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Abstract 

Background Severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) causes coronavirus disease 2019 
(COVID‑19), and SARS‑CoV‑2 has been linked to changes in DNA methylation (DNAm) patterns. Studies focused 
on post‑SARS‑CoV‑2 infection and DNAm have been mainly carried out among severe COVID‑19 cases or without dis‑
tinguishing the severity of cases. However, investigations into mild and asymptomatic cases after SARS‑CoV‑2 infec‑
tion are limited. In this study, we analyzed DNAm patterns of mild and asymptomatic cases seven months after SARS‑
CoV‑2 infection in a household setting by conducting epigenome‑wide association studies (EWAS).

Results We identified DNAm changes at 42 CpG sites associated with anti‑SARS‑CoV‑2 antibody levels. We addition‑
ally report EWAS between COVID‑19 cases and controls, with the case status being confirmed by either an anti‑
body test or a PCR test. The EWAS with an antibody test case definition identified 172 CpG sites to be differentially 
methylated, while the EWAS with a PCR test case definition identified 502 CpG sites. Two common sites, namely 
cg17126990 (annotated to AFAP1L2) and cg25483596 (annotated to PC), were identified to be hypermethylated 
across the three EWAS. Both CpG sites have been reported to be involved in molecular pathways after SARS‑CoV‑2 
infection. While AFAP1L2 has been found to be upregulated after SARS‑CoV‑2 infection, the pyruvate carboxylase (PC) 
activity seems to be affected by SARS‑CoV‑2 infection resulting in changes to the host cell metabolism. Additionally, 
an EWAS to assess persistent health restrictions among PCR‑confirmed cases showed 40 CpG sites to be differentially 
methylated.

Conclusions We detected associations between DNAm in individuals who had asymptomatic and mild SARS‑CoV‑2 
infections as compared to their household controls. These findings contribute to our understanding of the molecular 
consequences of SARS‑CoV‑2 infection observed months after infection.
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Introduction
Coronavirus disease 2019 (COVID-19) has brought huge 
health challenges to the world; as of August 2023, more 
than 760 million cases and 6.9 million deaths have been 
documented worldwide [1]. Infected patients have a vari-
ety of clinical manifestations, from being asymptomatic 
or having mild symptoms, to severe illness including 
acute respiratory failure, septic shock, and multiple organ 
failure [2]. Most people who get sick with COVID-19 will 
recover without hospital treatment; however, the elderly, 
males, and those with pre-existing health conditions 
tend to have severer symptoms [3, 4]. Some people who 
have recovered from the initial COVID-19 experience 
long-lasting symptoms including fatigue, breathlessness, 
and cognitive dysfunction, which is known as post-
COVID-19 condition [5].

Severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2) is the virus that causes COVID-19. Spike 
proteins on the surface of the SARS-CoV-2 mediate the 
host cells entry. The S1 subunit of the spike proteins 
binds to host entry receptor angiotensin-converting 
enzyme 2 (ACE2), and the S2 subunit mediates mem-
brane fusion where spike proteins are cleaved by type 2 
transmembrane serine protease (TMPRSS2) [6]. ACE2 
and TMPRSS2 are widely expressed in lungs, hearts, 
kidneys, and multiple organs which intrigue the specific 
clinical manifestation of COVID-19 [7]. Both innate and 
adaptive immune responses are involved in the inflam-
matory response of the host defense, with increased 
viral loads leading to the activation and proliferation of 
immune cells, the production of proinflammatory and 
anti-inflammatory cytokines, ultimately resulting in vari-
ous destructive events [8, 9].

DNAm is a molecular mechanism involved in the reg-
ulation of gene expression without changing the under-
lying DNA sequence. Methylation most often occurs in 
cytosine-phosphate-guanine (CpG) dinucleotides, where 
a methyl group is transferred to the C-5 position of the 
cytosine ring by DNA methyltransferases. DNAm plays 
a crucial role in normal development; its dysregulation is 
involved in the onset and progression of several human 
diseases. Therefore, DNAm changes are increasingly con-
sidered as diagnostic and prognostic biomarkers in clini-
cal practice, for example, in human cancers [10].

Epigenetic regulation also plays an important part in 
the pathophysiology of COVID-19, as SARS-CoV-2-in-
fected patients were reported to have DNAm alterations 
[11]. SARS-CoV-2 affects DNAm patterns that regulate 
ACE2 gene expression, which in turn is associated with 
the susceptibility to COVID-19 [12]. Studies also found 
that DNAm impacts COVID-19 severity by regulating 
the immune response [13, 14]. Differentially methylated 
regions were identified in blood samples of hospitalized 

individuals one year after recovering from acute illness 
[15]. An epigenome-wide association study (EWAS) con-
ducted in the Norwegian Corona Cohort, which included 
both mild and severe COVID-19 patients, also found 
DNAm changes three months after infection [16].

A complete understanding of persistent DNAm varia-
tion in mild and asymptomatic cases after SARS-CoV-2 
infection is missing. To better understand the molecular 
mechanisms underlying COVID-19, the aim of this study 
was to examine DNAm associations seven months post-
SARS-CoV-2 infection in a household setting.

Methods
Study population
The prospective COVID-19 cohort Munich (KoCo19) 
was launched in 2020 in Munich, Germany. KoCo19-
Shield was a substudy of KoCo19 to investigate SARS-
CoV-2-specific immune responses in convalescent 
individuals more than 3  months after infection. In 
KoCo19-Shield, households with at least one person who 
had a polymerase chain reaction (PCR)-confirmed SARS-
CoV-2 infection were recruited, as described in detail in 
a prior publication [17]. From September 2020 to Janu-
ary 2021, 177 PCR-positive individuals and 145 of their 
household members from 157 households were enrolled, 
either through house visits or at the study center at the 
Division of Infectious Diseases and Tropical Medicine, 
University Hospital, LMU Munich. In January 2021, 85 
members of 36 households from KoCo19 were randomly 
selected as controls, all of them consistently tested nega-
tive for SARS-CoV-2-specific antibodies throughout the 
first year of the COVID-19 pandemic [18, 19]. All par-
ticipants including PCR-confirmed individuals, their 
household members, and controls were asked to provide 
a venous blood sample with additional information about 
the course of the disease and their living situation. Per-
sonal and clinical data from participants were collected 
using the mobile data collection tool OpenDataKit via 
Android smartphones [20].

DNAm analysis
Genomic DNA (750  ng) from 382 individuals was 
bisulfite converted using the EZ-96 DNA Methylation 
Kit (Zymo Research, Orange, CA, USA). Subsequent 
methylation analysis was performed on an Illumina 
(San Diego, CA, USA) iScan platform using the Infin-
ium MethylationEPIC BeadChip v1 according to stand-
ard protocols provided by Illumina. GenomeStudio 
software version 2011.1 with Methylation Module ver-
sion 1.9.0 was used for initial quality control of assay 
performance and for generation of methylation data 
export files. Further quality control and preprocess-
ing of the data were performed in R v4.1.3 [21] with 
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the package minfi v1.40.0 [22] and following primarily 
the CPACOR pipeline [23]. Raw intensities were read 
into R and background corrected. Probes with detec-
tion p-values > 10^{− 16} were set to missing and were 
retained as missing in all subsequent QC steps.

Before normalization, 4 samples were removed, as they 
had failed the sex prediction or the median intensity 
quality control steps or had > 20% missing values on the 
autosomes. A total of 68,017 probes were removed (some 
overlapping multiple categories): cross-reactive probes 
as given in published lists (N = 44,493); probes with 
SNPs with minor allele frequency > 5% at the CG posi-
tion (N = 11,370) or the single base extension (N = 5,597) 
as given by minfi; and 15,667 with > 5% missing val-
ues (autosomes only). CpGs from the EPICv1 no longer 
appearing in the EPICv2 and CpGs from X and Y chro-
mosomes were additionally removed, yielding a total of 
690,738 available for analysis (79.77% of the probes).

Quantile normalization (QN, R package limma v3.50.3 
[24]) was then performed separately on the signal inten-
sities divided into the 6 probe types: type II red, type II 
green, type I green unmethylated, type I green methyl-
ated, type I red unmethylated, type I red methylated [23]. 
For the autosomes, QN was performed for all samples 
together. The transformed intensities were then used to 
generate methylation beta values, a measure from 0 to 1 
indicating the percentage of methylated bead-type inten-
sity to the total locus intensity.

Serology assessment
SARS-CoV-2 antibody reactivity was measured in plasma 
derived from ethylenediaminetetraacetic acid (EDTA)-
coated blood tubes using Elecsys® Anti-SARS-CoV-2 
(Roche, Mannheim, Germany). A threshold of 0.422 
(instead of 1.0) for anti-SARS-CoV-2 antibody was used 
to determine seropositive in the participants [25].

In total, 346 participants with both clinical data and 
DNAm data were included in the analysis (Fig.  1). The 
study subjects were then categorized into five groups: 
136 individuals who were PCR positive and seropositive 
(group1), 18 people who were PCR positive and seroneg-
ative (group2), 43 participants who were exposed house-
hold members and seropositive (group3), 70 individuals 
who were exposed members and seronegative (group4), 
and 79 individuals who were seronegative controls 
(group5). The case and non-case classification of anti-
body testing was not completely consistent with that of 
PCR testing, and the exposed household members with 
seropositive results were not confirmed by a PCR test. 
Therefore, in our subsequent analyses, anti-SARS-CoV-2 
antibody levels, COVID-19 status based on antibody test-
ing (group1 + group3 VS group2 + group4 + group5), and 
COVID-19 status based on PCR testing (group1 + group2 
VS group4 + group5) were both analyzed as variables of 
interest.

Fig. 1 Flow diagram of the study population
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Statistical analysis
Data analysis was conducted using R 4.3.1 [21]. An 
epigenome-wide association study approach using 
generalized estimating equation (GEE) models with 
an exchangeable correlation matrix and grouping fac-
tor households was applied to explore the relation 
between COVID-19 phenotypes and DNAm. DNAm 
outliers that were not within the range from 25th 
percentile−3*interquartile range (IQR) to 75th per-
centile + 3*IQR were removed, leading to the removal 
of 0.3% of the data points. The methylation beta-value 
was transformed to M-value as dependent variable, as 
it is more statistically valid and provides less biased 
results [26, 27]. To examine the impact of COVID-19, 
variables/phenotypes indicating anti-SARS-CoV-2 anti-
body levels, COVID-19 status based on antibody test-
ing, and COVID-19 status based on PCR testing were 
included in the model, respectively. Additional vari-
ables included in the models to control for confounding 
were age, sex, CD8 + T-lymphocytes, CD4 + T-lym-
phocytes, natural killer cells, B cells, and monocytes. 
Granulocytes were excluded as a covariate to avoid 
multicollinearity.

To examine the long-term effect of COVID-19, PCR-
confirmed individuals were divided into two groups and 
analyzed using the same model. The classification was 
based on participants’ responses to the question “conse-
quence of illness from COVID-19.” Those who reported 
persistent health restrictions or long-term consequences 
were categorized into the persistent health restriction 
group, while those who reported recovery were catego-
rized into the recovery group.

Sensitivity analysis included additional adjustment for 
smoking. Due to missingness and poor quality of self-
reported smoking status, this variable was obtained by 
the classifier EpiSmokEr, which inferred smoking sta-
tus based on 121 CpGs [28]. Although there were only 
100 overlapping CpGs in our data, the performance of 
the classifier was validated using data from KORA F4, 
which resulted in a sensitivity of 71.1% and a specificity 
of 94.3% to discriminate current and non-current smok-
ers. Another subset of participants was also considered 
in a secondary sensitivity analysis: This subset excluded 
4 PCR-confirmed cases with no blood testing dates and 
their 5 household members, as well as 1 case for whom 
the interval between PCR testing and blood sample col-
lection was only 19 days and one additional member of 
this household.

To identify the biological pathways, differentially meth-
ylated CpG sites of three models were mapped to Entrez 
Gene IDs and tested for Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathways 
by R package missMethyl [29].

All analyses were performed on complete data for 
all variables included in the model. Bacon method was 
used to control inflation by applying the empirical null 
distribution [30]. False discovery rate (FDR) correc-
tion method by Benjamini–Hochberg was applied to 
address multiple testing problems, with a significant set 
of p < 0.05 [31]. Findings were compared with previous 
published EWAS results and databases like the EWAS 
catalog [32]. The publicly accessible database “Genetics 
of DNA Methylation Consortium” (GoDMC) was used to 
extract cis- and trans-methylation quantitative trait loci 
(meQTL) and expression quantitative trait methylation 
(eQTM) [33–35].

Results
Characteristics of the study population
A total of 346 individuals from 171 households were 
considered in the study (Table 1). None of the PCR-con-
firmed COVID-19 cases was hospitalized, and they pre-
sented a mild course of illness or reported asymptomatic. 
The average age of all study participants was 42 years old, 
and the median age ranged from 35 to 42  years across 
groups. Forty-nine percent of study participants were 
females, and the proportion of females ranged from 45% 
to 67% across groups. The median days from PCR testing 
to blood sample collection were 242 days.

Based on SARS-CoV-2 antibody testing, the median 
age of the case group (group 1 + group 3) was 41  years, 
the median body mass index (BMI) was 23.77  kg/m2, 
47% were females, and 12.2% were current smokers; 
the median age of the control group (group 2 + group 
4 + group 5) was 42 years, the median BMI was 23.51 kg/
m2, 50% were females, and 15.6% were current smokers. 
Based on PCR testing, the cases group (group1 + group2) 
had a median age of 41.5  years and a median BMI 
of 24.24  kg/m2, with females making up 47.4% and 
15.6% being current smokers, while the control group 
(group4 + group5) had a median age of 43  years, a 
median BMI of 23.36 kg/m2, with a proportion of female 
48.3% and 15.4% current smoker. The Wilcoxon rank sum 
test for age and BMI and the Chi-square test for sex and 
smoking status all showed that the study population was 
well balanced across case–control groups.

Of the PCR-confirmed cases, 121 (83%) reported 
recovery from the illness, with a balanced ratio of median 
age, BMI, and sex in both groups (Table 2).

DNAm changes associated with anti‑SARS‑CoV‑2 antibody 
levels
The Miami plot illustrates the EWAS results for DNAm 
in relation to anti-SARS-CoV-2 antibody levels (Fig.  2). 
After inflation correction, the inflation factor lambda 
was 1.357 (Supplementary file 1, Figs.  1A and 2A) [30]. 
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Forty-two differentially methylated CpG sites were iden-
tified to be associated with antibody levels at FDR < 0.05 
(Supplementary file 2, Table  S1). Among the significant 
CpG sites, 18 (43%) were hypermethylated. In addition, 
the results were compared with independent top cis- 
and trans- meQTLs and eQTMs. Three out of 42 CpGs 

(cg02942825 annotated to GIPR, cg10118093 annotated 
to PIK3C2B, cg26589785 annotated to ITPKA) were 
found to be cis-meQTLs and cis-eQTMs, suggesting that 
genetic variants might contribute to the regulation of 
local gene expression.

Table 1 Characteristics of participants according to COVID‑19 status groups

Age and BMI were divided into groups and presented medians. All categorical variables were presented as numbers (percentages)

PCR‑positive 
seropositive 
(group 1)

PCR‑positive 
seronegative 
(group 2)

Exposed 
seropositive 
(group 3)

Exposed 
seronegative 
(group 4)

Unexposed 
controls (group 
5)

All study subjects

n 136 18 43 70 79 346

Sex

Female 61 (45%) 12 (67%) 24 (56%) 33 (47%) 39 (49%) 169 (49%)

Male 75 (55%) 6 (33%) 19 (44%) 37 (53%) 40 (51%) 177 (51%)

Age (years)

14—19 1 (0.7%) 0 (0%) 6 (14%) 5 (7.1%) 10 (13%) 22 (6.4%)

20—34 26 (19%) 6 (33%) 14 (33%) 24 (34%) 14 (18%) 84 (24.3%)

35—49 62 (46%) 7 (39%) 10 (23%) 23 (33%) 33 (42%) 135 (39%)

50—64 37 (27%) 3 (17%) 8 (19%) 14 (20%) 15 (19%) 77 (22.3%)

65—79 10 (7.4%) 2 (11%) 5 (12%) 4 (5.7%) 3 (3.8%) 24 (6.9%)

80 + 0 (0%) 0 (0%) 0 (0%) 0 (0%) 4 (5.1%) 4 (1.2%)

Median 43 39.5 35 40 44 41

BMI (kg/m2)

 < 18.5 1 (0.7%) 0 (0%) 2 (4.7%) 3 (4.3%) 2 (2.5%) 8 (2.3%)

18.5—25 80 (59%) 13 (72%) 27 (63%) 43 (61%) 42 (53%) 205 (59.2%)

25—30 47 (35%) 5 (28%) 7 (16%) 22 (31%) 23 (29%) 104 (30.1%)

 > 30 8 (5.9%) 0 (0%) 7 (16%) 2 (2.9%) 12 (15%) 29 (8.4%)

Median 24.1 24.4 22.8 22.8 24.2 23.7

Smoking status

Current smoker 21 (15.4%) 3 (16.7%) 1 (2.3%) 10 (14.3%) 13 (16.5%) 46 (13.3%)

Non‑current smoker 115 (84.6%) 15 (83.3%) 42 (97.7%) 60 (85.7%) 66 (83.5%) 300 (86.7%)

Time from PCR to visit

Median (days) 243 233

IQR (days) 229.5–258 227.8–245

Table 2 Characteristics of PCR‑positive individuals with different post‑infection health statuses

All continuous variables were presented as median and interquartile range (IQR). All categorical variables were presented as numbers (percentages)

Persistent health restriction Recovery All PCR‑confirmed subjects

n

PCR‑positive seropositive 21 (88%) 106 (88%) 127 (88%)

PCR‑positive seronegative 3 (13%) 15 (12%) 18 (12%)

Sex

Female 12 (50%) 56 (46%) 68 (47%)

Male 12 (50%) 65 (54%) 77 (53%)

Age in years (median [IQR]) 43 [40, 48] 41 [35, 51] 41 [35, 51]

BMI kg/m2 (median [IQR]) 23.96 [21.74, 26.60] 24.25 [21.51, 26.23] 24.22 [21.60, 26.32]

Time from PCR to visit days 
(median [IQR])

243 [223.5, 259.5] 241 [230.8, 256.3] 242 [229.5, 257.5]
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Differential DNAm according to COVID‑19 status
DNAm patterns between COVID-19 cases and controls 
were also examined. The Miami plot displays the EWAS 
results between COVID-19 cases and controls based on 
different case definitions (antibodies test VS PCR test) 
(Fig. 3). The Bacon correction to control for inflation and 
bias resulted in an inflation factor of 1.118 (Supplemen-
tary file 1, Figs. 1B and 2B) and 1.265 (Supplementary file 
1, Figs. 1C and 2C) for the two approaches, respectively. 
The EWAS on anti-SARS-CoV-2 antibody levels showed 
172 differentially methylated CpG sites (Supplementary 
file 2, Table S2), of which 125 (73%) were hypermethyl-
ated; 22 (13%) CpGs had a cis-meQTL, but none had 
cis-eQTM, thus indicating variation in genetic sequence 
to be associated with variation in DNAm level in 13% of 
the identified CpGs. In the analysis of cases and controls 
based on the PCR test results, 502 CpG sites were found 
to be differentially methylated (Supplementary file 2, 
Table S3). Of these, 428 (53%) were hypermethylated and 
2 CpGs (cg20307496 in gene CDC42EP1, cg22950153 
in gene IGDCC3) were found in both cis-meQTL and 
eQTM, suggesting that genetic variants might regulate 
local gene expression by DNAm variation.

Persistent health restriction in PCR‑positive patients
By investigating the long-term effect of SARS-CoV-2 
infection, we found 40 differentially methylated CpG sites 
between persistent health restriction cases and recovery 
cases (Supplementary file 2, Table S4), 21 (53%) of which 
were hypermethylated (Fig. 4).

X-axis represents the position of the CpGs along the 
chromosomes, and y-axis represents -log10 (p-value). 
The dash black line represents the Bonferroni threshold 
(7.24e-08). The gray line represents the FDR threshold 

(3.15e-06). The top panel shows positive effect of EWAS, 
while the bottom panel shows negative effect of EWAS. 
The top 5 significant CpG sites in each panel and their 
annotated genes are shown in boxes.

Common CpG sites across the findings
Comparing the results of the different models, two CpG 
sites, cg17126990 and cg25483596, both hypermethyl-
ated, appeared in all three models (Table 3). Cg17126990 
was annotated to gene AFAP1L2 and is located on chro-
mosome 10. Another CpG site, cg25483596, annotated 
to the gene Pyruvate carboxylase (PC), is located within 
intron 10 of the gene on chromosome 11. Additionally, 
cg03498173 was differentially methylated in both the 
antibody-level association EWAS and the EWAS between 
antibody testing cases and controls, while cg13725803 
and cg16238815 were differentially methylated CpG sites 
identified in both the EWAS on antibody levels and the 
EWAS on the PCR-based case status (Table 3).

In addition to the two overlapping CpG sites, 124 
common differentially methylated CpG sites were iden-
tified from the two EWASs of the different COVID-19 
status test methods (Supplementary file 2, Table  S5). 
The effect sizes between the two EWASs (PCR-based 
and antibody-based methods) were strongly consistent 
(R = 0.88). Among the results, cg05655377 on chromo-
some 4 was one of the hypermethylated top effect sites in 
both EWASs. Cg11586124 and cg19722371 on chromo-
some 12 were the hypomethylated top effect sites com-
mon to both EWASs. Cg19722371 was annotated to gene 
DARM1.

Comparing the findings of the different exploration 
approaches with the EWAS catalog, none of the CpG sites 
had been previously reported in relation to COVID-19. 

Fig. 2 Miami plot displaying EWAS results for anti‑SARS‑CoV‑2 antibody level (n = 346).  X‑axis represents the position of the CpGs 
along the chromosomes, and y‑axis represents ‑log10 (p‑value). The dash black line represents the Bonferroni threshold (7.24e‑08). The gray line 
represents the FDR threshold (3.35e‑06). The top panel shows positive effect sizes, while the bottom panel shows negative effect sizes. The top 5 
significant CpG sites in each panel and their annotated genes are shown in boxes
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Enrichment analysis showed that both GO and KEGG 
terms returned no statistically significant results.

Sensitivity analysis
Given that smoking status has a great impact on DNAm 
patterns, regression models with the same covariates plus 
smoking status were used in the analysis. Using three 

Fig. 3 Miami plot of EWAS results between cases and controls.  X‑axis represents the position of the CpGs along the chromosomes, and y‑axis 
represents ‑log10 (p‑value). The top panel shows positive effect of EWAS, while the bottom panel shows negative effect of EWAS. The top 5 
significant CpG sites in each panel and their annotated genes are shown in boxes. The dash black line represents the Bonferroni threshold 
(7.24e‑08). (A) EWAS between antibody testing cases and controls (n = 346), the gray line represents the FDR threshold (1.34e‑05). (B) EWAS 
between PCR testing cases and controls (n = 305), the gray line represents the FDR threshold (3.90e‑05)

Fig. 4 Miami plot of EWAS results between persistent health restriction and recovery cases (n = 139)
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models, with phenotypes indicating anti-SARS-CoV-2 
antibody levels, COVID-19 status based on antibody 
testing, and COVID-19 status based on PCR testing, we 
identified 15, 130, and 394 differentially methylated CpG 
sites after bacon correction at FDR < 0.05, respectively 
(Supplementary file 2, Table S6-S8). Among these CpGs, 
15 (100%), 129 (99.2%), and 389 (98.7%) out of them 
appeared in the main analysis and all of them had a con-
sistent direction, showing that the primary findings was 
robust to smoking status.

By removing participants without clear blood sample 
collection dates and with short intervals between PCR 
test and blood collection, we eliminated 11 persons and 
analyzed the remaining subset using regression mod-
els with the same covariates. The EWAS results can be 
found in Supplementary file 2, Table S9-S11. Overall, 37 
(88%) differentially methylated CpGs in the first model 
(association with anti-SARS-CoV-2 antibody levels), 158 
(91.8%) CpGs in the second model (COVID-19 status 
based on antibody testing), and 443 (88.2%) CpGs in the 
third model (COVID-19 status based on PCR testing), 
were also discovered in the main analysis and the effect 
directions were consistent. Additionally, 3 common dif-
ferentially methylated CpGs (cg04900672, cg17126990, 
cg25483596) were identified, and 2 of them (cg17126990, 
cg25483596) were the main findings in the primary anal-
ysis, indicating that the association of the two CpGs with 
antibody levels and case status described in main results 
were robust to variations in the estimated intervals from 
infection to blood collection.

Discussion
We investigated DNAm changes with anti-SARS-CoV-2 
antibody levels and compared DNAm patterns between 
mild and asymptomatic patients and healthy individuals 
after 7 months of infection in a household setting. Over-
all, numerous differentially methylated CpG sites were 
identified, demonstrating that DNAm changes of post-
infection are associated with antibody levels and that 
patients with mild and asymptomatic symptoms have 

DNAm patterns that differ from never infected controls. 
Two common CpG sites, namely cg17126990 (AFAP1L2) 
and cg25483596 (PC), showed positive associations with 
both antibody levels and case status.

AFAP1L2 enables SH3 domain binding activity and 
protein tyrosine kinase activator activity and is involved 
in the positive regulation of the epidermal growth fac-
tor receptor signaling pathway, associated with vesi-
coureteral reflux and cartilage cancer [36]. Studies 
showed that AFAP1L2 was upregulated in A549-ACE2 
cells [37], human nasal epithelial cells [38], and mouse 
kidneys after SARS-CoV-2 infection [39]. According 
to data from blood cell lines, cg17126990 overlapped 
both a DNasel hypersensitivity and an open chromatin 
regions, which suggests this CpG is involved in the tran-
scription process [40]. Additionally, a genome browser 
search showed that both transcription factors ELAVL1 
and PABPC1 bind the region containing cg17126990 
[40]. ELAVL1 is highly expressed in cancer cells and is 
also involved in inflammation by regulating mRNA sta-
bility, splicing, and translation [41]. Lu et  al. [42] found 
that ELAVL1 was upregulated in COVID-19 patients and 
can effectively predict SARS-CoV-2 infection with other 
six m6A-related genes. The second identified CpG site, 
cg25483596, is annotated to gene PC. PC is a protein-
coding gene involved in gluconeogenesis, lipogenesis, 
insulin secretion, and synthesis of the neurotransmit-
ter glutamate [36]. SARS-CoV2 infection was found to 
alter host cell metabolism by upregulating PC activity to 
increase carbon entry into the TCA cycle [43]. Analyses 
in cell lines show that cg25483596 overlapped regions 
with histone modifications, weak enhancers, and weakly 
transcribed regions in blood cells [40].

We also found different DNAm patterns between per-
sistent health restriction cases and recovered cases. 
Cg27139398 (annotated to ADAM22) and cg23815787 
(annotated to UBE2N) were two of the top 5 negatively 
correlated CpG sites. EI-Agnaf et al. [44] discovered that 
ADAM22 may contribute to neurological complications 
in post-severe COVID-19 patients, while UBE2N was 

Table 3 Common significant CpGs across the three EWASs

CpG Chr Position UCSC 
RefGene 
Name

SARS‑CoV‑2 antibody level Cases VS Controls (based on 
antibody testing)

Cases VS Controls (based on 
PCR testing)

Effect size Adjusted p‑value Effect size Adjusted p‑value Effect size Adjusted p‑value

cg17126990 10 116,061,880 AFAP1L2 0.001166 1.73E‑06 0.128129 6.39E‑06 0.143537 5.31E‑06

cg25483596 11 66,632,197 PC 0.001467 1.35E‑06 0.178683 9.31E‑08 0.206175 6.28E‑09

cg03498173 12 89,746,771 DUSP6 − 0.00199 1.78E‑06 − 0.17119 7.85E‑06 – –

cg13725803 13 51,640,297 GUCY1B2 − 0.00153 4.59E‑07 – – ‑0.13815 2.97E‑05

cg16238815 14 36,741,794 – − 0.00223 1.4E‑09 – – − 0.21188 1.68E‑05
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downregulated in SARS-CoV-2 late-stage infection in 
human blood samples [45].

By using publicly available data, cg02942825 (anno-
tated to GIPR), cg10118093 (annotated to PIK3C2B), 
and cg26589785 (annotated to ITPKA) were found to be 
reported cis-meQTLs and cis-eQTMs, indicating that 
the CpG sites are influenced by genetic variants nearby, 
and might potentially mediate the association between 
genetic variants and downstream phenotype. GIPR, 
PIK3C2B, and ITPKA are all protein-coding genes related 
to multiple traits [46]. Previous studies showed an asso-
ciation between GIPR and C-reactive protein levels [47] 
and ITPKA was found to be related to respiratory system 
diseases [48], while PIK3C2B was reported to be associ-
ated with lung function [49, 50].

Lee et al. [16] investigated the DNAm profile between 
COVID-19 cases and controls after 3  months post-
infection; they report DNAm patterns in long COVID 
patients, highlighting the immune response associated 
gene IFI44L as their main finding. We found no overlap-
ping CpG sites when comparing our results with those 
of Lee et al. One reason might be that we have only mild 
and asymptomatic cases, while Lee et al. had a study pop-
ulation with severe symptoms. Another reason could be 
the follow-up time post-infection for the DNAm meas-
urement, as the epigenetic profile likely further changes 
after an additional four month post-infection. There are 
also no common CpG sites between our findings and 
COVID-19-related studies reported in the EWAS cata-
log, indicating that mild cases could have a different 
DNAm pattern at 7 months of post-infection.

There are some strengths of our study. Different 
COVID-19 case definitions were used in this study, pro-
viding a more comprehensive estimation. To our knowl-
edge, this is the first study to focus on asymptomatic and 
mild COVID-19 cases with a relatively long follow-up 
after infection 7 months in a household setting. In addi-
tion, the GEE model takes the correlation of DNAm pat-
terns within household members into account, leading to 
a reliable and robust estimate.

There are also a few limitations. The study population 
was 14 years and older, living in private households in the 
Munich area, which may limit its generalizability. We also 
found differentially methylated CpG sites between cases 
with self-reported health restriction cases and those fully 
recovered, yet these results are limited by the instrument 
used to determine health restrictions and potential mis-
classification of the groups. We used publicly available 
data to identify meQTLs and eQTMs, which might not 
necessarily reflect associations in our study population.

Conclusions
We investigated DNAm changes in asymptomatic, mild 
cases, and healthy individuals 7  months post-SARS-
CoV-2 infection. Cg17126990 (annotated to AFAP1L2) 
and cg25483596 (annotated to PC) were the common 
CpG sites identified to be differentially methylated across 
the different study approaches, thus suggesting their rel-
evance in the aftermath of COVID-19. Both CpGs have 
been reported to be involved in molecular pathways asso-
ciated with SARS-CoV-2 infection. These findings may be 
useful for further understanding the molecular mecha-
nism after SARS-CoV-2 infection in mild and asympto-
matic individuals.

Data availability 
Data at individual level are not available due to protec-
tion of data privacy of our study subjects. However, data 
are accessible subject to data protection regulations upon 
reasonable request to the KoCo19 investigators. Requests 
will be scientifically reviewed following the cohort’s 
review process.
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