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Abstract 

Background Epigenetic algorithms of aging, health, and cognition, based on DNA-methylation (DNAm) patterns, 
are prominent tools for measuring biological age and have been linked to age-related diseases, cognitive decline, 
and mortality. While most of these methylation profile scores (MPSs) are developed in blood tissue, there is growing 
interest in using less invasive tissues like saliva. The aim of the current study is to probe the cross-tissue intraclass 
correlation coefficients (ICCs) of MPSs developed in blood applied to saliva DNAm from the same people. While our 
primary focus is on MPSs that were previously found to be robustly correlated with social determinants of health, 
including second- and third-generation clocks and MPSs of physiology and cognition, we also report ICC values 
for first-generation clocks to enable comparison across metrics. We pooled three publicly available datasets that had 
both saliva and blood DNAm from the same individuals (total n = 107, aged 5–74 years), corrected MPSs for cell 
composition within each tissue, and computed the cross-tissue ICCs.

Results We found that after correcting for cell composition, saliva–blood cross-tissue ICCs were moderate 
for second- and third-generation indices of aging and MPSs of physiology and cognition. Specifically, PCGrimAge 
had the highest ICC (0.76), followed by PCPhenoAge (0.72), a measure of cognitive performance (Epigenetic-g, 
0.69), DunedinPACE (0.68), PCGrimAge Acceleration (0.67), PCPhenoAge Acceleration (0.66), an MPS of hs-CRP (0.58), 
and BMI (0.54). These ICCs appear lower than previous reports on within-tissue ICCs (saliva ICCs range from 0.67 
to 0.85, blood ICCs range from 0.73 to 0.93). Cross-tissue ICCs values for first-generation biological age acceleration 
measures were poor, ranging from 0.19 to 0.25.

Conclusions Our findings suggest that applying second- and third-generation MPSs of biological age acceleration 
and related phenotypes developed in blood to saliva DNAm results in moderate cross-tissue similarity and the precise 
cross-tissue correspondence differs by measure. While the degree of cross-tissue similarity of several MPSs may suffice 
for some research settings, it may not be suitable in clinical or commercial applications. Collection of both blood 
and saliva DNAm samples is necessary to validate existing algorithms and to customize MPSs in saliva DNAm.
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Introduction
Epigenetic algorithms of aging, health, and cognition, 
based on DNA-methylation (DNAm) patterns, are 
prominent tools for measuring biological age and have 
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been linked to age-related diseases, cognitive decline, 
and mortality [1–4]. While most of these methylation 
profile scores (MPSs) are developed using blood tissues—
which is considered the gold standard—there is growing 
interest in using less invasive tissues like saliva, cheek, 
and dried-blood spot DNA, as it is less invasive, can be 
sampled via postal kits, does not require trained medical 
professionals, and can result in higher participation 
rates than blood (saliva 72% vs. blood 31%) [5]. DNAm 
patterns, which encode cell identity, vary by tissue types. 
Blood samples consist of 100% immune cells, saliva 
samples consist of approximately ~ 65% immune cells 
and ~ 35% epithelial cells [6]. Because distinct cell types 
in blood and saliva exhibit different methylation patterns, 
estimating these cell-type proportions and adjusting 
for their variation is crucial for epigenetic clock and 
epigenome-wide association studies [7–9]. This approach 
helps to distinguish between effects caused by differences 
in cell-type composition and DNAm differences 
occurring in specific cell types.

Probing the similarity of MPSs between saliva and 
blood DNAm is particularly relevant for pediatric studies, 
because they are substantially more likely to collect DNA 
from saliva than blood. A recent meta-analysis on MPSs 
of biological aging finds that the proportion of studies 
using saliva compared to blood is 50% and 37.5% in pedi-
atric samples, respectively, and 3.4% and 94.1% in adult 
studies (Rezaki, Willems et al., in progress). In line with 
the notion that adult health and psychological function-
ing has roots in childhood, these studies have found that 
children living in under resourced social contexts tend to 
have saliva MPSs associated with accelerated biological 
age, a faster pace of aging, higher chronic inflammation, 
higher body mass index, and lower cognitive perfor-
mance in adults [10, 11] (for review see [12]). Moreover, 
racially marginalized children tend to have accelerated 
longitudinal increases in biological aging from 9 to 15 
years [13]. Nascent studies have also explored the clinical 
relevance of MPSs in pediatric cohorts, such as helping 
to identify children at increased risk for early-onset obe-
sity and morbidity [14]. However, uncertainty about the 
potential loss of signal in saliva MPSs remains an impor-
tant methodological concern [12].

Here, we pooled three publicly available datasets 
that had both saliva and blood DNAm from the same 
individuals (total n = 107, age range 5–74 years), 
corrected MPSs for cell composition within each tissue, 
and computed the meta-analyzed cross-tissue intraclass 
correlation coefficients (ICCs). Our focus is on MPSs 
developed in adults that were previously reported to 
be sensitive to social determinants of health in both 
adults and children and correlated with developmental 
phenotypes ascertained in child DNAm samples [13, 

15–17]. This includes MPSs of accelerated biological 
age (PC-based and non-PC-based PhenoAge [18] and 
GrimAge Acceleration [19]), the pace of biological aging 
(DunedinPACE [20]), an indicator of chronic systemic 
inflammation (DNAm-CRP) [21], body mass index 
(DNAm-BMI [22]), and general cognitive performance 
(Epigenetic-g) [23]. To enable comparison across studies, 
we also report results for first-generation epigenetic 
clocks developed from analyses of age differences in 
DNAm (Horvath, Horvath Skin and Blood Acceleration, 
and Hannum [24–26]). We further examine whether the 
choice of cell composition estimation method affects 
cross-tissue similarity and focus on two of the most 
widely used statistical methods (reference-free versus 
reference-based [27, 28]). We compare our cross-tissue 
results to previous studies reporting ICCs of MPSs from 
duplicate samples collected from the same people within 
the same tissue [2, 16, 17, 29, 30], because such duplicate 
samples were not available in our datasets.

Methods
Participants
We pooled three publicly available datasets in the Gene 
Expression Omnibus (GEO) database under their 
respective accession numbers. Dataset1 (GSE111165) 
includes 21 subjects (7 female, 33%) with medically 
intractable epilepsy from the University of Iowa Hospitals 
and Clinics, USA, aged from 5 to 61 years (mean 30.95 
years, SD = 16.39) [31]. In this dataset, blood samples 
were typically taken at the end of surgery in the operating 
room, and saliva samples were collected two days after 
the operation. Dataset2 (GSE130153) comprises samples 
from 22 healthy participants from Japan (7 female, 32%) 
aged 23 to 40 years (mean = 30.68 years, SD = 5.45) [32]. 
Dataset3 (GSE61653) includes samples from 64 healthy 
African-American adults (53 female, 82%) aged 20 to 
74 years (mean = 41.35 years, SD = 11.53) [33, 34]. For 
the second and third datasets, saliva and blood samples 
appear to have been collected simultaneously.

DNA and DNA‑methylation extraction
The three studies differed in their DNA extraction 
and DNA-methylation profiling. For DNA extraction, 
GSE111165 used the MasterPure™ DNA Extraction Kit, 
while GSE130153 applied the Oragene DNA Collection 
Kit and the prepIT-C2D Genomic DNA MiniPrep Kit. 
GSE61653 used the Puregene Genomic DNA Kit. For 
DNA-methylation extraction, GSE130153 utilized the 
Infinium HumanMethylation450k and GSE61653 and 
GSE111165 the EPIC BeadChip™ Kit.

DNA-methylation data were preprocessed using a 
variety of software tools that varied between datasets, 
including Minfi [35] and RnBeads [36], CpGassoc [37], 
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and Illumina’s BeadStudio. Quality control measures 
were applied to all datasets, including removal of sam-
ples and probes based on criteria such as call rates, aver-
age intensity values, percentage of missing data, and the 
presence of known SNPs or cross-hybridization DNAm 
sites. Studies GSE111165 and GSE61653 used the beta 
mixture quantile dilation (BMIQ) method [38] for sample 
normalization. Further details on these methods can be 
found in the respective publications [31, 32, 34].

Methylation profile scores
We computed MPSs in each cohort by applying pub-
lished DNAm algorithms described in Table 1.

Cell composition estimation
We estimated blood and saliva cell composition directly 
based on methylation data in two ways: First, we esti-
mated five cell types using the “RefFreeEWAS” [39] R 
package (i.e., reference-free cell composition [28]). Sec-
ond, we used sample-specific reference values to estimate 
the proportion of leukocyte and epithelial cells in both 
blood and saliva (i.e., reference-based cell composition). 
The “Reinius” [40] dataset was used as the reference for 
blood samples and the “Saliva” [6] dataset was used as 
the reference for saliva samples. These estimations were 
performed using the R package “ewastools” [41], which 
is based on the Houseman algorithm [27]. We used both 
methods to improve reliability, as reference-based meth-
ods can be limited by the representativeness of the refer-
ence, whereas reference-free methods offer flexibility in 
different contexts.

Statistical analysis
Our statistical analyses proceeded in six steps. First, 
MPSs listed in Table 1 were computed separately in saliva 
and blood samples within each cohort. Second, MPSs 
were residualized for technical factors (array, batch) and 
cell composition separately in saliva and blood samples 
within each cohort. We distinguish between reference-
free and reference-based cell composition correction, 
which are among the most common approaches for 
estimating cell-type composition from DNAm data [42] 
(see “Cell composition estimation”). Third, we computed 
cross-tissue similarity within each cohort by calculating 
ICCs between saliva and blood MPSs for each measure. 
Fourth, we performed a random-effects meta-analysis 
using the DerSimonian and Laird (DL) method to test 
whether ICC values differed significantly between data-
sets [43]. The ICCs from the three datasets served as the 
random effects in this analysis, which was performed 
using the "metafor" package in R and applied to all MPSs. 
Fifth, we assessed the effect of cell composition estima-
tion methods on cross-tissue ICCs in a mixed-effects 

meta-regression, where the ICC is regressed on the cell 
composition estimation method (reference-based versus 
reference-free). The cell estimation method is treated as 
a fixed effect and cohort as a random effect variable. We 
report the meta-analyzed results using the reference-
free cell composition correction unless noted otherwise. 
Sixth, we probed whether ICCs differed by chronological 
age in a linear regression where saliva MPS was regressed 
on blood MPS, age, and an interaction term of blood 
MPSs and age. We consider ICC values below 0.50 as 
poor, between 0.50 and 0.75 as moderate, between 0.75 
and 0.90 as good, and above 0.90 as excellent, following 
the guideline that offers a comprehensive framework for 
selecting and reporting ICCs in reliability research [44].

Results
We evaluated the cross-tissue similarity of cell 
composition-corrected MPSs between saliva and blood 
samples collected from the same individuals. We found 
that cross-tissue ICCs were moderate for second-
generation indices of biological age acceleration, third-
generation pace of aging, and MPSs of physiology and 
cognition (see Fig.  1 and Supplementary Tables  1, 2, 
and 3) [44]. As illustrated in Fig.  1, PCGrimAge had 
the highest ICC (0.76, 95% CI = 0.67–0.84), followed 
by PCPhenoAge (0.72, CI = 0.61–0.81), a measure of 
cognitive performance (Epigenetic-g, 0.69, CI = 0.50–
0.89), DunedinPACE (0.68, CI = 0.57–0.79), PCGrimAge 
Acceleration (0.67, CI = 0.46–0.87), PCPhenoAge 
Acceleration (0.66, CI = 0.48–0.84), an indicator of 
chronic inflammation (DNAm-CRP, 0.58, CI = 0.41–
0.73), and body mass index (DNAm-BMI, 0.54, CI 
= 0.40–0.67). The ICC for the CpG-based PhenoAge 
Acceleration (0.50, CI = 0.26–0.73) was slightly lower, 
but still moderate, compared to PC-based PhenoAge 
Acceleration (0.66, CI = 0.48–0.84).

Next, we compared cross-tissue ICCs to previous 
reports on within-tissue ICCs collected from the same 
people. Cross-tissue ICCs appear lower than previous 
within-tissue ICC reports, although comparison is hin-
dered by a lack of 95% CI in previous studies (saliva ICCs 
range from 0.67 for DNAm-BMI to 0.85 for PCGrimAge, 
blood ICCs range from 0.73 for DunedinPACE to 0.93 
for PCGrimAge) [2, 16, 17, 29, 30]. We note that within-
tissue ICCs of PCGrimAge Acceleration, PCPhenoAge 
Acceleration, and within-blood ICCs of DNAm-BMI and 
Epigenetic-g were not available in previous studies and 
are therefore not depicted in Fig. 1.

We further probed whether ICC values significantly 
varied between datasets. Our meta-analysis 
suggested that the ICC values for Epigenetic-g, 
Horvath Acceleration, and CpG-based PhenoAge 
varied significantly between studies as evidenced by 
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Table 1 Description of methylation profile scores

Measure Description

First-generation clocks

Horvath acceleration The Horvath clock was developed as a multi-tissue predictor of biological age using 8,000 samples from 82 
DNA-methylation datasets across 51 healthy tissues and cell types. The clock is based on 353 CpG sites and is cal-
culated using a penalized regression model to define DNA-methylation age [24]. Horvath was residualized 
for chronological age to compute Horvath Acceleration

Horvath skin and blood acceleration The Horvath Skin and Blood clock is a DNA-methylation age estimator developed from 391 CpG sites, designed 
to measure biological age in human fibroblasts, keratinocytes, endothelial cells, and various tissue types includ-
ing skin and blood. This clock shows strong age correlations across multiple cells types and predicts lifespan 
and correlates with age-related health conditions [25]. Horvath Skin and Blood clock was residualized for chrono-
logical age to compute Horvath Skin and Blood Acceleration

Hannum acceleration The Hannum clock is designed to measure human aging rates using over 450,000 CpG markers from whole 
blood samples of 656 individuals aged 19 to 101. This model captures the rate at which an individual’s methyl-
ome ages, taking into account factors such as gender and genetic variants. It reveals differences in aging rates 
that contribute to epigenetic drift and are reflected in the transcriptome, with applications across multiple tis-
sues [26]. Hannum was residualized for chronological age to compute Hannum Acceleration

Second-generation clocks

GrimAge acceleration GrimAge, an estimator of mortality risk, was originally developed using age, sex, and DNA-methylation smoking 
history in the Framingham Heart Study Offspring cohort aged 53–73 years [19]. To increase reliability, PCGrim-
Age was developed using DNA-methylation principal components (PCs) derived to capture major variations 
in the DNA-methylation data, and then calculated from these PCs using elastic-net regression as described 
in Higgins-Chen et al.(2022) [50, 56]. PCGrimAge was residualized for chronological age and sex to compute 
PCGrimAge Acceleration. The PC code and necessary resources are available on the GitHub repository: https:// 
github. com/ Morga nLevi neLab/ PC- Clocks/

PhenoAge acceleration PhenoAge, derived from physiological indicators and chronological age in the InCHIANTI Study (21–100 years) 
[18], was subsequently modeled using DNA methylation. To improve reliability, PhenoAge was calculated using 
DNA-methylation principal components (PCs) which were derived to capture major variations in the DNA-meth-
ylation data. PCPhenoAge was then calculated from these PCs using elastic-net regression, as detailed in Hig-
gins-Chen et al. (2022) [50, 56]. PhenoAge Acceleration was calculated by residualizing PC-based and CpG-based 
PhenoAge for chronological age. The PC code and necessary resources are available on the GitHub repository: 
https:// github. com/ Morga nLevi neLab/ PC- Clocks/

Third-generation clocks

DunedinPACE DunedinPACE-pace of aging was developed to quantify change over 19 years of follow-up in 19 system-integrity 
biomarkers, including hs-CRP and BMI (repeated at ages 26, 32, 38, and 45 years) in the Dunedin Study birth 
cohort [20]. DunedinPACE increments represent years of physiological change per chronological year. A value 
of 1 reflects the average rate of aging in the cohort between the ages of 26 and 45. A value of 1.01 indicates 
an aging rate that is 1% faster than the average [50]. DunedinPACE was calculated using a published algorithm, 
available at https:// github. com/ danbe lsky/ Duned inPACE/ [57]

Cross-sectional physiology

DNAm-CRP DNAm-CRP was computed using the summary results of an epigenome-wide association study of serum 
hs-C-reactive protein (CRP), a sensitive marker of low-grade inflammation, in adults from multiple cohorts 
with mean ages 60–87 years controlling for age, sex, and BMI [21]. DNAm-CRP scores were derived from the sum 
of the products of the weight and the corresponding beta estimate for each participant across the 218 CpG 
sites found to be significantly associated with CRP in the EWAS. Higher score indicates a DNAm profile that more 
closely resembles the DNAm profile of adults with higher hs-CRP

DNAm-BMI DNAm-BMI was computed using the summary results of an epigenome-wide association study of body mass 
index in adults from multiple cohorts at high risk of obesity aged 51 to 70 controlling for age and sex [22]. 
DNAm-BMI scores were derived from the sum of the products of the weight and the corresponding beta 
estimate for each participant across the 278 CpG sites found to be significantly associated with BMI in the EWAS. 
A higher score is indicative of a DNAm profile that is more similar to the DNAm profile of adults from multiple 
cohorts and ancestries with a higher BMI

Cognitive performance

Epigenetic-g Epigenetic-g was developed to quantify general cognitive functioning in adults from the Generation Scot-
land Study ages 18 to 93 controlling for age, sex, and BMI. The algorithm sums the products of the weight 
and the corresponding beta estimate for each participant across more than 750 000 CpG sites [23]. It is available 
at https:// gitlab. com/ danie lmcca rtney/ ewas_ of_ cogni tive_ funct ion. In line with this algorithm, methylation val-
ues at each CpG site were normalized to have a mean of 0 and a SD of 1 before computing the profile score [17]. 
A higher score indicates a DNAm profile that is more closely similar to the DNAm profile of adults in the Genera-
tion Scotland Study who scored higher on tests of general cognitive function, including logical memory, digit 
symbol test score, verbal fluency, and vocabulary

https://github.com/MorganLevineLab/PC-Clocks/
https://github.com/MorganLevineLab/PC-Clocks/
https://github.com/MorganLevineLab/PC-Clocks/
https://github.com/danbelsky/DunedinPACE/
https://gitlab.com/danielmccartney/ewas_of_cognitive_function


Page 5 of 9Zarandooz and Raffington  Clinical Epigenetics           (2025) 17:61  

heterogeneity test results (p = 0.04 for Epigenetic-g, 
p = 0.04 for Horvath Acceleration, and p = 0.006 for 
PhenoAge, Supplementary Tables  1 and 3). Figure  2 
provides scatterplots depicting the association between 
MPSs in blood and saliva colored by dataset. See 
Supplementary Tables 1, 2 and 3 for detailed cross-tissue 
correlations within and across studies.

Next, we tested whether the statistical method used 
to estimate cell composition affected the cross-tissue 
ICCs. We observed that ICC point estimates were gen-
erally higher with reference-free correction compared 
to reference-based correction across all MPSs. However, 
these differences were not statistically significant, except 
for PCGrimAge and PCPhenoAge, which showed sig-
nificantly higher ICC point estimates with reference-free 
estimation (see Supplementary Table 4).

To facilitate comparison across studies of DNAm 
measures of aging, we report ICC values for first-gener-
ation clocks. Cross-tissue ICC values for first-generation 
biological age acceleration measures were poor, ranging 

from 0.19 to 0.25 (see Fig. 1 and Supplementary Table 3). 
When first-generation clocks were not adjusted for 
chronological age, the ICC values were moderate, ranging 
from 0.69 to 0.74. Since Horvath clocks are calibrated on 
chronological age using DNAm from various tissue types, 
the ICC values for first-generation clocks were excellent 
when they were not corrected for cell-type variation or 
chronological age to derive biological age estimates (e.g., 
ICC = 0.97 for the Horvath skin and blood clock). Sup-
plementary Table 3 provides ICCs and descriptive statis-
tics for MPSs uncorrected for cell composition.

Lastly, we probed whether ICCs differed by 
chronological age in a linear regression where saliva MPS 
was regressed on blood MPS, age, and an interaction 
term of blood MPS and age. We found that the 
association of blood and saliva MPSs did not differ by age 
for any of measures with the exception of PCGrimAge, 
Horvath, and Horvath Skin and Blood Acceleration. We 
probed the nature of this interaction by splitting the 
sample into older and younger individuals based on the 

Fig. 1 Cross-tissue and within-tissue similarity of DNA-methylation measures of aging, cross-sectional physiology, and cognition. This figure 
depicts intraclass correlation coefficients (ICCs) and 95% confidence intervals of DNA-methylation profile scores developed in blood. The 
green bars depict the cross-tissue ICCs meta-analyzed across three cohorts (n = 107) in the present study. The orange point estimates depict 
the ICCs reported in previous studies with duplicate samples of blood collected in the same people, where available. The purple point estimates 
depict the ICCs reported in previous studies with duplicate samples of saliva collected in the same people, where available. The blood ICC 
values for PCGrimAge, PCPhenoAge, and DunedinPACE are from Reed et al. (2022) [2], and the ICC value for DNAm-CRP (a marker of chronic 
inflammation) is from Schmunk et al., 2023 [29]. The saliva ICCs are all from child and adolescent samples, specifically ICCs for PCGrimAge, 
PCPhenoAge, DunedinPACE, and Epigenetic-g are from deSteiguer et al. (2023) [30], the ICC value for DNAm-CRP is from Raffington et al. (2022) [17], 
and DNAm-BMI (body mass index) is from Raffington et al. (2023) [16]. “Accel.” denotes first- and second-generation methylation measures of aging 
residualized for chronological age to derive biological age acceleration metrics
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overall mean age of 37.12 years. The cross-tissue ICC for 
GrimAge Acceleration was higher in older participants 
(ICC = 0.82, CI = 0.68–0.94) compared to younger 
participants (ICC = 0.49, CI = 0.03–0.94). In contrast, 
older participants exhibited lower ICCs for Horvath 
Acceleration (ICC = 0.26, CI = − 0.15–0.68) and Horvath 
Skin and Blood Acceleration (ICC = − 0.08, CI = − 0.73–
0.56) than younger participants, who had ICCs of 0.42 
(CI = 0.08–0.76) for Horvath Acceleration and 0.50 (CI 
= 0.24–0.75) for Horvath Skin and Blood Acceleration.

Discussion
We meta-analyzed data from three publicly available 
studies that collected DNAm from both blood and saliva 
tissues from the same persons to examine the cross-
tissue similarity of MPSs of biological aging and cross-
sectional physiology and cognition. We focused on MPSs 
that have previously been found to be sensitive to social 

determinants of health in both adults and children [45], 
and note that to-date pediatric studies are substantially 
more likely to have saliva DNAm (Rezaki, Willems 
et al., in progress). To enable comparison across metrics 
and studies, we also report results for first-generation 
epigenetic clocks developed from analyses of age 
differences in DNAm.

Our findings suggest that applying DNAm algorithms, 
originally developed in blood samples, to saliva DNAm 
and adjusting for cell composition leads to moderate 
cross-tissue correspondence for second- and third-gen-
eration indices of aging, physiology, and cognition, with 
ICCs ranging from 0.50 to 0.76. In contrast, the cross-
tissue ICC values for first-generation biological age accel-
eration measures were poor, ranging from 0.19 to 0.25. 
In line with recent recommendations to adjust for cell-
type variation [8, 46], our comparison with ICC values 
uncorrected for cell-type composition suggests that such 

Fig. 2 Scatterplot depicting the association between DNA-methylation measures of aging, cross-sectional physiology, and cognition computed 
in blood and saliva from the same individuals. Each plot shows the methylation profile score (MPS) in blood on the x-axis and the corresponding 
MPS in saliva on the y-axis. From top left to bottom right, MPSs are Horvath Acceleration, Horvath Skin and Blood Acceleration, Hannum 
Acceleration, PCGrimAge Acceleration, PCPhenoAge Acceleration, DunedinPACE, DNAm-CRP (a marker of chronic inflammation), DNAm-BMI 
(body mass index), and Epigenetic-g (cognitive performance). The color denotes the three different cohorts: dataset1 (GSE111165, n = 21), dataset2 
(GSE130153, n = 22), and dataset3 (GSE61653, n = 64). Each plot includes a regression line with shaded confidence intervals, indicating the strength 
and reliability of the associations. “Accel.” denotes first- and second-generation methylation measures of aging residualized for chronological age 
to derive biological age acceleration metrics
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corrections enhance the reliability of second- and third-
generation clocks, and MPSs of physiological measures 
and cognition. Notably, ICC values for first-generation 
clocks were excellent when not corrected for cell-type 
variation or chronological age, as expected due to their 
calibration on chronological age using DNAm from vari-
ous tissue types. For most MPSs, the method of cell-type 
correction, whether reference-based or reference-free, 
did not significantly impact ICCs.

These cross-tissue ICCs for second- and third-gener-
ation indices of aging, physiology, and cognition appear 
to be lower than previously reported ICCs collected 
from the same tissue in the same individuals. For exam-
ple, saliva ICCs range from 0.67 for DNAm-BMI to 0.85 
for PCGrimAge, while blood ICCs range from 0.73 for 
DunedinPACE to 0.93 for PCGrimAge [2, 16, 17, 29, 30]. 
However, even these within-tissue ICCs are not all clas-
sified as “excellent.” Therefore, efforts to increase MPS 
reliability are needed. For instance, in the development 
of DunedinPACE, Belsky et al. [20] excluded CpG probes 
with low test–retest reliability and used elastic-net 
regression to improve biomarker reliability of the pace of 
aging.

Given the moderate cross-tissue correspondence, vali-
dating blood-based MPSs in saliva by examining their 
association with corresponding phenotypes is crucial. 
This task is particularly challenging for second- and 
third-generation measures of biological aging, which 
lack a gold-standard metric for validation, especially in 
younger individuals. However, saliva DNAm measures 
of physiology and cognition have been explored for phe-
notypic validation. For instance, saliva DNAm-CRP has 
shown modest correspondence to serum CRP levels in 
children and young adults (r = 0.27) [47]. Yet, studies in 
adults suggest that DNAm-CRP shows greater longitudi-
nal stability, potentially offering more stable reflections of 
cumulative inflammatory burden than traditional serum 
approaches. This stability could explain the stronger 
associations with brain outcomes compared to serum 
CRP [48, 49]. Further, saliva DNAm-BMI has demon-
strated bidirectional longitudinal associations with phe-
notypic BMI across adolescence as well as sensitivity to 
monozygotic discordance in BMI of 8- to 18-year-old 
twins [16]. Additionally, saliva Epigenetic-g has been 
shown to correlate significantly with children’s cognitive 
performance and academic achievement [17]. Thus, these 
MPSs of physiology and cognition have shown biomarker 
sensitivity on other metrics using saliva DNAm. Never-
theless, we caution that the moderate cross-tissue ICCs 
indicate that some signal is likely to be lost.

In contrast to the moderate cross-tissue similarity 
between saliva and blood, the correlation between buccal 
and blood tissue for second- and third-generation clocks, 

as well as Epigenetic-g, has been reported to be low to 
moderate (r = 0.25 to r = 0.48) [50]. This difference may 
be due to the fact that blood and saliva samples are both 
cell mixtures partially composed of the same immune 
cells (leukocytes) [6]. Although we made statistical 
adjustments for people’s cell composition, DNAm in 
immune cells appears to be particularly sensitive to social 
determinants of health and aging-related inflammation 
across various tissues [51, 52]. Buccal samples, on the 
other hand, primarily consists of epithelial cells (80%), 
rather than leukocytes (20%) [53, 54]. Accordingly, effect 
size estimates of buccal MPSs with social determinants of 
health are approximately 50% lower than those reported 
in previously published analyses of blood MPSs [45, 
50]. In contrast, second- and third-generation saliva 
MPSs of biological aging appear to show similar effect 
size estimates compared to those of blood, even when 
assessed in adolescents [13]. Interestingly, buccal versions 
of second- and third-generation clocks still correlate with 
self-reported diseases and conditions in adults [55]. This 
suggests that some of the health-relevant biological aging 
signals captured by second- and third-generation clocks 
are shared across tissue types, despite low to moderate 
reliability of measures.

This study has several limitations. First, the small sam-
ple size of 107 individuals may limit the accuracy of ICC 
estimation, potentially leading to an over- or under-
estimation of true ICC values. Second, our datasets 
included very few children, making it difficult to extend 
our conclusions to younger populations. Third, one of 
the datasets included individuals with medically intrac-
table epilepsy, a high-risk group that may not be repre-
sentative of the general population, potentially limiting 
the broader applicability of our findings. Additionally, 
the lack of validation studies comparing the associations 
between saliva-derived MPSs and health-related pheno-
types underscore the need for caution in interpreting our 
findings and applying them in future research.

Finally, there is a lack of studies comparing cross-tissue 
similarity between other tissues and collection modes, 
such as dried-blood spots and whole blood. Larger data-
sets with DNAm collected from multiple tissues at the 
same time from the same people, including children, are 
needed.

In conclusion, our findings suggest that applying MPSs 
of second- and third-generation biological aging and 
related phenotypes, developed in blood, to saliva results 
generally in moderate cross-tissue similarity. Our analy-
sis highlights the importance of adjusting for cell com-
position, as this enhances the reliability of these MPSs 
in saliva. While the degree of cross-tissue similarity may 
be adequate for population research settings, it may 
not be suitable in clinical or commercial applications 



Page 8 of 9Zarandooz and Raffington  Clinical Epigenetics           (2025) 17:61 

that require absolute agreement between tissue types 
to ensure accuracy. Keeping these limitations in mind, 
saliva MPSs may prove useful to studying the childhood 
roots of adult health and psychological functioning. This 
is because saliva is more common than venous blood in 
large pediatric population cohorts, which are needed to 
capture social determinants of health. Yet, to continue 
validating existing and new DNAm algorithms in chil-
dren, the collection of both blood and saliva DNAm in 
pediatric samples will be necessary.
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