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Abstract 

Background To identify nongenetic factors influences on DNA methylation (DNAm) variations associated with blood 
Alanine Aminotransferase (ALT) concentration, this study conducted an epigenome-wide association study (EWAS) 
on Chinese monozygotic twins.

Methods A total of 61 pairs of Chinese monozygotic twins involved in this study. Whole blood samples were ana-
lyzed for DNAm profiling using the Reduced Representation Bisulfite Sequencing (RRBS) technique. We examined 
the relationship between DNAm levels at each CpG site and serum ALT using a linear mixed-effects model. Enrich-
ment analysis and causal inference analysis was conducted, and differentially methylated regions (DMRs) were further 
identified. Candidate CpGs were validated in a community sample. Genome-wide significance were calculated 
by Bonferroni correction (p < 2.14 ×  10–7).

Results We identified 85 CpGs reaching genome-wide significance (p < 2.14 ×  10–7), located in 16 genes includ-
ing FLT4, ADARB2, MRPS31P2, and RELB. Causal inference suggested that DNAm at 61 out of 85 significant CpGs 
within 14 genes influenced ALT level. 52 DMRs and 1765 pathways such as low voltage-gated calcium channel activ-
ity and focal adhesion were identified having influences on ALT levels. Further validation using community popula-
tion found four CpGs mapped to FLT4 and three to RELB showing hypomethylation and hypermethylation in cases 
with abnormal ALT (ALT > 40 U/L), respectively.

Conclusion This study identified several differentially methylated CpG sites associated with serum ALT in the Chinese 
population, particularly within FLT4 and RELB. These findings provide new insights into the epigenetic modifications 
underlying liver function.
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Background
Alanine aminotransferase (ALT) is a critical enzyme that 
is predominantly located in the liver, and its elevated lev-
els are a frequent indicator of liver damage [1, 2]. In addi-
tion to indicating liver damage, elevated ALT levels also 
function as a predictive marker for a variety of ailments 
and all-cause mortality [3–5]. Consequently, it is impera-
tive to comprehend the factors that influence the serum 
ALT level in order to promote human health.

As a complex trait, serum ALT concentration 
may be influenced by a combination of genetic and 
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environmental factors. The extent of genetic contribu-
tions to ALT variability has been widely studied, revealing 
significant correlations between genetic factors and ALT 
levels. Previous studies found that ALT concentrations 
exhibit high heritability although in different races, rang-
ing from 22 to 65% [6–11]. Moreover, the genetic path-
ways underlying variations in ALT levels have also begun 
to be uncovered by genome-wide association studies, or 
genome-wide association studies (GWASs). Investiga-
tions in European whites, Indian Asians [12], Mexican 
Americans [13], and the Japanese population [14] have 
pinpointed various loci and genes, including PNPLA3 
and SAMM50, associated with ALT levels. Nonetheless, 
the previously identified genetic variants account for only 
a part of the genetic basis of ALT.

Recent years have provided compelling evidence of the 
crucial role that epigenetic mechanisms play in alter-
ing gene expression and increasing disease risk. Several 
epigenome-wide association studies (EWASs) have been 
carried out to investigate the relationship between com-
plicated traits such as blood pressure [15], blood lipids 
[16], body mass index (BMI) and waist circumference 
[17], type 2 diabetes [18, 19], cardiovascular disease [20] 
and genomic DNA methylation (DNAm) variations. 
However, while some studies have explored the correla-
tion between DNAm and ALT [21], studies specifically 
focused on East Asian populations are particularly lim-
ited. This gap is particularly important because previous 
studies have demonstrated differences in DNA methyla-
tion across ethnicities/races, suggesting that ethnicity/
race may be an influential factor in epigenetic regulation 
[22–24]. Moreover, the causal relationship—whether 
DNAm directly affects serum ALT levels—remains 
unclear. Therefore, further EWAS and causal inference 
analyses are essential.

Both genetic and non-genetic factors can contribute to 
epigenetic modifications [25]. However, previous EWASs 
primarily utilized samples from unrelated individuals, 
which often overlooked confounding effects arising from 
diverse genetic backgrounds. Fortunately, this limita-
tion can be addressed using monozygotic twin models, 
as those twins share identical genetic information. This 
design effectively mitigates biases associated with indi-
vidual genetic variations, thereby providing a clearer 
understanding of the relationship between DNAm 

caused by external factors (such as diet, smoking, and 
alcohol consumption) and disease risk [26, 27].

In this study, we leveraged an ALT-discordant monozy-
gotic twin design, where co-twins within each pair exhib-
ited different serum ALT levels, to conduct an EWAS 
exploring the correlation between DNAm at specific CpG 
sites and ALT levels. This discordant twin approach is 
particularly advantageous, as it controls for shared genet-
ics and many early environmental influences, allowing for 
more precise identification of epigenetic variations asso-
ciated with ALT. Furthermore, we explored the potential 
causal relationship between DNAm and ALT levels. To 
validate our findings, the identified candidate CpGs were 
subsequently tested in a community-based population 
sample.

Materials and methods
Participants
Participants were recruited through the Qingdao Twin 
Registry [28], with recruitment details previously docu-
mented [29]. Exclusions comprised individuals with hep-
atitis, pregnant or breastfeeding women, and those who 
were unconscious or unwilling to participate. A discord-
ant trait monozygotic twin design was employed, select-
ing pairs with a difference in serum ALT levels of ≥ 1 U/L. 
Methylation analysis was conducted on 61 pairs of 
monozygotic twins (122 individuals) with discordant 
ALT levels, where the absolute median difference in 
serum ALT levels within pairs was 7.00 U/L (interquartile 
range [IQR]: 3.00–11.00). The median age of the partici-
pants was 52 years (IQR: 46–57), and 49.2% (n = 60) were 
women. These demographic characteristics of the partici-
pants are summarized in Table 1.

The study was approved by the Regional Ethics Com-
mittee of the Institutional Review Board of the Qingdao 
Center for Disease Control and Prevention, adhering to 
the ethical principles of the Declaration of Helsinki. All 
participants provided written informed consent prior to 
the study.

Data collection, health examination and zygosity 
determination
A health examination and a questionnaire were com-
pleted by each pair of cotwins. For the blood sample col-
lection, each participant provided 10 millilitres of venous 
blood following an overnight 10–12  h fast. Serum and 

Table 1 Demographic and health information of monozygotic twins

IQR: interquartile ranges 

n ALT(U/L) Age (years) Gender woman (n, %) BMI (kg/  m2,IQR) Alcohol consumption (100 g/
day, IQR)

Hypertension (n, %) Diabetes (n, %)

122 20 (12,26) 52 (46,57) 60(49.2%) 25 (22.40,27.48) 0 (0,2) 67(54.92%) 12(9.84%)
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plasma were separated from blood cells and stored at 
− 80  °C for 30  min. A Hitachi 7600 semiautomatic ana-
lyzer from Japan was used to measure the concentrations 
of serum ALT and blood glucose [15, 16, 30].

Covariates and personal information
The covariates in the current study are age, gender, alco-
hol consumption, body mass index, hypertension status, 
and diabetes status, as determined by previous research. 
A summary of these covariates is provided in Table 1.

Questionnaires were distributed at the local Qingdao 
CDC service center or at community hospitals/clinics 
to gather personal information, including age, sex, and 
alcohol consumption (as measured by the question "Cur-
rently, what is your average daily alcohol consumption?"). 
The formula weight (kg)/height (m)^2 was employed to 
determine BMI from the measured height and weight 
data. Hypertension was defined as a measured systolic 
blood pressure exceeding 140  mmHg, a diastolic blood 
pressure exceeding 90 mmHg, or self-reported hyperten-
sion. Self-report or fasting blood glucose levels exceeding 
7 mmol/L were used to ascertain diabetes status.

Reduced representation bisulfite sequencing (RRBS) 
experiment
Total DNA was isolated from the whole blood sample 
in the RRBS experiment. In brief, genomic DNA was 
digested using a restriction enzyme to generating short 
fragments with CpG-rich regions. Subsequently, bisulfite 
conversion was performed to analyze DNA methylation 
patterns. Raw methylation data spanning 551,447 CpGs 
per participant’s genome was subsequently obtained by 
constructing and sequencing cDNA libraries. Bismark 
[31] was employed to align the methylation data to the 
human GRCh37 reference genome, and BiSeq [32] was 
employed to normalize the data, with coverage limited to 
the 90th percentile. The quality control process excluded 
CpGs with a mean methylation β-value < 0.01 or > 0.99 or 
more than 10 missing observations, resulting in 233,720 
CpGs that were relevant to ALT for further analysis. 
Methylation β-value was log2-transformed into M-value 
for statistical analysis. Given that DNA was sourced from 
whole blood, accounting for cell type heterogeneity was 
crucial to avoid potential biases [33]. To mitigate this, we 
employed the ReFACTor method, utilizing the top five 
components to adjust for cell type composition effects on 
DNAm [34].

Epigenome‑wide association analysis (EWAS)
Through the utilization of the lmer function in the 
R-package lmerTest, the linear mixed-effects model was 

implemented to assess the correlation between DNAm 
M-values (log2-transformed methylation β-values) at 
each CpG site and ALT levels. In this model, M-values 
were included as fixed-effect independent variables, 
while twin pair IDs were incorporated as a random 
effect to account for the paired structure of the twin 
data. This model adjusted for covariates including 
age, gender, alcohol consumption, BMI, hypertension 
status, diabetes status, and cell type composition. To 
account for the paired structure of twin data, a random 
effect was included to identify twin pairs within the lin-
ear mixing model. Bonferroni correction was applied 
to adjust for multiple testing of 233,720 CpGs, setting 
a genome-wide significance threshold at p < 2.14 ×  10–7 
(Bonferroni correction p value < 0.05) [35]. The R pack-
age biomaRt was used to annotate CpGs with p < 0.05 to 
the nearest gene [36, 37].

Power estimation for EWAS
Given the lack of a standardized sample size formula 
for discordant monozygotic twin designs, we estimated 
statistical power through simulation-based approaches, 
which evaluated the statistical power of EWAS using 
a disease-discordant twin design [26]. The study dem-
onstrated that both higher phenotypic heritability (h2) 
and a stronger correlation between DNA methylation 
and environmental factors  (R2M,E) lead to a smaller 
required sample size to achieve adequate power, assum-
ing other factors remain constant.

To adopt a conservative approach, we selected 
 R2M,E = 0.1, as a lower DNA methylation–environment 
correlation results in a larger estimated sample size. 
For h2, while a lower value would be more conserva-
tive, we set h2 = 0.6, which is slightly lower than the 
previously reported ALT heritability (h2 = 0.65) in the 
Chinese population [11]. This choice ensured that our 
power estimation remained biologically plausible while 
accounting for potential variability.

Under an extreme case where the intra-pair correla-
tion due to shared genetics or environment ρε = 0.1, 
the simulation results indicated that a sample size of 
63 pairs would be sufficient to achieve 80% power. 
This suggests that a sample size of approximately 60 
twin pairs is adequate for reaching the desired statis-
tical power in disease-discordant twin EWAS studies. 
Therefore, we estimated that our study, which included 
61 twin pairs, will achieve approximately 80% statistical 
power.

Causal inference analysis
To assess the potential causal relationship between 
serum ALT levels and CpGs identified at the 
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epigenome-wide significance level (p < 2.14 × 10⁻⁷), 
we applied the Inference about Causation through 
Examination of Familial Confounding (ICE FAL-
CON) method. ICE FALCON is a regression-based 
approach specifically designed for causal inference in 
family-based studies, particularly in twin studies, as it 
accounts for both genetic and shared environmental 
confounders [38, 39].

Based on this method, we fitted three regression 
models to the twin-pair data:

Model 1: The outcome variable (serum ALT level) of 
each twin was regressed on their own predictor vari-
able (CpG methylation) to estimate the unconditional 
regression coefficient “βself”, which captures both the 
causal effect and familial confounding.

Model 2: The outcome variable of each twin was 
regressed on their co-twin’s predictor variable to esti-
mate “βco-twin”, which reflects the influence of familial 
confounding alone.

Model 3: The outcome variable was regressed on 
both the twin’s own predictor and their co-twin’s pre-
dictor to obtain the conditional regression coefficients 
“β’self”  and “β’co-twin”  Unlike “βself”  and “βco-twin”,  these 
coefficients indicate the change in outcome associated 
with a change in the predictor while keeping the other 
predictor constant, allowing a more refined causal 
interpretation. The regression models for the ICE FAL-
CON method are presented in Fig. 1.

The criteria for causal inference were as follows:
If the absolute difference between |βco-twin—β’co-twin| 

is similar to |βself—β’self|, then the observed associa-
tion is likely due to familial confounding rather than 
causality.

Conversely, a causal effect is indicated if the absolute 
value of the ratio: |βco-twin—β’co-twin|/ |βself—β’self| (abso-
lute value of ratio) is greater than 1.5, suggesting that 
within-pair differences in CpG methylation correspond 
to within-pair differences in ALT levels, independent of 
familial confounding.

To estimate the parameters, we employed a general-
ized estimating equations model, which accounts for 
the correlation structure within twin pairs. The ration-
ale behind these statistical criteria has been supported 
by previous methodological studies [38, 40].

Region‑based analysis
The comb-p was implemented to identify differentially 
methylated regions (DMRs) that are linked to ALT [41]. A 

region was considered significantly enriched with DMRs 
if the Stouffer-Liptak-Kechris (slk) corrected p-value was 
less than 0.05.

Ontology enrichments analysis
The ontology enrichment of identified CpGs (p < 0.05) 
was evaluated using the online instrument Genomic 
Regions Enrichment of Annotations instrument 
(GREAT) [42].

Annotations were conducted using the human GRCh37 
genome reference and the default "basal plus extension" 
association rule. An ontology was considered statistically 
significant if its Bonferroni correction p value was less 
than 0.05.

Validation using independent sample
We selected genes for quantitative methylation analysis 
to validate our EWAS results based on following criteria: 
1) results of top signals in EWAS associated with our tar-
get trait; 2) the gene was involved in important biological 
function and pathways that may potentially influence; 3) 
the gene was where the CpGs having causal relationship 
with ALT in the causal inference analysis were located; 4) 
the primers of the gene could be successfully designed.

Blood collection and preservation procedures were 
consistent with previous methods. Validation of DNAm 
for the top CpGs was performed using matrix-assisted 
laser desorption ionization time-of-flight (MALDI-TOF) 
mass spectrometry. Mass spectra were obtained using a 
MassARRAY Compact MALDI-TOF system (Sequenom; 
BioMiao Biological Technology, Beijing, China), and 
methylation ratios were generated with the EpiTYPER 
software (Sequenom, San Diego, CA). Multiple primer 
schemes were designed to cover regions containing the 
top CpGs, with final primer optimization carried out 
using Epidesigner software. The EpiTYPER™ software 
system facilitated quantitative DNAm analysis, and the 
mean methylation status of closely adjacent CpGs was 
computed.

To validate our EWAS results, we conducted an inde-
pendent replication analysis in a community-based 
cohort from Qingdao, China. Participants were included 
if they were aged ≥ 40 years and had available data on ALT 
levels, BMI, alcohol intake, diabetes status, and blood 
pressure. Individuals with active hepatitis and pregnant 
or breastfeeding women, were excluded from this cohort. 
The validation cohort consisted of 54 individuals with 
abnormal ALT levels (ALT > 40  U/L) and 162 matched 
controls, selected using propensity score matching (PSM) 
to minimize potential confounding effects. Cases and 
controls were matched at a 1:3 ratio based on age and 
sex, using nearest-neighbor PSM with a caliper value of Fig. 1 Manhattan plot of the effects of EWASs on ALT levels
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0.1. This method ensures that the matched individuals 
are comparable in baseline characteristics, improving the 
validity of our findings. The effect of DNAm to ALT was 
evaluated using the conditional logistic regression model, 
which was adjusted for match group, BMI, alcohol intake, 
diabetes, and hypertension status.

Results
Epigenome‑wide association analysis
Sixty-one pairs of monozygotic twins were included in 
the methylation study; their median serum ALT value 
was 20  U/L (IQR: 12–26). The demographic and clini-
cal characteristics of the participants are summarized in 
Table 1. The median age was 52 years (IQR: 46–57), and 
49.2% (n = 60) were women. The median ALT level was 
20 U/L (IQR: 12–26), and the median BMI was 25.0 kg/
m2 (IQR: 22.40–27.48). Among the participants, 54.92% 
(n = 67) had hypertension, and 9.84% (n = 12) had diabe-
tes. The median alcohol consumption was 0 g/day (IQR: 
0–2).

Figure 2 displays the Manhattan plot for the EWAS on 
ALT levels. We identified 85 ALT-related CpG sites with 
p values less than 2.14 ×  10–7. Table 2 displays the top 35 
significant CpG sites, while all 85 significant CpG sites 
are detailed in Table S1.

The 11 strongest associations (β = − 0.089 to − 0.088, 
p = 1.26 ×  10–10 to 4.79 ×  10–10) were found for the 
CpG sites located on chromosome 5 (180,046,224 to 
180,046,305 bp) within the FLT4 gene, all of which pre-
sented significant statistical associations (p < 2.14 ×  10–7).

These top CpG sites were located within 16 genes, 
including FLT4, ADARB2, MRPS31P2, RELB, 
DACT2, MATK, ZBTB7B, ENSG00000259268, 

ENSG00000240093, VAX1, OPLAH, PCNT, PLCB3, 
WDR20, LY6E, and PAX7. These genes were also found 
near 10 additional genes (refer to Tables 2 and S1).

Causal inference analysis
Table  3 displays the causal inference analysis results for 
the top 35 CpGs. The comprehensive results for the top 
CpGs (n = 85, p < 2.14 ×  10–7) are detailed in Table  S2. 
The findings strongly support a causal effect of DNAm 
on ALT levels for 61 CpGs located within 14 genes: 
FLT4, MRPS31P2, ADARB2, RELB, DACT2, MATK, 
ZBTB7B, ENSG00000259268, VAX1, OPLAH, PCNT, 
PLCB3, LY6E, PAX7, and nearly 7 other genes. Notably, 
among these 61 significant CpGs, only one CpG located 
in PCNT (chr21, position: 47,808,888), which is located 
in the PCNT gene, had a causal effect on the serum ALT 
level in DNAm.

Region‑based analysis
Fifty-two DMRs were found to be associated with serum 
ALT levels. Table 4 provides information on a portion of 
significant DMRs, while the details for all 52 DMRs are 
included in Table S3.

As shown in Fig.  3, some DMRs presented varying 
correlations with the serum ALT level. For example, 
Fig. 3A shows a DMR located in the FLT4 gene, which 
is negatively correlated with serum ALT. Conversely, 
Fig. 3E depicts a DMR located in the RELB gene, which 
is positively correlated with the serum ALT level.

Among the 52 identified DMRs, 24 exhibited posi-
tive correlations with serum ALT levels, another 21 
showed negative correlations, and the association 
trend for the remaining 7 DMRs remained uncertain. 

Fig. 2 Differentially Methylated Regions (DMRs) associated with serum ALT Levels



Page 6 of 14Li et al. Clinical Epigenetics           (2025) 17:65 

The complete set of 52 DMRs is displayed in the sup-
plementary materials (Fig. S1).

Ontology enrichment analysis
A total of 16,109 genomic cis-regulatory regions associ-
ated with various genes were identified from the EWAS 
results of serum ALT according to GRCh37/hg19 (Fig. 
S2a). Figs. S2b and c display the absolute distance and 
orientation of the genomic cis-regulatory areas with 
respect to the transcription start site (TSS).

Multiple pathways linked to serum ALT levels were 
found in the pathway and biological process enrichment 
studies, including low voltage-gated calcium channel 
activity and focal adhesion. Partial results are presented 
in Table  5, while all results with Bonferroni correction 
p < 0.05 are detailed in Table S4.

Results of validation
We selected candidate genes in accordance with the cri-
teria provided in the ‘Methods’ section. Ultimately, we 
quantified 9 CpGs in the FLT4 gene (originally 11, but 2 

Table 2 Top 35 aSignificant CpG Sites Associated with ALT Levels

a The 35 CpGs represent the top significant sites based on the linear mixed-effects model results, with the full list available in the Table S1. bGene function information 
from the National Center for Biotechnology Information (NCBI) https:// www. ncbi. nlm. nih. gov/

Chromosome Position p value β Gene Gene  functionb

chr5 180,046,227 1.26E-10 − 0.089 FLT4 A tyrosine kinase receptor involved in lymphangi-
ogenesis and endothelial maintenancechr5 180,046,224 1.26E-10 − 0.089 FLT4

chr5 180,046,235 1.38E-10 − 0.089 FLT4

chr5 180,046,240 1.47E-10 − 0.089 FLT4

chr5 180,046,244 1.53E-10 − 0.089 FLT4

chr5 180,046,249 1.60E-10 − 0.089 FLT4

chr5 180,046,258 1.91E-10 − 0.088 FLT4

chr5 180,046,270 2.22E-10 − 0.088 FLT4

chr5 180,046,275 2.30E-10 − 0.088 FLT4

chr5 180,046,290 2.85E-10 − 0.089 FLT4

chr5 180,046,305 4.79E-10 − 0.089 FLT4

chr10 1,517,277 6.88E-10 − 0.084 ADARB2 An RNA-editing enzyme involved in RNA regulation

chr10 1,517,258 1.35E-09 − 0.086 ADARB2

chr13 20,139,121 2.16E-09 − 0.070 MRPS31P2 –

chr10 1,517,242 2.56E-09 − 0.087 ADARB2 An RNA-editing enzyme involved in RNA regulation

chr10 1,517,237 3.26E-09 − 0.088 ADARB2

chr10 1,517,307 3.98E-09 − 0.082 ADARB2

chr19 45,532,179 4.21E-09 0.066 RELB A transcription factor involved in immune regula-
tion and lymphocyte differentiation

chr10 1,517,310 8.07E-09 − 0.081 ADARB2

chr10 1,517,225 8.79E-09 − 0.089 ADARB2

chr10 1,517,219 9.89E-09 − 0.089 ADARB2

chr4 49,163,502 1.14E-08 0.063 –

chr15 72,490,479 1.24E-08 0.067 –

chr4 49,163,509 1.27E-08 0.063 –

chr19 45,532,170 1.28E-08 0.064 RELB

chr4 49,163,519 1.45E-08 0.063 –

chr19 45,532,208 1.47E-08 0.080 RELB

chr19 45,532,201 1.52E-08 0.079 RELB

chr19 45,532,214 1.52E-08 0.079 RELB

chr19 45,532,196 1.77E-08 0.079 RELB

chr1 2,928,715 1.87E-08 0.066 –

chr19 45,532,235 2.39E-08 0.080 RELB

chr10 1,517,313 2.39E-08 − 0.081 ADARB2

chr1 2,928,748 2.69E-08 0.066 –

chr1 2,928,733 3.11E-08 0.066 –

https://www.ncbi.nlm.nih.gov/
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were not detected) and 7 CpGs in the RELB gene via the 
Sequenom MassARRAY platform. The validation cohort 
consisted of 216 individuals, comprising 54 cases and 
162 controls. The baseline characteristics of the valida-
tion cohort are summarized as follows: In the ALT nor-
mal group, 102 participants were women, accounting for 
63% of the group, with a median age of 49.5 years (IQR: 
46–55). Similarly, in the ALT abnormal group, 34 partici-
pants were women (63%), with a median age of 49.5 years 
(IQR: 47–57).

There is statistically significant evidence (p < 0.05) of a 
substantial negative connection between serum ALT and 
four of the top CpGs in the FLT4 gene. Furthermore, a 
significant positive relationship (p < 0.05) between the 
serum ALT level and three of the top CpGs in the RELB 
gene was confirmed. The results are presented in Supple-
mentary Table S5.

Discussion
To our knowledge, no previous methylation analyses of 
serum ALT have focused on the Chinese or East Asian 
population, highlighting a significant gap in the litera-
ture. This study investigated the epigenetic factors influ-
encing serum ALT levels in the Chinese population by 
conducting an EWAS on a cohort of monozygotic twins. 
Our analysis revealed that 85 CpG sites were significantly 
associated with serum ALT levels. Additionally, we iden-
tified multiple genes, DMRs, and pathways that may elu-
cidate the mechanisms underlying changes in the serum 
ALT level. For further validation, several candidate CpGs 
located in the FLT4 and RELB genes were quantified 
and confirmed. The insights garnered from our analy-
ses offer significant contributions to understanding the 
epigenetic regulation of liver function, and provides a 
theoretical basis for future investigations into whether 

the methylation status of these genes could serve as early 
diagnostic biomarkers for liver dysfunction.

While previous studies have focused on European 
cohorts [21], genetic background and environmental 
exposures differ across populations, potentially influenc-
ing DNA methylation patterns. Our study contributes 
novel insights into the epigenetic regulation of ALT lev-
els in an East Asian population, an area that has been 
underexplored. Future studies in diverse populations are 
warranted to determine whether the identified epigenetic 
associations with ALT are generalizable across ethnic 
groups through EWAS or DNA methylation score [43], 
which can further expand epigenetic studies to other 
populations to gain a more comprehensive understand-
ing of liver function regulation.

Among the CpG sites that ranked at the top of Table 2, 
the top 11 were located within the FLT4 gene. The FLT4 
gene encodes VEGFR3, known for its involvement in 
the vascular endothelial growth factor (VEGF) and 
vascular endothelial growth factor receptor (VEGFR) 
signaling pathways [44], which is crucial for lymphangi-
ogenesis, vascular remodeling, and hepatic microcircula-
tion homeostasis [45], emerged as a critical locus in our 
study. Several animal studies have suggested mechanisms 
through which FLT4 may influence ALT levels. One study 
suggested that VEGF might stimulate sinusoidal endothe-
lial cells to produce cytokines such as hepatocyte growth 
factor. This process increases the expression of Bcl-xL 
in hepatocytes, thereby reducing apoptosis. Researchers 
have therefore postulated that via intercellular contacts, 
VEGF exerts a strong antiapoptotic effect on hepatocytes 
[46].

In addition, FLT4 is involved in the focal adhesion 
pathway, a crucial regulator of cell adhesion, migra-
tion, and tissue remodeling. Our GREAT binomial test 

Table 4 Summary of Partial Significant Differentially Methylated Regions (DMRs) Associated with Serum ALT Levels

Chromosome Start (bp) End (bp) Length Stouffer–Liptak–Kechris 
(slk) corrected p‑value

Gene Nearest gene

chr5 180,045,726 180,046,393 28 1.53E-11 FLT4

chr10 1,517,152 1,517,314 10 1.73E-10 ADARB2

chr4 49,163,427 49,163,595 11 5.50E-09 – ENSG00000222437

chr1 23,280,002 23,280,168 21 8.93E-08 LACTBL1

chr19 45,531,921 45,532,286 15 1.72E-07 RELB

chr16 32,289,939 32,290,060 14 1.79E-07 – ENSG00000259822

chr10 43,428,611 43,429,087 20 7.57E-07 – ENSG00000229630

chr2 130,975,639 130,975,784 12 2.66E-06 – RHOQP3

chr2 186,794,503 186,794,653 12 7.97E-05 – RPL21P32

chr19 14,584,404 14,584,550 18 1.59E-04 PTGER1

chr1 2,491,130 2,491,396 13 1.73E-04 TNFRSF14

chr17 46,645,892 46,646,045 10 3.50E-04 HOXB3, HOXB-AS3
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results (Table 5) indicated significant enrichment of this 
pathway, suggesting its potential link to serum ALT lev-
els. The FLT4 gene participates in the generation of focal 
adhesion kinase (FAK), which has been implicated in 
hepatic injury response and fibrosis progression [47, 48]. 
Moreover, studies have shown that VEGF interacts with 
nuclear factor erythroid 2-related factor 2 (Nrf2), induc-
ing the Nrf2 signaling pathway to counteract oxidative 
stress. Through a positive feedback loop, VEGF further 
enhances Nrf2 activation and promotes its own expres-
sion, thereby protecting cells from oxidative damage [49]. 
This mechanism may contribute to hepatocyte protec-
tion against oxidative stress-induced injury, ultimately 
influencing serum ALT levels. These findings suggest that 
FLT4 may contribute to liver function regulation through 
VEGF, FAK signaling, and Nrf2. However, further studies 
are needed to clarify whether FLT4 methylation directly 
modulates these pathways in hepatocytes or sinusoidal 
endothelial cells.

Among the top CpGs, seven sites are located on the 
RELB gene. RELB belongs to the family of mammalian 
nuclear factor kappa-B (NF-κB) [50]. Many biologi-
cal processes, including the immunological response, 
inflammatory responses, cell proliferation and survival, 
and development, are influenced by NF-κB [51, 52]. Con-
sequently, hepatocyte damage and subsequent changes 
in serum ALT levels may be caused by the NF-κB sign-
aling pathway, which may be involved in the biological 
processes of liver inflammation. Additionally, studies 
have shown that the use of NF-κB inhibitors can sup-
press RELB expression, thereby alleviating liver injury 
[53]. Moreover, RELB may interact with the aryl hydro-
carbon receptor (AhR) to regulate the transcription of 
chemokines, thereby contributing to the inflammatory 
response [54]. These findings further suggest that RELB 
might influence serum ALT levels by impacting liver 
damage. To better illustrate the potential mechanisms 
through which FLT4 and RELB might influence ALT 

Fig. 3 Potential mechanisms by which FLT4 and RELB genes influence serum ALT levels
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levels, Fig. 4 provides a visual summary of the key path-
ways involved.

Some CpG sites may exhibit co-methylation patterns 
within specific genomic regions. To account for such 
regional effects, we performed DMR analysis, which 
confirmed significant associations between DNAm 
and serum ALT levels across different genomic regions 
where the top CpGs are located, including the sites in 
FLT4 and RELB. While DMRs help capture biologically 
relevant patterns, the dynamic nature of DNA methyla-
tion differs from the stable linkage disequilibrium (LD) 
structures seen in GWAS. Additionally, the absence of 

a standardized LD-equivalent reference for methylation 
makes fine mapping in EWAS particularly challeng-
ing. Future studies incorporating large-scale methyla-
tion datasets and co-methylation network analyses may 
provide further insights into these regional methylation 
effects.

The results of causal inference consistently supported 
the directional effect of the majority of top CpGs on 
ALT levels. Furthermore, validation via the Seque-
nom MassARRAY platform in an independent cohort 
confirmed our initial findings, with significant corre-
lations observed for CpGs in FLT4 and RELB, which 

Table 5 Partial pathways and biological processes enriched for serum ALT levels

Ontology database Term name p value Bonferroni 
correction p 
value

Fold enrichment Observed 
region 
hits

Region set 
coverage

GO molecular function low voltage-gated calcium channel activity 2.54E-99 9.37E-96 29.084 93 0.006

GO molecular function DNA binding 3.27E-87 1.21E-83 1.304 4601 0.283

GO biological process gene expression 9.30E-81 9.71E-77 1.242 5726 0.352

GO biological process RNA metabolic process 2.71E-80 2.83E-76 1.251 5462 0.336

GO molecular function thromboxane A2 receptor activity 1.19E-78 4.38E-75 149.335 44 0.003

GO biological process thromboxane A2 signaling pathway 1.19E-78 1.24E-74 149.335 44 0.003

GO biological process RNA biosynthetic process 2.64E-78 2.75E-74 1.279 4715 0.290

GO biological process cortisol biosynthetic process 2.59E-77 2.70E-73 38.055 65 0.004

GO biological process aldosterone biosynthetic process 2.59E-77 2.70E-73 38.055 65 0.004

GO biological process transcription, DNA-dependent 5.02E-77 5.24E-73 1.279 4645 0.286

GO biological process mitral valve formation 4.44E-75 4.64E-71 36.577 64 0.004

GO biological process nucleic acid metabolic process 5.21E-72 5.44E-68 1.215 6053 0.372

Human phenotype Genu recurvatum 9.34E-72 5.74E-68 7.240 143 0.009

Human phenotype Difficulty climbing stairs 3.01E-71 1.85E-67 6.863 148 0.009

GO biological process organic cyclic compound biosynthetic process 8.91E-70 9.30E-66 1.239 5222 0.321

GO molecular function nucleic acid binding 1.89E-68 6.96E-65 1.222 5642 0.347

GO biological process nucleobase-containing compound biosynthetic 
process

2.07E-67 2.16E-63 1.245 4951 0.305

GO biological process macromolecule metabolic process 1.89E-66 1.98E-62 1.127 9649 0.594

GO biological process macromolecule biosynthetic process 8.57E-66 8.95E-62 1.211 5815 0.358

GO biological process cellular metabolic process 2.75E-65 2.87E-61 1.108 10,806 0.665

GO biological process cellular nitrogen compound biosynthetic process 1.09E-64 1.14E-60 1.234 5076 0.312

Human phenotype Urethral stricture 4.80E-64 2.95E-60 74.524 43 0.003

Human phenotype Skin fragility with non-scarring blistering 4.80E-64 2.95E-60 74.524 43 0.003

Human phenotype Onychogryposis of toenails 4.80E-64 2.95E-60 74.524 43 0.003

GO biological process aromatic compound biosynthetic process 6.21E-64 6.48E-60 1.234 5036 0.310

GO biological process regulation of macromolecule biosynthetic process 2.36E-63 2.47E-59 1.191 6357 0.391

GO biological process metabolic process 2.65E-63 2.77E-59 1.095 11,579 0.713

GO molecular function sequence-specific DNA binding 2.97E-62 1.10E-58 1.429 2171 0.134

GO biological process regulation of RNA biosynthetic process 3.17E-62 3.31E-58 1.200 5942 0.366

GO biological process cellular macromolecule biosynthetic process 4.78E-62 4.99E-58 1.208 5678 0.349

BioCyc pathway alanine biosynthesis II 1.43E-10 4.76E-08 14.046 12 0.001

BioCyc pathway alanine degradation 1.43E-10 4.76E-08 14.046 12 0.001

MSigDB pathway Focal adhesion 3.44E-05 4.55E-02 1.210 456 0.028
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was consistent with the direction of the initial analysis. 
These additional layers of validation affirm the robust-
ness and reliability of our conclusions.

The solitary CpG site (chr21, position: 47,808,888) in 
the PCNT gene showing a reverse causal effect, where 
ALT levels influence DNAm, is intriguing and warrants 
further investigation.

Using gene set enrichment analysis, significant gene 
sets associated with reduced voltage-gated calcium 
channel activity were found in genes linked to CpGs 
with low p values. Although direct research is limited, 
several studies have shown that calcium channel block-
ers can protect the liver. For example, a randomized 
controlled experiment showed that acute alcoholic 
hepatitis might be treated with amlodipine, a calcium 
channel antagonist [55]. Furthermore, R.J. Nauta et al. 
reported that in a model of ischemia‒reperfusion-
induced liver injury, significant mitochondrial calcium 
loading and an increase in calcium and oxygen-derived 
free radicals during ischemia might cause mitochon-
drial damage in a model of ischemia‒reperfusion-
induced liver injury [56]. These studies suggest that 
calcium channel activation may be associated with liver 
injury, subsequently affecting serum ALT levels.

This study has several noteworthy advantages. First, 
MZ twins share identical genetic material, which signifi-
cantly reduces genetic confounding when studying epi-
genetic modifications [27]. This unique feature allows for 
a more accurate assessment of environmental influences 
on DNA methylation and serum ALT levels without the 
interference of genetic variability. Second, by performing 
causal inference analysis and validating the findings in an 
independent cohort, we were able to confirm that DNAm 
changes at most of the top CpGs have a directional effect 
on ALT levels. This combination of causal inference and 
validation strengthens the evidence for the potential 

causative role of these epigenetic modifications. Another 
key strength of our study is the incorporation of an inde-
pendent community-based validation cohort, which 
enhances the robustness and potential generalizability 
of our findings. By applying PSM, we minimized con-
founding effects related to age and sex, strengthening the 
validity of our DNAm-ALT associations. These strengths 
collectively highlight the robustness and applicability of 
our findings for understanding the epigenetic regulation 
of liver function.

Although our study offers valuable insights, it has several 
limitations. The recruitment and identification of eligible 
twins presented considerable challenges, resulting in a 
relatively restricted sample size. While the trait-discordant 
twin design enhances statistical power compared to 
conventional cross-sectional or case‒control studies, the 
relatively small sample size may still limit the ability to detect 
subtle DNAm-ALT associations. Additionally, despite our 
previous research demonstrating a high heritability of serum 
ALT levels (65%) [11] and an estimated statistical power 
of approximately 80% with over 60 twin pairs [26], a larger 
sample size could further strengthen the robustness of our 
findings. Moreover, as our study population was limited to 
Chinese individuals, the generalizability of our results to 
other ethnic groups remains uncertain. Future studies with 
larger and more diverse populations are needed to validate 
these associations and explore the underlying biological 
mechanisms. In addition, while our study focused on ALT 
as a key marker of liver function, future research could 
benefit from a broader exploration of liver enzymes such 
as aspartate aminotransferase (AST) and gamma-glutamyl 
transferase (GGT) to further elucidate the epigenetic 
mechanisms underlying liver health. As part of our ongoing 
research, we plan to expand our investigation to include 
these biomarkers, which may provide additional insights into 
the epigenetic regulation of liver function. Finally, although 
we performed validation in a community-based population, 
further validation in larger independent cohorts or through 
functional experiments would strengthen our findings.

Conclusion
In conclusion, our work establishes a basis for further 
investigation into the epigenetic processes underlying 
liver health and highlights the critical role that DNAm 
plays in controlling serum ALT levels. The identification 
of specific CpGs in FLT4 and RELB associated with 
ALT levels offers promising avenues for developing 
epigenetic biomarkers and therapeutic interventions 
for liver injury. The robustness of our findings, 
supported by DMR analysis, causal inference, and 
external validation, underscores the potential of DNAm 
as a key player in the regulation of liver function.

Fig. 4 Schematic illustration of the potential mechanisms by which 
FLT4 and RELB influence serum ALT levels
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