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Abstract 

Background Although DNA methylation age estimators (DNAmAges) are reliable tools for predicting aging, their 
effectiveness in predicting mortality risk has not been fully validated. This study compared the predictive utility of five 
different DNAmAges (HorvathAge, HannumAge, PhenoAgeAge, GrimAge and GrimAge2) for all-cause and cause-
specific mortality among adults aged ≥ 50 years.

Methods We screened 1966 participants adults aged ≥ 50 from the National Health and Nutrition Examination Sur-
vey (1999–2002) and linked them to the National Death Index to obtain cause and status of death. We used weighted 
Cox proportional hazards models to examine the associations between epigenetic age acceleration (EAA) measured 
by different DNAmAges and all-cause and cause-specific mortality in the general population, adjusting for various 
covariates including age, smoking status and chronic diseases. We used restricted cubic splines to explore nonlin-
ear associations. Finally, stratified analyses were performed to assess the relationship between DNA age estimators 
and stratification variables.

Results The multivariable adjustment model showed that EAA measured by HorvathAge (AAHorvathAge), Han-
numAge (AAHannumAge), PhenoAge (AAPhenoAge), GrimAge (AAGrimAge) and GrimAge2 (AAGrimAge) were 
significantly associated with the risk of death, among which AAGrimAge and AAGrimAge2 had stronger statistical 
correlation and the correlation pattern was positively correlated. Specifically, each 5-year increase in AAGrimAge 
was associated with a 44% increased risk of all-cause death, a 33% increased risk of cardiovascular death and a 54% 
increased risk of non-cardiovascular death. And each 5-year increase in AAGrimAge2 was associated with a 40% 
increased risk of all-cause death, a 33% increased risk of cardiovascular death and a 47% increased risk of non-
cardiovascular death. In contrast, AAHorvathAge, AAHannumAge and AAPhenoAge showed a J-shaped correlation 
with the risk of all-cause mortality and non-cardiovascular mortality, with the inflection points of all-cause mortal-
ity and non-cardiovascular mortality occurring at AAHorvathAge of 2.29 and 2.8, AAHannumAge of 3.07 and 2.97, 
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and AAPhenoAge of − 7.65 and 7.04, respectively. No interaction was found between DNAmAges and stratification 
variables.

Conclusions AAGrimAge and AAGrimAge2 outperformed AAHorvathAge, AAHannumAge and AAPhenoAge in pre-
dicting mortality risk, and the association pattern was positive.

Keywords Biological age, DNA methylation age estimator, Epigenetic age acceleration, All-cause mortality, Cause-
specific mortality

Background
Population aging has accelerated globally in recent 
years, with the population over 60 years old accounting 
for 11%, and it is expected to reach 22% by 2050 [1]. 
However, the extension of life expectancy does not mean 
a simultaneous increase in healthy life expectancy. What 
increases is mainly the number of years of survival with 
illness. Especially after the COVID-19 pandemic, the 
global life expectancy has dropped by 1.6 years, and 
the main causes of death have also shifted to chronic 
non-communicable diseases, such as ischemic heart 
disease, stroke and chronic obstructive pulmonary 
disease (COPD) [2, 3]. Aging, as the greatest risk factor 
for most common chronic diseases and causes of 
death, refers to the process in which the body loses the 
structure and function of organs, tissues and cells with 
chronological age (CA), ultimately leading to disease, 
disability and death. Therefore, it is necessary to explore 
biomarkers of aging that can accurately and efficiently 
quantify the functional state of human beings or organs 
and their changes with CA to identify individuals at 
risk of premature aging, which is crucial for developing 
interventions to slow down, stop or even reverse aging.

It is worth noting that aging is a complex process, and 
epigenetic alterations have been directly demonstrated 
to be a major driver of aging and age-related diseases, 
and remodeling the integrity of the epigenome can 
reverse aging [4, 5]. Therefore, scholars have integrated 
epigenetic alterations, clinical parameters and many 
types of omics data through algorithms to construct 
epigenetic clocks to evaluate aging and health status 
instead of CA [6–10]. DNA methylation (DNAm) is the 
most widely studied epigenetic phenomenon, and the 
DNAm age estimator (DNAmAge) constructed based 
on it is currently the most promising biomarker for 
predicting BA and is a hot topic in the field of aging [11]. 
However, given that these various kinds of DNAmAges 
use different sets of CpGs from different tissues and 
age profiles, the accuracy of their predictions of the age 
of the DNA source (e.g., cell, tissue or organ) and of 
age-related diseases varies accordingly. For example, 
the “first-generation” epigenetic clocks (HorvathAge, 
HannumAge) constructed based on physiological tissues 
were trained only for CA and are highly correlated with 

CA [12], while the “second-generation” epigenetic clocks 
(PhenoAge, GrimAge, GrimAge2) were specifically 
designed to predict BA and risk of death by testing them 
against a combination of clinical biomarkers and are 
therefore far superior to the"first generation"in predicting 
mortality, healthy life span or cardiovascular diseases [10, 
13, 14].

Epigenetic age acceleration (EAA, the difference 
between the predicted epigenetic clock and CA, 
described below as the prefix AA) measured based on 
different DNAm patterns is associated with a variety of 
age-related diseases, including cancer, cardiovascular 
disease, diabetes and mental disorders, and may be 
associated with poor prognosis of the disease [15–21]. 
For example, a meta-analysis found that for every 5-year 
increase in AAHannumAge and AAHorvathAge, the 
population mortality risk would increase by 21% and 11%, 
respectively [19, 22]. A case–control study based on the 
ESTHER cohort showed that for every 5-year increase 
in AAHorvathAge, the risk of all-cause mortality would 
increase by 23%, the risk of cardiovascular mortality 
would increase by 19%, and the risk of cancer mortality 
would increase by 22%, but the association calculated 
using AAHannumAge was no longer statistically 
significant [23]. After eliminating confounding factors 
such as genetics and lifestyle, a cohort study of twins 
found that the risk of all-cause mortality increased by 
35% for every 5-year increase in AAHorvathAge [24]. 
However, in another twin cohort study, it was found 
that for every 1 SD increase in AAGrimAge, the risk 
of death increased by 31%, while AAHorvathAge was 
not significantly associated with mortality [25]. These 
conflicting results highlight the need to systematically 
compare these different DNAmAge predictors of all-
cause and cause-specific mortality in older adults and to 
evaluate their patterns of association to identify the best 
predictors of cause-specific mortality.

Previous studies on DNAmAges and all-cause mortality 
have been extensive [13, 20, 23], but there is a lack of 
research on the strength of the association between 
specific cause mortality. To fill this gap, this study aims 
to verify the association between the first- and second-
generation epigenetic clocks and all-cause mortality in 
people aged ≥ 50 years in the same cohort using data 
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from the National Health and Nutrition Examination 
Survey (NHANES) from 1999 to 2002, and further 
explore the association with cause-specific mortality 
(such as cardiovascular disease, cancer and metabolic 
disease), in order to find the best predictive indicators for 
early identification of individuals at higher risk of death 
due to age-related diseases.

Methods
Study population
NHANES is a cross-sectional study that assesses the 
health and nutritional status of adults and children in 
the USA. Information on basic demographic informa-
tion, socioeconomics, diet and health, medical treatment 
and physiological measurements is collected through 
interviews and physical examinations, and all partici-
pants signed written informed consent. We downloaded 
the dataset from 1999 to 2002 from the NHANES web-
site (http:// www. cdc. gov/ nchs/ nhanes. htm). Among 
the 21,004 participants, 19,038 were excluded because 
they were younger than 50 years old (n = 16,021), miss-
ing DNAm data (n = 2,451) or covariate data (n = 566). 
Finally, we included a total of 1966 eligible subjects to 
study the association between DNAmAges and all-cause 
mortality, cardiovascular mortality and non-cardiovascu-
lar mortality. The detailed screening process of the study 
population is shown in Fig. 1.

DNAm measurement and DNAm epigenetic biomarker 
prediction
HorvathAge, HannumAge, PhenoAge, GrimAge and 
GrimAge2 were all adopted from DNA methylation data 
of NHANES. Specifically, the Duke University Institute 
of Molecular Physiology collected biological samples 

from some adult participants aged 50 and above from 
1999 to 2002 to analyze DNA methylation patterns and 
predict DNAm-derived epigenetic biomarkers (https:// 
wwwn. cdc. gov/ nchs/ data/ nhanes/ dnam/ NHANES% 
20DNAm% 20Epi genet ic% 20Bio marke rs% 20Data% 
20Doc ument ation. pdf ). Based on this, we calculated 
the corresponding EAA of the subjects by the difference 
between the predicted epigenetic clock and CA. The 
preprocessing and generation of all DNAm epigenetic 
biomarkers were completed using R language [version 
4.3.2].

Clinical endpoints
The survival outcomes were all-cause and detailed cause-
specific mortality. Mortality data were linked to the CDC 
National Death Index (NDI) database (https:// www. cdc. 
gov/ nchs/ data- linka ge/ morta lity- public. htm) using a 
probabilistic matching algorithm to obtain information 
on participants’survival status and deaths as of December 
31, 2019. Specific cause-of-death classification criteria 
in the NDI were defined and coded according to the 
International Statistical Classification of Diseases and 
Related Health Problems, Tenth Revision (ICD-10). 
The definition of all-cause mortality includes all types 
of deaths. Specific causes of death are categorized 
into cardiovascular causes of death (heart disease and 
cerebrovascular disease) and non-cardiovascular causes 
of death (including cancer, diabetes mellitus, respiratory 
disease, renal disease, Alzheimer’s disease and deaths 
related to other causes).

Covariates
Age, sex, race, marital status, education level, poverty-
to-income ratio (PIR), body mass index (BMI), smoking 
status, alcohol use, physical activity and history of 
comorbidities were obtained from demographic and 
health questionnaires of the NHANES survey. Total 
cholesterol, albumin and eGFR levels were obtained 
from laboratory test results. Educational attainment 
was categorized as below high school, high school and 
above high school. Smoking status was determined 
by participants’responses to having smoked at least 
100 cigarettes in their lifetime and whether they 
were currently smoking, categorizing participants as 
never smoker, former smoker and current smoker. 
Alcohol intake was categorized as nondrinking (< 12 
drinks per year) and drinking (≥ 12 drinks) based on 
participants’ 24-h dietary recall. Physical activity status 
was categorized into inactive group (defined as not 
reporting leisure-time physical activity), active group 
(defined as meeting recommended physical activity 
levels, i.e., self-reported moderate leisure-time activity 
[metabolic equivalents of 3 to 6] 5 or more times per Fig. 1 Study population screening flow diagram

http://www.cdc.gov/nchs/nhanes.htm
https://wwwn.cdc.gov/nchs/data/nhanes/dnam/NHANES%20DNAm%20Epigenetic%20Biomarkers%20Data%20Documentation.pdf
https://wwwn.cdc.gov/nchs/data/nhanes/dnam/NHANES%20DNAm%20Epigenetic%20Biomarkers%20Data%20Documentation.pdf
https://wwwn.cdc.gov/nchs/data/nhanes/dnam/NHANES%20DNAm%20Epigenetic%20Biomarkers%20Data%20Documentation.pdf
https://wwwn.cdc.gov/nchs/data/nhanes/dnam/NHANES%20DNAm%20Epigenetic%20Biomarkers%20Data%20Documentation.pdf
https://www.cdc.gov/nchs/data-linkage/mortality-public.htm
https://www.cdc.gov/nchs/data-linkage/mortality-public.htm
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week or vigorous leisure-time activity [metabolic 
equivalents of > 6] 3 or more times per week) and 
insufficiently active group (defined as neither being 
inactive nor meeting recommended physical activity 
level criteria) [26].

Comorbidities included diabetes, renal disease, 
atherosclerotic cardiovascular disease (ASCVD), 
chronic heart failure (CHF), COPD and cancer. 
Diabetes mellitus was defined as a self-reported history 
of hyperglycemia, glycosylated hemoglobin A1c ≥ 6.5%, 
fasting blood glucose ≥ 126 mg/dL or using glucose-
lowering medications [27]. eGFR was calculated 
according to the Chronic Kidney Disease Epidemiology 
Collaboration 2021 (CKD-EPI) formula (the Chronic 
Kidney Disease Epidemiology Collaboration equation), 
with renal disease defined as eGFR < 60 mL/min [28]. 
ASCVD includes coronary artery disease and stroke. 
CHF and COPD are determined by physician diagnosis 
and prescription medications.

Statistical analysis
Participants were categorized into two groups by 
survival status to characterize the study population. 
Continuous variables were reported as mean ± standard 
deviation or median (interquartile range), with t-tests 
or Kruskal–Wallis tests for hypothesis testing based 
on distribution. Categorical variables were presented 
as counts and percentages, with Chi-square tests for 
hypothesis testing. Linear regression and Pearson’s 
correlation assessed relationships between EAA, CA 
and other variables.

Cox proportional hazards models estimated HRs 
and 95% CIs for AAHorvathAge, AAHannumAge, 
AAPhenoAge, AAGrimAge and AAGrimAge2 in relation 
to mortality, adjusting for covariates like age, sex, race, 
marital status, education level, PIR, BMI, smoking 
status, alcohol status, physical activity, comorbidities 
and laboratory parameters. P-values for trends were 
calculated using quartile levels as ordinal variables. EAAs 
were analyzed as continuous variables to determine the 
effect size per 5-year increase, with exposure variables 
normalized to z-scores for per SD increase.

To account for nonlinear associations, inflection points 
were identified, and piecewise models were constructed. 
We performed stratified analyses according to age 
(< 65 years or ≥ 65 years), sex, race, smoking history, 
alcohol drinking history, physical activity, ASCVD and 
diabetes mellitus. Stratified analyses assessed potential 
effect modifications using Wald tests, with consistent 
adjustment levels across HR and 95% CI estimations for 
EAA and specific mortality causes. Statistical analyses 

were conducted using R version 4.3.2, with p < 0.05 
indicating statistical significance.

Results
General characteristics of participants
A total of 1966 NHANES participants were included 
in the BA analysis; during a median follow-up of 208 
months, 1014 participants died. Details of demographics, 
medical history, baseline laboratory test results, univari-
ate analysis results and detailed cause-specific numbers 
and proportions of deaths are shown in Tables  1 and 
2. It is worth noting that the EAA of deceased partici-
pants during follow-up was significantly lower than that 
of survivors (p < 0.05), but given that the baseline CA 
of the deceased group was significantly higher (mean 
60.42 years vs. 71.10 years, p < 0.001), the relative EAA 
value would be higher than that of the survivors. Fig-
ure 2 shows the difference between CA and DNAmAges 
between survivors (red dots) and deceased participants 
(blue dots). Compared with the survivors, the deceased 
participants had higher DNAmAges, male proportion, 
smoking proportion and prevalence of diabetes, ASCVD, 
cancer, CHF and chronic kidney disease, but lower BMI, 
albumin and eGFR levels. The magnitude of the Pearson 
intercorrelations between the various DNAmAges is as 
follows: HorvathAge correlated 0.87, 0.85, 0.76, 0.76 and 
0.72 with HannumAge, PhenoAge, GrimAge and Grim-
Age2, respectively. HannumAge correlated 0.85, 0.78 and 
0.76 with PhenoAge, GrimAge and GrimAge2, respec-
tively. PhenoAgeAA correlated 0.79 with both GrimAge 
and GrimAge2, and GrimAge correlated 0.99 with Grim-
Age2 (Fig. S1).  

Associations of EAA measured by DNAmAges 
with all‑cause and cause‑specific mortality
As shown in Fig.  3, after adjustment for potential con-
founders, we found that EAA measured by HorvathAge 
(AAHorvathAge), HannumAge (AAHannumAge), Phe-
noAge (AAPhenoAge), GrimAge (AAGrimAge) and 
GrimAge2 (AAGrimAge) was significantly associated 
with mortality risk when treated as continuous variables. 
Specifically, every 5-year increase in AAHorvathAge was 
associated with a 10% increased risk of all-cause mor-
tality (P = 0.013) and a 3% increased risk of non-cardio-
vascular mortality (P = 0.005). For every 5-year increase 
in AAHannumAge, the risk of all-cause mortality and 
non-cardiovascular mortality increased by 17% (P < 0.001 
and P = 0.002), and the risk of cardiovascular mortal-
ity increased by 24% (P = 0.015). Each 5-year increase 
in AAPhenoAge increased the risk of all-cause death by 
13% and the risk of non-cardiovascular death by 18% (P < 
0.001). Each 5-year increase in AAGrimAge was associ-
ated with a 44% increased risk of all-cause death (P < 
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0.001), a 33% increased risk of cardiovascular death (P = 
0.019) and a 54% increased risk of non-cardiovascular 
death (P < 0.001). Every 5-year increase in AAGrimAge2 
was associated with a 40% increased risk of all-cause 
mortality (P < 0.001), a 33% increased risk of cardiovascu-
lar death (P = 0.003) and a 47% increased risk of non-car-
diovascular death (P < 0.001). When used as categorical 
variables, EAA measured by DNAmAges also showed a 
stepwise increasing association with the risk of all-cause 
and non-cardiovascular mortality (P-value for trend 
< 0.05), but in terms of cardiovascular mortality risk, only 
AAGrimAge and AAGrimAge2 were found to show an 
increasing trend with the risk of cardiovascular mortality 
(P-value for trend = 0.026 and P-value for trend = 0.006).

The detection of nonlinear relationships
On continuous scales, AAHorvathAge, AAHannumAge 
and AAPhenoAge showed a J-shaped correlation with 
the risk of all-cause mortality and non-cardiovascular 
mortality, with the inflection points of all-cause and non-
cardiovascular mortality occurring at AAHorvathAge 
of 2.29 and 2.8, AAHannumAge of 3.07 and 2.97, and 
AAPhenoAge of − 7.65 and 7.04, respectively. The risk 
of death remained almost constant before the inflection 

Table 1 Baseline characteristics of participants stratified by 
survival status

Characteristic Surviving 
participants 
(n = 952)

Dead 
participants 
(n = 1014)

p value

Age, years Biological age 60.42 ± 7.23 71.10 ± 9.16  < 0.001

HorvathAge, years 62.33 ± 7.03 70.97 ± 8.96  < 0.001

HannumAge, years 62.02 ± 7.51 71.52 ± 9.19  < 0.001

PhenoAge, years 50.12 ± 8.24 60.62 ± 10.35  < 0.001

GrimAge, years 60.97 ± 6.53 70.91 ± 7.77  < 0.001

GrimAge2, years 66.83 ± 6.61 76.62 ± 7.58  < 0.001

Epigenetic age 
acceleration

AAHorvathAge 1.91 ± 5.00 −0.13 ± 6.65  < 0.001

AAHannumAge 1.60 ± 5.05 0.42 ± 6.36  < 0.001

AAPhenoAge −10.30 ± 6.06 −10.48 ± 7.85 0.559

AAGrimAge 0.55 ± 4.98 −0.19 ± 5.74 0.003

AAGrimAge2 6.41 ± 5.46 5.52 ± 6.31  < 0.001

PIR 2.94 (1.38–5.00) 1.84 (1.11–3.32)  < 0.001

BMI, kg/m2 29.02 ± 5.65 28.44 ± 5.95 0.029

Male, n (%) 457 (48.00) 552 (54.44) 0.004

Race, n (%)  < 0.001

Non-Hispanic White 368 (38.66) 472 (46.55)

Non-Hispanic Black 168 (17.65) 225 (22.19)

Hispanic 376 (39.50) 292 (28.80)

Other 40 (4.20) 25 (2.47)

Education, n (%)  < 0.001

Below high school 350 (36.76) 501 (49.41)

High school 185 (19.43) 228 (22.49)

Above high school 417 (43.80) 285 (28.11)

Marital status, n (%)  < 0.001

Married/cohabiting 670 (70.38) 605 (59.66)

Separated/divorced/
widowed

244 (25.63) 369 (36.39)

Never married/unknown 38 (3.99) 40 (3.94)

Smoking status, n (%) 0.008

Never smoker 471 (49.47) 435 (42.90)

Former smoker 361 (37.92) 418 (41.22)

Current smoker 120 (12.61) 161 (15.88)

Drinking status, n (%) 0.03

Nondrinking 627 (65.86) 620 (61.14)

Drinking 325 (34.14) 394 (38.86)

Physical activity, n (%)  < 0.001

Inactive 436 (45.80) 601 (59.27)

Insufficient 203 (21.32) 154 (15.19)

Active 313 (32.88) 259 (25.54)

Total cholesterol, mmol/L 5.47 ± 0.99 5.40 ± 1.08 0.174

Albumin, g/L 42.96 ± 2.89 42.40 ± 3.06  < 0.001

eGFR, mL/min 91.66 ± 16.34 79.44 ± 22.02  < 0.001

Diabetes mellitus, n (%) 165 (17.33) 293 (28.90)  < 0.001

ASCVD, n (%) 64 (6.72) 174 (17.16)  < 0.001

CHF, n (%) 15 (1.58) 90 (8.88)  < 0.001

COPD, n (%) 139 (14.60) 168 (16.57) 0.23

The data was shown as mean (standard deviation) or median (interquartile 
range) for continuous variables, n (%) for categorical variables

N, number of subjects; %, weighted percentage

PIR poverty income ratio, BMI body mass index, eGFR estimated glomerular 
filtration rate, ASCVD atherosclerotic cardiovascular disease, CHF chronic heart 
failure, COPD chronic obstructive pulmonary disease

Table 1 (continued)

Characteristic Surviving 
participants 
(n = 952)

Dead 
participants 
(n = 1014)

p value

Cancer, n (%) 90 (9.45) 184 (18.15)  < 0.001

Chronic renal disease 
(eGFR < 60 mL/min), n (%)

39 (4.10) 199 (19.63)  < 0.001

Table 2 Number and proportion of detailed cause-specific 
deaths among participants

Characteristic Frequency (n) Percentage (%)

Cardiovascular

Heart diseases 265 26.13

Cerebrovascular diseases 51 5.03

Non-cardiovascular

Cancer 209 20.61

Diabetes mellitus 51 5.03

Respiratory disease 76 7.50

Renal disease 21 2.07

Alzheimer disease 48 4.73

All other causes 293 28.9
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point and then increased sharply. AAHannumAge was 
linearly associated with the risk of cardiovascular death 
(P for nonlinear = 0.149). More importantly, we found 
that AAGrimAge and AAGrimAge2 were positively 
associated with all-cause mortality, cardiovascular mor-
tality and non-cardiovascular mortality(P for nonlinear 
> 0.05), which means that as AAGrimAge and AAGrim-
Age2 increase, i.e., the positive EAA, the risks of all-
cause, cardiovascular and non-cardiovascular mortality 
also increase, whereas as AAGrimAge and AAGrim-
Age2 decrease, i.e., negative EAA, the risk of all-cause, 
cardiovascular and non-cardiovascular mortality also 
decreases. The results of the restricted cubic spline (RCS) 
are presented in Fig. 4, respectively.

Stratified analyses
As shown in Fig. 5, to further evaluate the impact of EAA 
measured by DNAmAges on outcome indicators, sub-
group analyses were performed. Stratified by age, sex, 
race, smoking history, alcohol drinking history, physical 
activity, ASCVD and diabetes, there were no significant 
interactions among subgroups. These subgroup analyzes 
highlight the consistency and generalizability of the asso-
ciation between these DNAmAges and mortality risk 
across different populations.

Association between EAA measured by DNAmAges 
and cause‑specific mortality subcategories
We then used a multivariate-adjusted Cox proportional 
hazards model to compare the predictive ability of differ-
ent DNAmAges for cause-specific mortality (Fig. 6). The 
results showed that for every 5-year increase in AAGrim-
Age and AAGrimAge2, the risk of death from heart dis-
ease increased by 44% and 43%, respectively. Every 5-year 
increase in AAHannumAge was associated with an 85% 
increase in the risk of death from cerebrovascular dis-
ease. Among non-cardiovascular causes of death, for 
every 5-year increase in AAHorvathAge, AAHannum-
Age, AAPhenoAge, AAGrimAge and AAGrimAge2, the 
risk of death from respiratory disease increased by 37%, 
76%, 74%, 137% and 132%, respectively. For every 5-year 
increase in AAHannumAge, AAPhenoAge, AAGrim-
Age and AAGrimAge2, the risk of death from renal 
disease increased by 59%, 99%, 85% and 94%, respec-
tively; for every 5-year increase in AAHannumAge and 
AAGrimAge, the risk of death from cancer increased by 
23% and 31%, respectively. Additionally, AAPhenoAge, 
AAGrimAge and AAGrimAge2 were also associated with 
increased hazard ratios for death from all other residual 
causes.

Fig. 2 Scatterplots and linear regression lines of biological age according to chronological age. A AAHorvathAge, B AAHannumAge, C 
AAPhenoAge, D AAGrimAge, and E AAGrimAge2
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Sensitivity analyses
Sensitivity analyses showed that the results remained 
stable when individuals with less than 2  years of 
follow-up were excluded (Fig. S2). A weakening pattern 

of association between DNAmAges and mortality 
was observed in individuals younger than 65 years, 
but not in those older than 65 years (Figs. S3-S4). The 
association between DNAmAges and mortality tended 

Fig. 3 Cox proportional hazards regression analyses for the association between EAA and all-cause and cause-specific mortality. A AAHorvathAge, 
B AAHannumAge, C AAPhenoAge, D AAGrimAge, and E AAGrimAge2. Adjusted for age, sex, race, marital status, education level, PIR, BMI, smoking 
status, alcohol status, physical activity, diabetes, renal disease, ASCVD, CHF, COPD, cancer, total cholesterol, albumin and eGFR. ∗P value for trend. 
Effect sizes for per 5-year and per SD increase in EAA were also shown separately. EAA epigenetic age acceleration, PIR poverty income ratio, BMI 
body mass index, ASCVD atherosclerotic cardiovascular disease, CHF chronic heart failure, COPD chronic obstructive pulmonary disease, eGFR 
estimated glomerular filtration rate
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to be stronger in never smokers, while it was attenuated 
in former smokers and even lost statistical significance 
in current smokers (Figs. S5-S6). The weakening pattern 
of association was also observed when analyzing men 
and women separately (Figs.  S7-S9). In addition, the 
results remained stable when individuals with severe 
comorbidities, including ASCVD, cancer, CHF and 
chronic kidney disease, were excluded (Figure S10).

Discussion
This study investigated the association of different 
DNAmAges measures with all-cause mortality in 
community-dwelling patients aged ≥ 50 years in the USA. 
In this cohort study of 1966 subjects from the NHANES 
study, we found that those with higher EAA in the elderly 
population had an increased risk of mortality, as both 
continuous and categorical variables, by multivariate 
Cox regression and RCS analysis, which is generally 
consistent with previous findings. More importantly, we 
found that AAGrimAge and AAGrimAge2 outperformed 
AAHorvathAge, AAHannumAge and AAPhenoAge 
in predicting the risk of death. In our study, GrimAge 
and GrimAge2 were positively associated with all-
cause, cardiovascular and non-cardiovascular death, 
among which AAGrimAge2 had a stronger statistical 
correlation. Specifically, every 5-year increase in 
AAGrimAge2 was associated with a 40% increased 
risk of all-cause mortality, a 33% increased risk of 
cardiovascular mortality and a 47% increased risk of non-
cardiovascular mortality. In contrast, this study found 
that the association pattern between AAHorvathAge, 
AAHannumAge and AAPhenoAge and all-cause and 
non-cardiovascular death was J-shaped, suggesting that 
these DNAmAges have the ability to predict mortality 
risk only when they rise above a certain threshold. In 
terms of predicting the risk of cardiovascular mortality, 
AAHannumAge was positively correlated with it, 
but no significant correlation was found between 
AAHorvathAge and AAPhenoAge and the risk of 
cardiovascular death. This is partly different from the 
results of previous studies, which may due to the small 
sample size and population heterogeneity that make 
these results inconsistent. Therefore, more participants 

from different regions and ethnicities are needed to 
verify our findings.

The predictive properties of EAA for cancer, diabetes 
and metabolic syndrome, neurodegenerative diseases 
and even infections and psychiatric disorders have 
also been reported [9, 29–32]. Our analysis provides 
new evidence for EAA in predicting cause-specific 
mortality in the aging population. Further analysis of 
more detailed causes of death subcategories revealed 
that EAA was significantly associated with deaths from 
heart disease, cerebrovascular disease, cancer, respiratory 
disease, kidney disease, etc. This can be explained by 
the pathophysiological mechanisms of aging, where 
aging hallmarks such as genomic instability, telomere 
attrition, epigenetic alterations, loss of proteostasis, 
disabled macroautophagy, deregulated nutrient-sensing, 
mitochondrial dysfunction, cellular senescence, stem cell 
exhaustion, altered intercellular communication, chronic 
inflammation and dysbiosis interact with each other, 
leading to chronic inflammation of cells and tissues, 
thereby promoting pathological damage to organs and 
inducing cancer [4, 33–35]. However, the predictive 
ability of various EAA measurements for different causes 
of death varies. Specifically, in terms of cardiovascular 
disease, both AAGrimAge and AAGrimAge2 may 
significantly predict heart disease mortality, while 
AAHannumAge significantly predicts the risk of death 
due to cerebrovascular disease. For non-cardiovascular 
causes of death, AAGrimAge and AAGrimAge2 may be 
the best predictors of respiratory disease mortality, while 
AAPhenoAge, AAGrimAge and AAGrimAge2 may be 
the best predictors of renal disease mortality. In addition, 
there was a statistically significant association between 
AAHannumAge and AAGrimAge and cancer mortality. 
AAPhenoAge, AAGrimAge and AAGrimAge2 were also 
associated with an increased hazard ratio for death from 
all other residual causes. These differences in predictive 
ability between different causes of death may be 
explained by the different algorithms used to construct 
different DNAmAges. In conclusion, these results might 
help clinicians select DNAmAges assessment tools that 
have the potential to more accurately predict mortality 
risk based on known clinical risk factors.

(See figure on next page.)
Fig. 4 Restricted cubic spline curve for the association between EAA and all-cause and cause-specific mortality. A AAHorvathAge, B 
AAHannumAge, C AAPhenoAge, D AAGrimAge, and E AAGrimAge2. Solid lines represent hazard ratios, and shadows represent corresponding 95% 
confidence intervals. Adjusted for age, sex, race, marital status, education level, PIR, BMI, smoking status, alcohol status, physical activity, diabetes, 
renal disease, ASCVD, CHF, COPD, cancer, total cholesterol, albumin and eGFR. The shaded areas in the background show the distribution of EAA 
measured by DNAmAges in the population. Two-piece Cox proportional hazards models were used to estimate the risk inflection point, and effect 
sizes for per 1-year increase in EAA before and after the inflection point were shown separately
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Fig. 4 (See legend on previous page.)
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To our knowledge, this is the first study to compare 
the association between EAA measured by different 
DNAmAges (HorvathAge, HannumAge, PhenoAge, 
GrimAge and GrimAge2) and all-cause and specific 
mortality in a large cohort, and the current findings may 
have important clinical implications. First, our study 

showed that the five most studied DNAmAges may 
predict all-cause mortality well, especially AAGrimAge 
and AAGrimAge2. Therefore, the detection of BA in the 
general population has the potential to identify high-risk 
individuals as early as possible and initiate therapeutic 
interventions, which is particularly important for global 

Fig. 5 Stratified analyses of the associations between EAA and mortality. A AAHorvathAge, B AAHannumAge, C AAPhenoAge, D AAGrimAge, and E 
AAGrimAge2. Adjusted for age, sex, race, marital status, education level, PIR, BMI, smoking status, alcohol status, physical activity, diabetes, renal 
disease, ASCVD, CHF, COPD, cancer, total cholesterol, albumin and eGFR, except the subgroup factors themselves
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Fig. 6 Cox proportional hazards regression analyses for the association between EAA and cause-specific mortality subcategories. Adjusted for age, 
sex, race, marital status, education level, PIR, BMI, smoking status, alcohol status, physical activity, diabetes, renal disease, ASCVD, CHF, COPD, cancer, 
total cholesterol, albumin and eGFR
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healthy aging practice. Second, EAA plays an important 
role in predicting mortality risk, and the specific cause 
of mortality risk of the general population should be 
stratified by selecting DNAmAges that may more 
accurately assess the corresponding cause of mortality 
risk, so as to facilitate personalized monitoring and 
management. Finally, given the dynamic and changeable 
nature of epigenetics, monitoring the dynamic changes 
of EAA provides a promising approach for treating 
age-related decline and diseases. Therefore, these 
DNAmAges are worthy of promotion and application in 
clinical practice.

The strengths and limitations of this study include the 
following. First, this study included multiple biological 
aging indicators, and the blood samples for detecting 
these indicators were all tested using standardized 
protocols within the same period, which greatly 
reduced potential bias. Second, we used a large national 
database and a prospective cohort study with a long 
follow-up period, long-term follow-up with a low loss 
rate and sufficient endpoint events to help evaluate the 
relationship between different DNAmAges and all-cause, 
cardiovascular and non-cardiovascular mortality in the 
general population. However, our study is not without 
limitations. First, due to the limitations of a cross-
sectional study, DNAmAges data were only detected 
at baseline, and the dynamic changes in EAA during 
follow-up were not detected to evaluate the trajectory 
of biological aging, nor could its causal relationship with 
different causes of death be determined. Second, our 
study population was the general population of the USA 
aged 50 years or older, and our conclusions are limited 
in their generalizability to other populations. Future 
studies should expand the sample size and include groups 
of different regions, races and age groups to verify the 
differences in the prediction of mortality risk of different 
DNAmAges. Despite these limitations, our results are 
still clinically important because we have demonstrated 
the association of different DNAmAges with all-cause 
mortality and specific mortality risks.

Conclusions
This study compared the mortality prediction effect of 
EAA measured by different DNAmAges (HorvathAge, 
HannumAge, PhenoAge, GrimAge and GrimAge2) 
in NHANES participants. The results showed that 
AAGrimAge and AAGrimAge2 were positively correlated 
with all-cause mortality and cause-specific mortality in 
the general population. They are reliable screening tools 
for predicting mortality risk and identifying high-risk 
individuals, and are of great significance for early risk 
stratification and formulation of intervention strategies 
for the elderly population.
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