus 11.73 in young adults 
for Horvath Acceleration; 0.29 at the onset of adoles-
cence versus 1.23 in young adults for PedBE Acceleration, 
see Table  3). Moderation of the variance attributable to 
genetic factors, with higher contribution in young adult-
hood compared to early adolescence, was found for Hor-
vath and GrimAge Acceleration (1.59 versus 9.37 for 
Horvath Acceleration and 1.17 versus 2.81 for GrimAge 
Acceleration) as well as for DunedinPACE (non-additive 
genetic component was 0.00056 in younger adolescents 
and 0.00251 in young adults). Thus, the narrow-sense 
heritability potentially increased across age groups from 
18 to 39% for Horvath Acceleration and from 24 to 43% 
for GrimAge Acceleration. The broad-sense heritability 
(A + D) of DunedinPACE increased from 42 to 57%.

In contrast to the bivariate model and the univari-
ate twin model without age moderation, the CE model 
for PedBE (with moderated e effect) showed a higher 
AIC value (5 550.13) in comparison with the best-fitting 
model in the age-moderated univariate analysis (moder-
ated e effect in ACE model; AIC = 5 548.89). However, 
the power to distinguish between these two models was 
limited (0.30) and both models did not fit significantly 
worse to the data in comparison with the correspond-
ing more complex models. Likewise, the AE model for 
DunedinPACE yielded a significantly worse fit to the data 
compared to the full model (-2LL = − 4 562.38, df = 1 947, 
AIC = − 4 552.38, p = 0.048) in the univariate analysis 
with age moderation.

Sensitivity analysis
In the first part of the sensitivity analysis, we performed 
three separate analyses for univariate twin modeling, 
bivariate twin modeling, and univariate twin modeling 
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with age as a moderator in epigenetic aging measures 
unadjusted either for biological sex, the smoking probe, 
or cell type composition (Additional file  4: Tables S12–
S29). Not controlling for sex or smoking did not lead 

to different conclusions compared to those from the 
main analysis. Not controlling for cell type composi-
tion obscured some of the findings from the main anal-
ysis (Additional file  4: Tables S24–S29). For Horvath 

Table 3 Variance components derived from age-moderated univariate models

The estimates are derived from the best-fitting univariate models with age moderation of genetic and environmental components of the four epigenetic aging 
measures, which are depicted in parentheses

A (%), component due to additive genetic factors; D (%), component due to non-additive genetic factors; C (%), component due to shared environmental factors; E 
(%), component due to individually unique environmental factors including measurement error; V, total variance; Accel., Acceleration

Components that are significantly moderated by age are shown in bold

Epigenetic aging measure Age group A (%) C/D (%) E (%) V

Horvath Accel.
(ACE model with moderated a and e effects)

9.5 1.59 (18) 3.04 (35) 4.18 (47) 8.82

12 2.20 (22) 3.04 (30) 4.90 (48) 10.14

15.5 3.20 (26) 3.04 (25) 6.00 (49) 12.24

18 4.03 (29) 3.04 (22) 6.85 (49) 13.92

21.5 5.36 (32) 3.04 (19) 8.14 (49) 16.54

24 6.42 (35) 3.04 (16) 9.13 (49) 18.59

27.5 8.08 (37) 3.04 (14) 10.60 (49) 21.72

30 9.37 (39) 3.04 (12) 11.73 (49) 24.14

PedBE Accel.
(ACE model with moderated e effect)

9.5 0.16 (18) 0.43 (49) 0.29 (33) 0.88

12 0.16 (16) 0.43 (45) 0.37 (39) 0.96

15.5 0.16 (14) 0.43 (40) 0.50 (46) 1.09

18 0.16 (13) 0.43 (36) 0.60 (51) 1.19

21.5 0.16 (11) 0.43 (32) 0.76 (57) 1.35

24 0.16 (11) 0.43 (29) 0.89 (60) 1.48

27.5 0.16 (9) 0.43 (26) 1.08 (65) 1.67

30 0.16 (8) 0.43 (24) 1.23 (68) 1.82

GrimAge Accel.
(AE model with moderated a effect)

9.5 1.17 (24) – 3.78 (76) 4.95

12 1.33 (26) – 3.78 (74) 5.11

15.5 1.57 (29) – 3.78 (71) 5.35

18 1.76 (32) – 3.78 (68) 5.54

21.5 2.04 (35) – 3.78 (65) 5.82

24 2.25 (37) – 3.78 (63) 6.03

27.5 2.57 (40) – 3.78 (60) 6.35

30 2.81 (43) – 3.78 (57) 6.59

DunedinPACE
(ADE model with moderated d effect)

9.5 0.002 (32) 0.001 (10) 0.003 (58) 0.005

12 0.002 (30) 0.001 (13) 0.003 (57) 0.006

15.5 0.002 (29) 0.001 (17) 0.003 (54) 0.006

18 0.002 (28) 0.001 (20) 0.003 (52) 0.006

21.5 0.002 (27) 0.001 (24) 0.003 (49) 0.006

24 0.002 (26) 0.002 (27) 0.003 (47) 0.007

27.5 0.002 (24) 0.002 (31) 0.003 (45) 0.007

30 0.002 (23) 0.002 (34) 0.003 (43) 0.007

(See figure on next page.)
Fig. 4 Unstandardized and standardized variance components derived from age-moderated models of epigenetic aging measures. Note The 
estimates are derived from the best-fitting univariate models of age moderation of genetic and environmental components in the four epigenetic 
aging measures: ACE model with moderated a and e effects for Horvath Acceleration, ACE model with moderated e effect for PedBE Acceleration, 
AE model with moderated a effect for GrimAge Acceleration, and ADE model with moderated d effect for DunedinPACE (see also Table 3 
and Additional file 3: Tables S10–S11)
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Fig. 4 (See legend on previous page.)
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Acceleration, the AE model demonstrated a better fit in 
the univariate analysis without moderation, while the 
ACE model still yielded a better fit in the bivariate anal-
ysis and the analysis with age moderation. For PedBE 
Acceleration, we observed, along with the moderation of 
the E component, the moderation of the A component in 
the better fitting ACE age-moderated model. GrimAge 
Acceleration demonstrated a better fit of the CE models 
across the univariate and bivariate model in the sensitiv-
ity as opposed to the main analysis with the latter indi-
cating a better fit of the AE models. Not controlling for 
cell type composition in DunedinPACE demonstrated, 
finally, a better fit of the ADE model in the univariate 
and bivariate twin models, as well as the moderation of 
the E instead of the D component in the age-moderated 
univariate twin model. The analysis of epigenetic aging 
measures unadjusted for cell type composition did not 
reach sufficient power to distinguish between models. 
The observed pattern is potentially explained by the fact 
that different tissues have heterogeneous cell type com-
positions [72], which, in turn, can have strong independ-
ent associations with age [79]. Therefore, the measures 
of epigenetic aging unadjusted for cell type composition 
might reflect, in addition to the genuine age-associated 
signal of DNAm, heterogeneity in different cell type com-
positions regarding DNAm as well as a link between cell 
type composition and age.

As the second part of the sensitivity analysis, we speci-
fied and fitted the univariate models of the variance 
decomposition with age moderation for the first epige-
netic measurement to explore if drawing the data from 
two measurements to increase statistical power could 
affect the results. The models’ goodness-of-fit statistics 
are presented in the Additional file 4: Table S30. The same 
models were observed as the best-fitting to the data for 
Horvath Acceleration, GrimAge Acceleration, and Dun-
edinPACE. Similar to the main analysis, we observed that 
the models with the moderated a and e paths for Hor-
vath Acceleration, with the moderated a path for Grim-
Age Acceleration, and with the moderated d path for 
DunedinPACE showed a better fit to the data. For PedBE 
Acceleration, we did observe the moderation of the e 
path as also reported in the main analysis. In contrast to 
the main analysis, however, the model without A factors 
demonstrated a better fit to the data. The observed differ-
ence in results probably could originate from the halved 
sample size and decreased power to detect lower contri-
butions of additive genetic factors to the variance.

Discussion
In this study, we investigated the genetic and environ-
mental contributions to the variance in epigenetic aging 
from early adolescence to young adulthood. Three main 

results can be summarized. First, genetic and environ-
mental contributions to the variance in epigenetic aging 
varied between differently developed epigenetic aging 
estimators. Second, stable differences in epigenetic aging 
across two measurement occasions, 2.5 years apart, were 
mainly attributable to genetic and shared environmental 
factors, while individually unique environmental factors 
represented the primary source of instability (i.e., rank-
order change) over time. Third, the variance in epigenetic 
aging increased from early adolescence to young adult-
hood (i.e., from age 9.5 to 30  years), which was due to 
increasing genetic or environmental contributions to the 
variance, depending on the specific estimator for epige-
netic aging.

Genetic and environmental contributions to the variances 
of differently developed epigenetic aging estimators
The performed univariate and bivariate twin model anal-
yses demonstrated both similarities and differences in the 
genetic and environmental contributions across the four 
differently developed epigenetic aging measures. One of 
the similarities was that at least half of the differences 
in every epigenetic aging estimator was attributable to 
individually unique environmental factors not shared by 
twins reared together. The contributions of these factors 
to the variance could emphasize the role of individually 
unique life experiences contributing to individual differ-
ences in epigenetic aging. Childhood and adolescence 
are a sequence of sensitive and critical developmental 
periods, during which the effects of positive and negative 
experiences can be particularly influential. Experiences 
of violence in children or institutional caring [31], for 
example, have already been mentioned to predict greater 
epigenetic age, affecting ongoing brain and emotional 
regulation development [68]. Individually unique envi-
ronmental factors can also reflect the epigenetic drift, sto-
chastic changes in DNAm. When epigenetic drift occurs 
in epigenetic aging estimators’ locus-specific DNAm, the 
individually unique environmental variance estimated in 
biometrical variance decomposition models would partly 
reflect epigenetic drift [21]. Epigenetic drift with age 
could also explain the greater power of epigenetic age to 
predict chronological age at the onset of life compared to 
childhood and adolescence [49, 70].

Genetic and shared environmental factors, in turn, 
contributed differently to the four epigenetic aging meas-
ures. In particular, the variance in the best-fitting uni-
variate models was explained either by genetic (GrimAge 
Acceleration and DunedinPACE), by shared environmen-
tal (PedBE Acceleration), or by both genetic and shared 
environmental factors (Horvath Acceleration). The devel-
opmental design of the investigated epigenetic aging esti-
mators suggests that these differences are not random. 
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The larger contribution of the shared environmental fac-
tors to the variance in Horvath Acceleration and PedBE 
Acceleration corresponds to the training outcome of 
these estimators. Both are trained to predict chronologi-
cal age, which is by definition shared by twins of one pair. 
The transition to adulthood, in turn, could explain why 
genetic contributions were observed for all epigenetic 
aging measures except for PedBE Acceleration. In con-
trast to the PedBE clock, which was initially developed 
in a sample of individuals up to 20 years of age, the Hor-
vath clock, GrimAge, and DunedinPACE were trained in 
adults (see Additional file 2: Table S2). The genetic con-
tributions we observed for the latter three epigenetic 
aging estimators, but not for PedBE Acceleration, might 
potentially characterize intrinsic epigenetic processes 
that are activated later in life and shared to a greater 
extent by genetically identical MZ twins compared to 
DZ twins. These processes can include the processes of 
physical development, for example the transition from 
puberty to the maintenance of biological systems and the 
high organism functionality. As these processes are less 
pronounced during adolescence, they may be not fully 
reflected in the genetic contributions to the variance in 
PedBE Acceleration.

The patterns observed for the genetic and environmen-
tal contributions to the variance in epigenetic aging were 
also reflected in stable differences across measurements, 
as shown in the bivariate twin analyses. Here, substan-
tial positive genetic correlations over time were found in 
three estimators trained in adults. In contrast to environ-
mental differences, the absolute size of genetic variance 
in epigenetic aging estimators remained constant over 
time, suggesting that genetic factors represent a primary 
source of stable differences in the epigenetic aging rate, 
at least across 2.5 years in our study. Estimators trained 
to predict chronological age (Horvath Acceleration and 
PedBE Acceleration) also demonstrated substantial posi-
tive correlations of shared environmental factors. How-
ever, their contributions to the variance increased from 
the first to the second measurement occasion, respec-
tively. This indicates that the similarity of same-aged sib-
lings and differences between families in epigenetic aging 
relative to chronological age tend to increase over time. 
While genetic and shared environmental factors repre-
sent the primary source of stability, individually unique 
environmental factors were found to be only marginally 
stable over the period of 2.5 years. Moreover, individual 
differences in all epigenetic aging estimators increased 
over time due to an increase in those environmental 
influences not shared by twins. This indicates that indi-
vidually unique environmental sources represent the 
primary source of inter-individual differences in intra-
individual change in epigenetic aging over time.

Finally, the training design could potentially explain the 
specific variance patterns for DunedinPACE, for which 
we observed a smaller variance in general and its modest 
increase. This is in line with previous findings suggesting 
a remarkable stability of DunedinPoAm, the predecessor 
of DunedinPACE, for the age period from 7 to 20 [55]. 
Beyond that, DunedinPACE was characterized by the 
greatest contribution of genetic factors to the variance 
and was the only epigenetic aging estimator for which the 
presence of non-additive genetic factors was indicated to 
some extent. These findings could also signal the differ-
ences between cross-sectional and longitudinal training 
designs. While the GrimAge, Horvath, and PedBE clocks 
were developed by analyzing cross-sectional samples, 
DunedinPACE was trained on longitudinal data, account-
ing for the within-individual trends of aging. Represent-
ing the speed of epigenetic aging based on 12  months, 
DunedinPACE does not directly relate to chronologi-
cal age and the accumulation of aging processes, which 
are commonly represented by measures of epigenetic 
age acceleration. The smaller changes in the variance in 
DunedinPACE, along with the largest contribution of the 
genetic factors, suggest that their role in the pace of epi-
genetic aging across adolescence and young adulthood 
is potentially more stable than in epigenetic acceleration 
measures.

Genetic and environmental contributions 
to age-associated differences in epigenetic aging 
estimators
The analysis of the age-associated differences demon-
strated that the genetic and environmental contributions 
to the variance were not constant across age groups. 
These findings can be discussed in the context of poten-
tial gene‒environment correlations and gene‒environ-
ment interactions relevant for variance in epigenetic 
aging from early adolescence to young adulthood. That is, 
in addition to the patterns observed in the univariate and 
bivariate models, the three estimators Horvath Accelera-
tion, GrimAge Acceleration, and DunedinPACE, trained 
in adults, demonstrated an increased variance across age 
groups due to genetic (additive or non-additive) factors. 
First, this potential increase is consistent with longitu-
dinal studies on the SNP-based heritability of epigenetic 
aging and the heritability of other complex phenotypes. 
Specifically, in the sample of children and their parents, 
the SNP-based heritability was demonstrated to be 0% 
during the onset of life but higher later in life [70]. Simi-
larly, genetic contributions to the variance in complex 
phenotypes, such as intelligence, depressive symptoms, 
and personality traits, demonstrate increasing heritability 
from childhood to adulthood [7, 34, 51].
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The observed phenomenon of the increased role of 
genetic factors during this age is commonly explained 
by active and evocative gene‒environment correlation 
in the presence of gene‒environment interaction, “[…] 
when people become more and more autonomous and 
self-directed during adolescence. They have increasing 
opportunities to pave their own way, evoke, select and 
create environments that match their heritable tenden-
cies. These environments in turn can provide experi-
ences that have the potential to reinforce the pre-existing 
tendencies” ([34]; p. 238). One illustrative example of an 
active gene‒environment correlation is the self-selection 
of individuals in environments that fit their genetic pre-
dispositions [7, 33]. For instance, when individuals with 
genetic predispositions for a slower epigenetic aging 
rather develop healthy habits and search for health-
promoting environments that fit this genetic tendency, 
this would reflect processes of active gene‒environment 
transactions resulting in non-random gene–environ-
ment correlation. As the increasing importance of active 
gene‒environment correlation would come along with an 
increase of genetic differences, while a declining role of 
passive gene‒environment correlation (i.e., genetic and 
environmental factors on offspring’s phenotypes are cor-
related due to parental phenotypes and behavior) would 
be reflected by decreasing effects of shared environmen-
tal influences [11, 59], our findings can be considered in 
line with this interpretation.

Since we did not detect increasing genetic variance 
over an interval of 2.5 years in our sample, which is not 
entirely compatible with the interpretation of gene–envi-
ronment correlation, alternative explanations must also 
be considered. Specifically, the gene‒environment inter-
play underlying estimates of genetic variance can also 
reflect interactions of genetic and environmental factors 
shared by twins, which would also account for the find-
ing of non-perfect correlations of genetic factors over 
the 2.5-year period in our sample [34, 59]. This form of 
gene–environment interplay might be more relevant for 
twins reared together and, thus, more likely to occur 
during adolescence, when twins still share a common 
family household. Previous studies illuminating the role 
of shared environmental factors emphasized the driv-
ing role of the prenatal environment [40] and cohabita-
tion for differences in epigenetic aging, implying that 
the longer relatives live together, the more similar they 
are epigenetically [39]. From adolescence to adulthood, 
the role of these factors seems to be steadily replaced by 
genetic and individually unique environmental factors 
as well as by interactions between them. As cohabiting 
is more common before adulthood, our findings extend 
previous conclusions, implying an increasing role of 
active gene‒environment correlation in the presence of 

interactions between genetic and environmental factors, 
when relatives, on average, transit to adulthood and tend 
to start living separately. These processes are reflected in 
the trajectories of gene‒environment interactions and 
the relationships between individuals and their immedi-
ate environments. This would include, for instance, the 
transition from the sorting into fitting environments to 
the individual adjustment to changing environments, or 
finding a balance between person‒environment fitting 
and adjustment [33].

Furthermore, the contributions of individually unique 
environmental influences to the variance notably 
increased during adolescence and emerging adulthood 
in Horvath and PedBE Acceleration, epigenetic aging 
estimators trained on chronological age. In addition to 
the discussed accumulated effects of unique life experi-
ences and epigenetic drift, the observed pattern can sig-
nal increasing measurement error in epigenetic aging 
measures, which was particularly evident for PedBE 
Acceleration. Being trained in a younger population [49], 
its application in adults was less precise. In our analy-
sis, PedBE Acceleration had a larger error in predicting 
chronological age in older cohorts, while its MZ and 
DZ twin correlation estimates varied largely. Measure-
ment error, however, is likely not the sole driver for the 
increasing variance in epigenetic aging due to individu-
ally unique environmental factors, as the same trend of 
increasing environmental variance was observed for 
Horvath Acceleration. This estimator was also trained to 
predict chronological age and its mean prediction error 
was consistent across analyzed age stages and groups.

Although we observed that the individually unique 
environmental factors increase from the first to the 
second timepoint in GrimAge Acceleration and Dun-
edinPACE, the contributions of individually unique envi-
ronmental factors to variance in both estimators were 
not found to be moderated by age in the pooled univari-
ate analysis. In contrast to epigenetic aging estimators 
trained on chronological age, the two latter measures 
were developed in (exclusively adult) blood samples and 
rely on intrinsic biological functioning. In particular, 
GrimAge is linked to the level of plasma proteins [43] and 
DunedinPACE reflects, among other factors, the level of 
glycated hemoglobin, leptin, and serum C-reactive pro-
teins [6]. Because these two estimators are also intrinsi-
cally driven, these processes may be more elusive and less 
sensitive to trends in individually unique environmental 
contributions when they are measured in saliva.

The heritability of epigenetic aging based on saliva 
samples
The age-specific patterns of genetic contributions to the 
variance in epigenetic aging in saliva obtained in our 
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analysis were rather consistent with the assessments 
reported in blood. However, our heritability estimates 
were, on average, lower than those reported in studies 
based on blood tissue samples. For example, previous 
research reported that genetic differences accounted for 
69%, 73%, and 68% of the variance in Horvath Accel-
eration, GrimAge Acceleration, and DunedinPACE in 
22-year-olds, respectively [36]. The broad-sense herit-
ability for the 21.5-year-old twins in our analysis was sub-
stantially lower (32%, 35%, and 51%, respectively). The 
comparison of the heritability of PedBE Acceleration in 
saliva with its heritability in other sources of DNAm (e.g., 
buccal cells) was not possible, because no study so far, to 
our knowledge, provided heritability estimates for PedBE 
Acceleration and our study indicated decreasing or zero 
heritability. The differences in heritability estimates 
across sources of DNAm for epigenetic aging measures 
were observed between subjects and studies, therefore 
could be related to variations in the age compositions 
of the studies’ samples, the presence of age modera-
tion, or the genuine differences in DNAm and epigenetic 
aging across tissues [2, 80]. Further studies are needed 
to investigate whether the observed pattern of the lower 
heritability of epigenetic aging based on saliva can be 
replicated.

Limitations and future research
Among the strengths of our study are the relatively large 
sample size of twin pairs in the field of epigenetics, the 
focus on both epigenetic age acceleration and the pace 
of epigenetic aging measures, the examination of genetic 
and environmental contributions to the covariance in 
epigenetic aging measures over two timepoints, and, 
finally, the consideration of age differences during the 
second and third decades of life. Nevertheless, our study 
is not without limitations.

First, differences in the performance of epigenetic 
aging measures across different ages and tissues may 
have introduced additional sources of measurement 
error [2]. The Horvath clock, for example, is less precise 
in younger samples, while the PedBE clock could be 
more biased in adults [49]. Similarly, our study exclu-
sively utilized saliva samples, but not all applied epi-
genetic aging estimators were trained on saliva-based 
DNA methylation profiles. While the Horvath clock is 
a pantissue epigenetic clock and the PedBE clock was 
developed in buccal cells, DunedinPACE and GrimAge 
were trained in blood. Although the pace of aging can 
be assessed based on saliva [61, 62] and the second ver-
sion of GrimAge demonstrated good performance in 
saliva-based DNA methylation data [42], applying these 

epigenetic aging estimators in a tissue different from 
the initial design may affect the estimates. The Horvath 
clock, at the same time, being a pantissue clock, could 
lose some precision when applied to any tissue.

Second, despite the advantages of a comparatively 
large sample size with epigenetic data and the use of 
two measurement points in the biometrical variance 
decomposition, the post hoc power analysis demon-
strated that the differentiation between several nested 
models was limited, as confidence intervals overlapped. 
Previous literature has suggested a minimum sample 
size of 600 twin pairs for univariate analysis and larger 
samples for detecting possible non-additive genetic fac-
tors, which, unfortunately, could not be reached [46, 
67]. Nevertheless, we had enough power to detect the 
presence of genetic or environmental age moderation 
in epigenetic aging measures.

Third, the utilization of measurements from two 
timepoints in four birth cohorts could introduce addi-
tional sources of variance. Different age groups, for 
instance, might introduce cohort effects that cannot be 
entirely disentangled from age effects. In addition, the 
second measurement was realized during the COVID-
19 pandemic. While prior studies did not confirm spe-
cific effects of the COVID-19 pandemic on epigenetic 
aging in adolescents [15], we observed an increased 
contribution of the individually unique environmental 
factors to variance in epigenetic aging at the second 
measurement. It thus might be that pandemic-related 
factors, such as changes in health status, lockdowns, 
and restrictions, formed potential new influential 
environmental sources that could act very individu-
ally. Hence, the role of these factors in epigenetic aging 
dynamics should be clarified further.

Fourth, classical twin analysis is an efficient way to 
estimate genetic and environmental sources of variance 
but at the cost of several assumptions. One assump-
tion is that environmental experiences shared by twins 
contribute to the similarity within MZ twin pairs to the 
same degree as within DZ twin pairs. One study pro-
posed that this assumption might not hold true for epi-
genetic aging, as MZ and DZ pairs can possibly share 
their preadult environmental effects to different extents 
[39]. Such phenomenon can have both an environmen-
tal or genetic origin [19]. In addition, the classical twin 
design does not allow, so far, the estimation of shared 
environmental (C) and non-additive genetic (D) con-
tributions in one model, while both sources of variance 
can be relevant for variance in epigenetic aging at the 
same or during different developmental stages. These 
aspects should be addressed in further investigations.
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Conclusion
Altogether, the present study demonstrated that the 
genetic and environmental sources of variance in epi-
genetic aging differ across different epigenetic aging 
estimators. For estimators trained in adult samples, 
larger contributions of genetic factors to the variance 
in epigenetic aging were observed. Shared environmen-
tal factors accounted for variance in epigenetic aging 
measures trained on chronological age only. Genetic 
factors and environmental factors shared by twins 
reared together represented the primary sources con-
tributing to the stability of epigenetic aging differences 
in corresponding estimators over time, while individu-
ally unique environmental factors represented the pri-
mary source of rank-order change.

The increase of the variance in epigenetic aging 
measures from early adolescence to young adulthood 
was associated with differences in the contributions of 
genetic and environmental factors. The variance of epi-
genetic aging estimators trained in adult samples was 
characterized by increasing contributions of genetic 
factors across age. Increasing differences in epigenetic 
aging measures trained on chronological age, in addi-
tion, were driven by increasing contributions of indi-
vidually unique environmental factors. These findings 
can be interpreted in terms of an interplay between 
genetic and environmental factors and contribute to a 
better understanding of the epigenetic aging processes 
during the transition to adulthood.
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