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Abstract 

Background To date, various epigenetic clocks have been constructed to estimate biological age, most commonly 
using DNA methylation (DNAm). These include “first‑generation” clocks such as DNAmAgeHorvath and “second‑
generation” clocks such as DNAmPhenoAge and DNAmGrimAge. The divergence of one’s predicted DNAm age 
from chronological age, termed DNAmAge acceleration (AA), has been linked to mortality and various aging‑related 
conditions, albeit with varying findings. In metabolic syndrome (MetS) and type 2 diabetes (T2D), it remains inconclu‑
sive which DNAm‑based predictor(s) is/are closely related to these two metabolic conditions. Therefore, we examined 
the cross‑sectional associations between seven DNAm‑based predictors and prevalent metabolic conditions in par‑
ticipants with methylation data from the KORA study. We also analyzed the longitudinal association with time‑to‑
incident T2D and the relative prognostic value compared to clinical predictors from the Framingham 8‑year T2D risk 
function in predicting incident disease over eight years.

Results GrimAA and PhenoAA difference demonstrated consistently significant associations in the cross‑sectional 
and longitudinal analyses. GrimAA difference reported a larger effect: with prevalent MetS at F4 (odds ratio = 1.09, 95% 
confidence interval = [1.06–1.13], p = 2.04E–08), with prevalent T2D at F4 (odds ratio = 1.09 [1.04–1.13], p = 1.38E–04) 
and with time‑to‑incident T2D (hazards ratio = 1.05 [1.01–1.10], p = 0.02) for each year increase in GrimAA difference. 
Mortality risk score was significantly associated with both prevalent metabolic conditions but not in the longitudinal 
analysis. The inclusion of DNAm‑based predictor in the model with Framingham clinical predictors improved discrimi‑
native ability, albeit not significantly. Notably, the DNAm‑based predictor, when fitted separately, showed a discrimi‑
native ability comparable to that of the model with clinical predictors. Overall, no clear pattern of significant associa‑
tions was identified in the epigenetic measures from the “first‑generation” clocks.

Conclusions GrimAA, PhenoAA difference and mortality risk score, derived from the “second‑generation” clocks, 
demonstrated significant associations with both MetS and T2D. These DNAm‑based predictors may be useful bio‑
markers for risk stratification and disease prognosis in our study sample of European ancestry. Further research 
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Background
Chronological age stands as a major risk factor common 
to a plethora of chronic (non-communicable) diseases, 
ranging from neurodegenerative to metabolic disorders 
and cancer. While chronological age progresses at a con-
stant rate, the marked interindividual variation in health 
outcomes observed between individuals of the same age 
could be partly attributed to the varying rates of biologi-
cal aging, a state known as accelerated or decelerated 
aging [1]. Chronic diseases can represent a manifestation 
of accelerated aging—that is, when biological age exceeds 
chronological age—as a result of a complex interplay 
between genetics, lifestyle factors, environmental and 
social determinants of health [1].

To date, multiple estimators have been established to 
measure biological age, out of which epigenetic clocks 
are, by far, the most promising biomarkers, built based 
on DNA methylation (DNAm) [2, 3]. DNAm is the most 
extensively studied epigenetic process, whereby a methyl 
group is attached at or removed from a DNA nucleotide, 
typically at the cytosine in the cytosine-guanine 
dinucleotides (CpG) [4].

Several epigenetic clocks have been developed by 
quantitatively combining the DNAm levels from sets 
of CpGs into a composite predictor. The initial clocks 
were aimed in predicting chronological age (termed 
collectively as “first-generation” epigenetic clocks), 
out of which the two most recognized clocks are 
by Horvath (DNAmAgeHorvath) [5], and Hannum 
(DNAmAgeHannum) [6]. Age acceleration (AA) is 
then derived from the difference between the estimated 
biological age and chronological age to reflect the state 
of accelerated aging or decelerated aging (i.e., positive or 
negative AA difference) [2]. Both epigenetic measures 
were then refined to be reflective of specific aging 
aspects: (i) intrinsic epigenetic age acceleration (IEAA) as 
residuals of DNAmAgeHorvath, which mirrored intrinsic 
aging independent of leukocytes composition [7]; and (ii) 
extrinsic epigenetic age acceleration (EEAA) as residuals 
of DNAmAgeHannum, which specifically reflected aging 
of the immune system [8].

Subsequently, a “second-generation” of epigenetic 
clocks were developed using age-related outcomes as 
training phenotype. The DNAmPhenoAge clock was 
trained to reflect physiological dysregulation through 
age and nine biological biomarkers [9]. DNAmGrimAge, 

as the name suggests, was trained to predict mortality 
using well-established correlates of morbidity or mor-
tality, which included seven DNAm-based surrogates 
of plasma proteins and one of smoking pack-years [10]. 
Another similar DNAm-based predictor, mortality risk 
score (MRS) was trained to predict all-cause mortality. 
However, it differed from the aforementioned predictors, 
in that MRS was not expressed in the unit of years but as 
the sum of methylation levels of 10 CpGs [11].

To unravel the role of biological aging in the 
interindividual heterogeneity in health outcomes, 
numerous studies have highlighted DNAmAge or AA 
being closely linked to differential susceptibility to death 
and a myriad of aging-related conditions: all-cause 
mortality [8, 12–15], cognitive and functional decline 
[15], cardiovascular disease [14, 16] and many more 
[2]. Nonetheless, overall findings vary with differential 
association observed for each epigenetic measure 
with various traits/diseases, presumably attributable 
to the lack of CpG overlap between the measures and, 
consequently, distinctive aging pathways underlying 
each [17]. For metabolic conditions such as metabolic 
syndrome (MetS) and type 2 diabetes (T2D), it has not 
been clearly established which epigenetic measure(s) is/
are most/more related to the conditions.

MetS is a constellation of cardio-metabolic risk factors, 
including increased waist circumference, increased blood 
pressure (BP), hyperglycaemia, hypertriglyceridaemia, 
and reduced high-density lipoprotein cholesterol 
(HDL-C) [18]. MetS can predispose one to metabolic 
diseases, such as T2D and cardiovascular diseases 
[19]. The development of these metabolic conditions 
indicates an alternative aging trajectory, characterized 
by accelerated aging and shared characteristics, such 
as epigenetic alterations, leading to cellular senescence 
and inflammation, especially in adipose tissue [20]. 
With DNAm implicated in the pathological process 
of metabolic traits/diseases [20], multiple studies 
have examined the underlying relationship. Nannini 
et  al. found higher MetS score to be associated with 
accelerated IEAA and EEAA in young adults in the USA 
[21]. In a study sample of Korean ancestry, MetS score 
was identified to be positively associated with only the 
GrimAge clock in middle-age adults, among the other 
clocks [22]. Notwithstanding the varying findings, 
existing evidence highlights AA as a potential biomarker 

is warranted to investigate the generalizability of our findings across different ancestries and to examine the underly‑
ing shared biological mechanisms.
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of metabolic conditions. Some studies focused only on 
one or two specific epigenetic measures, while some 
examined only a specific subgroup from the general 
population [16, 21–26]. In this study, we evaluated and 
compared the utility of seven DNAm-based predictors 
(HorvathAA, GrimAA, PhenoAA, HannumAA, EEAA, 
IEAA and MRS), in their association with prevalent 
MetS and T2D, in a large sample of European ancestry 
from the KORA (Kooperative Gesundheitsforschung 
in der Region Augsburg) study. We also examined the 
longitudinal association with time-to-incidence of T2D 
and the prognostic value of the biomarker in predicting 
8-year T2D incidence risk.

Methods
Study population
The study population comprised participants from 
the KORA study, a research platform which has been 
conducting health surveys in the population with 
German nationality living in the region of Augsburg in 
southern Germany [27]. Our study cohort originated 
from the S4 survey (1999–2001), one of the four KORA 
cross-sectional surveys [27]. In the baseline S4 survey, 
4261 participants aged 25–74 years old were enrolled. 
To date, the S4 survey has two follow-up studies, namely 
F4 (2006–2008) and FF4 (2013–2014). In all three 
assessments, study participants completed a lifestyle 
questionnaire and underwent standardized medical 
examinations and biosamples collection, as described in 
detail elsewhere [27]. Additionally, the participants were 
followed up on their survival and morbidity status via a 
questionnaire until 2015–2016.

Of the 4261 participants at baseline, selection for 
methylation profiling was first done randomly among 
the participants who remained at F4, stratified by 
age categories with a higher representation of older 
participants, and conditioned upon consent for 
genetic data profiling. Profiling at S4 and FF4 was then 
performed for those selected at F4, resulting in a sample 
of 2661 participants who underwent methylation 
profiling at least at one of the timepoints. Subsequently, 
we excluded participants whose methylation data failed 
quality control or presented a mismatch in predicted sex.

Cross-sectional analyses of prevalent MetS and T2D 
were performed on the subsamples of participants with 
methylation data at F4 (n = 1722) and FF4 (n = 1872), 
respectively. The methylation data at S4 was not used as 
MetS could not be determined for participants aged < 55 
without fasting glucose and/or lipid measurements. 
Conversely, longitudinal analyses were conducted using 
the subsample of participants whose methylation data 
was profiled at baseline S4. For the Cox regression 
analysis of time-to-incident T2D, participants with 

confirmed or undetermined diabetes status at baseline 
S4 were excluded, resulting in a final subsample of 1456 
participants (flowchart of participants in Additional 
file 1: Figure S1).

Outcomes definition
Study outcomes included two metabolic conditions: 
MetS (as binary and ordinal variable) and T2D. MetS 
was defined based on the harmonized definition by 
Alberti et  al. as the presence of at least three of the 
following five criteria: (1) waist circumference ≥ 94  cm 
in men or ≥ 80  cm in women; (2) fasting serum 
triglycerides ≥ 150  mg/dl and/or drug treatment for 
elevated triglycerides; (3) serum HDL-C < 40  mg/dl in 
men or < 50  mg/dl in women and/or drug treatment to 
reduce HDL (fibrates); (4) systolic BP ≥ 130  mmHg or 
diastolic BP ≥ 85 mmHg and/or intake of antihypertensive 
medication; (5) fasting serum glucose level ≥ 100  mg/dl 
and/or intake of antidiabetic medication [18]. MetS score 
was defined as the summation of the number of MetS 
components present based on the above criteria, with a 
range of 0–5.

T2D was determined based on participants’ self-report 
of being clinically diagnosed with diabetes or intake of 
glucose-lowering medication, which was subsequently 
validated with the attending physician or medical records. 
Time-to-incident T2D was calculated as the difference in 
years between baseline age and the age at T2D diagnosis. 
Participants who did not develop T2D or were lost to 
follow-up by the end of the observation period (i.e., in 
2015 or 2016) were right-censored, with survival time 
calculated as the difference in years between baseline age 
and the age reported at the last follow-up. Additionally, 
participants diagnosed with other types of diabetes were 
censored at the age of their diagnosis.

DNA methylation profiling
DNA methylation was measured in whole blood using 
the Illumina Infinium HumanMethylation 450K at 
S4 and F4, and EPIC BeadChip at FF4. At S4 and F4, 
the normalization of methylation data was performed 
according to the CPACOR pipeline [28], starting with 
the exclusion of the 65 single-nucleotide polymorphism 
markers, background correction using the R package 
minfi [29], and subsequently setting probes to missing 
if the signals had a detection p-value of > 0.01 or were 
summarized from ≤ 3 functional beads. Thereafter, 
samples with a detection rate of ≤ 95% were excluded. 
With the remaining samples, quantile normalization was 
performed on the signal intensity values, divided into six 
categories by probe type and color channel. After these 
preprocessing steps, methylation data was then used for 
the computation of epigenetic age estimates. Methylation 
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data at FF4 underwent similar preprocessing procedures, 
including background correction, removal of probes 
of which the cross-reactive probes being specific to the 
EPIC array, sample filtering and quantile normalization.

Computation of DNAm‑based predictors
We evaluated a total of seven epigenetic age measures, 
namely HorvathAA, HannumAA, GrimAA, PhenoAA, 
EEAA, IEAA and MRS (further details of each measure 
are provided in Additional file  2: Table  S7). The first 
four measures were calculated using estimates obtained 
from the online DNAmAge clock (https:// dnama ge. 
genet ics. ucla. edu/) [5] under the advanced analysis 
option: DNAmAgeHorvath [5], DNAmAgeHannum [6], 
DNAmPhenoAge [10] and DNAmGrimAge [11]. Age 
acceleration was then derived as the difference between 
the predicted DNAmAge and chronological age. We 
defined it as difference instead of residual of DNAmAge 
regressed on chronological age, as AA difference is 
more intuitive for interpretation and represents as an 
individual parameter, while residual has a mean of zero 
and reflects as a population parameter.

Two of the clocks, DNAmAgeHannum and 
DNAmAgeHorvath, generated the raw residuals of EEAA 
and IEAA, respectively. IEAA was derived by regressing 
DNAmAgeHorvath on chronological age and blood 
immune cells counts. DNAmAgeHannum was further 
transformed by up-weighting the contribution of three 
age-related blood cell types to produce EEAA [8]. The 
last measure, MRS, is an epigenetic clock developed 
by Zhang et  al., derived as the sum of the individual 
methylation β values of ten CpGs multiplied by their 
respective coefficients [11]. While MRS was originally 
constructed using Illumina 450K array, we calculated a 
“modified” version of MRS as two out of the ten CpGs 
were unavailable in the EPIC BeadChip used at FF4. 
This allowed us to compare its utility with the modified 
version.

If GrimAA reported a significant association with either 
of the two metabolic conditions, we further analyzed its 
eight underlying components (adrenomedullin, beta-2 
microglobulin, cystatin C, growth differentiation factor 
15, leptin, plasminogen activation inhibitor 1, tissue 
inhibitor metalloproteinase 1, smoking pack-years) [10], 
to identify the component(s) driving the association.

Statistical analysis
In the cross-sectional analyses of prevalent MetS and 
T2D, as well as the Cox regression of time-to-T2D, we 
included chronological age and sex in the crude model, 
while the fully adjusted model accounted additionally 
for smoking status (current/ever/never), alcohol 
consumption (g/day), body mass index (kg/m2, only 

for T2D), and physical activity level (active/inactive). 
Physical activity was defined based on the answer 
given to how many hours weekly were spent doing 
sport both in winter and summer: (i) > 2  h regularly, 
(ii) approximately 1 h regularly, (iii) approximately 1 h 
irregularly, or (iv) almost none/none.

We adjusted for chronological age in all models 
due to its known effects on morbidity and mortality. 
Notably, IEAA and EEAA were residuals derived from 
regressing DNAmAge on chronological age and were, 
therefore, mathematically uncorrelated with age. As 
for the other four AA measures (i.e. HorvathAA, 
HannumAA, GrimAA and PhenoAA difference), there 
might still be correlation with age in our dataset. 
Nonetheless, adjusting for age in the regression models 
could reduce variation of the outcome or residual 
correlation with age independent of the DNAmAge, 
potentially increasing statistical power to detect 
significant associations. Additionally, to eliminate the 
technical effects of methylation data, we included the 
first 20 principal components (PCs) of the positive 
control probes and a batch variable (only for S4 
methylation data, defined as 1 for the 86 S4 samples 
processed separately and 0 for all the others). All 
covariates for adjustment were the same for all DNAm-
based predictors, except for DNAm-predicted pack 
years (one of the eight GrimAge components) with the 
covariate of smoking status excluded.

Adjusting for the aforementioned covariates, we 
conducted the cross-sectional analyses using logistic 
regression, modeling the respective metabolic 
conditions (i.e., prevalent MetS and T2D) modeled as 
outcome, and each of the seven DNAm-based predictor 
as the explanatory variable. Apart from MetS as a 
binary outcome, we examined the ordinal outcome of 
MetS score using ordinal regression with the function 
polr in the R package MASS. The proportional odds 
assumption was checked using the Brant test in the R 
package Brant [30]. We analyzed using data from F4 
and FF4 and compared the results to assess whether 
the patterns of significant associations remained 
consistent.

For the longitudinal analyses, we used the Cox 
proportional hazards regression, modeling time-to-
incidence of T2D as outcome and each DNAm-based 
predictor as the explanatory variable. The proportional 
hazards assumption was examined using a statistical 
test and graphical diagnostics based on the Schoenfeld 
residuals. For all the analyses, the p-value was set at 0.05, 
no adjustment for multiple testing was done considering 
the exploratory nature of the analyses. To identify the 
concordantly significant DNAm-based predictor(s), we 
used the results of the fully adjusted model. Of note, 

https://dnamage.genetics.ucla.edu/
https://dnamage.genetics.ucla.edu/


Page 5 of 16Chew et al. Clinical Epigenetics           (2025) 17:58  

the coefficient of MRS was standardized to its standard 
deviation to enable comparison of effect sizes across the 
DNAm-based predictors, as MRS was not constructed as 
an AA measure.

In sensitivity analyses, we removed outliers for each 
DNAm-based predictor with values beyond ± 1.5 
interquartile range (IQR) of the 25% and 75% quartile 
and repeated the analyses using the fully adjusted model 
for each outcome. For the four AA difference measures, 
we adjusted for the following imputed leukocyte count, 
in addition to the covariates in the fully adjusted model: 
naïve CD8 + T, exhausted cytotoxic CD8 + T cells, 
plasma blasts, CD4 + T, natural killer cells, monocytes, 
and granulocytes. Although these four DNAm-based 
predictors are regarded as extrinsic AA measures, this 
sensitivity analysis sought to identify any attenuation 
of effect size after adjusting for these age-related cell 
types. As a secondary analysis of GrimAA, we further 
analyzed its eight underlying components to identify the 
one driving its association with MetS and/or T2D, in the 
event that GrimAA was significantly associated with the 
prevalent metabolic conditions.

Lastly, we specifically conducted the area under the 
curve (AUC) analyses on the DNAm-based predictor(s) 
identified as concordantly significant in the preceding 
analyses, exploring the prognostic value for incidence 
of T2D over an 8-year period. We compared the 
discriminative ability between the model with established 
clinical predictors from the Framingham 8-Year risk 
of T2D algorithm and the model with DNAm-based 
predictors. The Framingham clinical predictors include: 
(i) fasting glucose level of 100–126 mg/dL, (ii) body mass 
index (BMI) categories of 25.0–29.9  kg/m2 or ≥ 30  kg/
m2, (iii) BP ≥ 130/85 mmHg or receiving drug treatment, 
(iv) HDL-C level of < 40  mg/dl in men or ≥ 50  mg/dl in 
women, (v) parental history of diabetes mellitus, and (vi) 
triglyceride level of ≥ 150 mg/dL [31]. In the model with 
DNAm-based predictors, we adjusted for baseline age, 
sex and technical effects, which included the first five 
PCs and a batch variable. For each model, we plotted the 
ROC curves and assessed the discriminative ability of 
the DNAm-based predictor(s) to classify risk using the C 
statistic, represented by the AUC.

Results
Sample characteristics
The study sample comprised (i) 1530 participants 
from KORA S4 whose methylation data was profiled 
(used in longitudinal analyses), and (ii) 1722 and 1918 
participants profiled at KORA F4 and FF4, respectively 
(used in cross-sectional analyses). Additionally, the final 
sample was selected after excluding participants with 
methylation data which failed the quality control criteria 

or indicated a sex mismatch (see Additional file 1: Figure 
S1 for flowchart of the participants).

Table  1 presents the summary characteristics of the 
longitudinal study sample from KORA S4, as well as the 
comparison between participants who were followed 
up until FF4 versus those lost to follow-up. Overall, at 
baseline (S4), the majority were female (50.6%) with 
mean age of 54.0 years (standard deviation, SD = 8.9). 
T2D prevalence was 7.2%, while almost half (49.4%) of 
participants aged ≥ 55 years had MetS (i.e., presence of at 
least three of the five MetS components).

Relative to the individual chronological age, the overall 
mean HorvathAA difference was 1.1 years (SD 4.9), 
HannumAA difference 4.6 years (SD 5.3), PhenoAA 
difference − 4.6 years (SD 6.6) and GrimAA difference 
1.8 years (SD 5.2). The values of the AA measures 
reflected some discrepancies, with the largest between 
HannumAA and PhenoAA difference. For example, 
based on HannumAA, participants were, on average, 4.6 
years older than their chronological age, while PhenoAA 
indicated that they were 4.6 years younger. The majority 
(n = 836, 54.6%) had a moderate MRS risk level.

Of the 1530 S4 participants, 445 (29.1%) were lost to 
follow-up at FF4. Compared to those who remained until 
FF4, the former were older, as reflected by significantly 
higher mean chronological age (by 3.9 years). 
Additionally, there were significantly more participants 
with positive EEAA and higher MRS risk level. The 
prevalence of T2D, hypertension and MetS was also 
higher than that in participants who remained.

Pairwise correlations between DNAm‑based predictors
Additional file 1: Figure S2 and S3 present the scatterplot 
matrix displaying the correlations between chronological 
age and the respective DNAm-based measures. The 
four DNAmAge measures (namely DNAmAgeHorvath, 
DNAmAgeHannum, DNAmPhenoAge and 
DNAmGrimAge) showed moderate to strong positive 
correlation with chronological age and with each other 
(Pearson’s r = 0.7–0.8). While all the seven DNAm-based 
predictors displayed poor to almost zero correlation with 
chronological age, HorvathAA and GrimAA difference 
showed a fair but negative correlation (r =  − 0.4 for 
both). With each other, the predictors were not strongly 
correlated   (r = 0.1–0.5) except for the pairs of Horvath 
AA difference with IEAA, and Hannum AA difference 
with EEAA. The strong correlations were expected as the 
respective pairs were derived from the same DNAmAge 
clock.

Upon examining the stability of the seven DNAm-
based predictors longitudinally in the subsample with 
complete observations at S4, F4 and FF4 timepoints, all 
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measures showed fair to moderate positive correlations 
across time, except for GrimAA difference reporting 
strong correlations in the range of 0.8 (Additional file 1: 
Figure S4).

Cross‑sectional analyses: MetS and T2D
Consistently in both F4 and FF4 subsample, we identi-
fied GrimAA difference, PhenoAA difference and MRS 
to be significantly associated with MetS, MetS score and 
T2 (Table  2). Of the three, GrimAA difference had the 

smallest p-value: An increase of one year corresponded to 
a 9.2% (95% CI = [5.9–12.6%]) increased odds of prevalent 
MetS (p = 2.0E–08) at F4, under the fully adjusted model 
(with comparable effect size in FF4). Expectedly, GrimAA 
difference showed the strongest statistical significance in 
association with MetS score (ordinal variable from 0 to 
5) and T2D: Each additional year in GrimAA difference 
was associated with an 8.3% [5.9–11.1%] higher odds of 
a one-unit increase in MetS score (p = 6.9E–10) and 8.9% 
[4.2–13.7%] higher odds of prevalent T2D (p = 1.4E–04) 

Table 2 Cross‑sectional association between DNAm‑based predictors and metabolic conditions

Odd Ratios were generated using logistic regression, except for MetS Score using ordinal regression. Models were fully adjusted for chronological age, sex, physical 
activity level, smoking status, body mass index (only for T2D), alcohol consumption and technical covariates. Regressions of each metabolic condition were based 
on N ≤ 1722 and N ≤ 1872 observations in F4 and FF4 subsample respectively, with varying number of observations due to missing values (column “n” indicates the 
number of observations included in each regression under complete case analysis)

MetS, metabolic syndrome; OR, odd ratio; CI, confidence interval; AA, age acceleration; IEAA, intrinsic epigenetic age acceleration; EEAA, extrinsic epigenetic age 
acceleration; MRS, mortality risk score; T2D, type 2 diabetes

Shown in bold are statistically significant associations (p < 0.05)
a The coefficients of MRS & MRS (modified) were standardized to its standard deviation

DNAm‑based predictor MetS in F4 subsample MetS in FF4 subsample

OR 95% CI p n OR 95% CI p n

HorvathAA 1.03 1.01, 1.06 0.02 1719 1.00 0.98, 1.03 0.67 1864

HannumAA 1.01 0.99, 1.03 0.32 1719 1.00 0.98, 1.04 0.47 1864

GrimAA 1.09 1.06, 1.13 2.04E‑08 1719 1.08 1.05, 1.12 4.80E‑06 1864

PhenoAA 1.03 1.01, 1.04 4.67E‑04 1719 1.04 1.02, 1.06 1.66E‑04 1864

IEAA 1.03 1.00, 1.05 0.04 1719 1.00 0.98, 1.03 0.91 1864

EEAA 1.01 1.00, 1.03 0.13 1719 1.01 0.99, 1.04 0.13 1864

MRSa 1.22 1.07, 1.39 4.01E‑03 1468 – – – –

MRS (modified)a 1.27 1.12, 1.43 1.86E‑04 1674 1.15 1.01, 1.31 0.03 1864

DNAm‑based predictor MetS score in F4 subsample MetS score in FF4 subsample

OR 95% CI p n OR 95% CI p n

HorvathAA 1.02 1.00, 1.04 0.07 1708 1.02 1.00, 1.04 0.13 1852

HannumAA 1.01 0.99, 1.02 0.26 1708 1.00 0.98, 1.03 0.64 1852

GrimAA 1.08 1.06, 1.11 6.87E‑10 1708 1.09 1.06, 1.12 4.60E‑10 1852

PhenoAA 1.03 1.02, 1.04 1.59E‑06 1708 1.04 1.02, 1.05 3.64E‑06 1852

IEAA 1.01 0.99, 1.04 0.17 1708 1.01 0.99, 1.03 0.22 1852

EEAA 1.01 1.00, 1.03 0.06 1708 1.01 0.99, 1.03 0.23 1852

MRSa 1.17 1.05, 1.31 5.45E‑03 1458 – – – –

MRS (modified)a 1.22 1.10, 1.35 1.68E‑04 1663 1.15 1.04, 1.27 6.65E‑03 1852

DNAm‑based predictor T2D in F4 subsample T2D in FF4 subsample

OR 95% CI p n OR 95% CI p n

HorvathAA 1.03 0.99, 1.07 0.10 1709 1.00 0.97, 1.05 0.54 1866

HannumAA 1.03 1.00, 1.06 0.02 1709 1.00 0.96, 1.04 0.24 1866

GrimAA 1.09 1.04, 1.13 1.38E‑04 1709 1.09 1.04, 1.14 2.66E‑04 1866

PhenoAA 1.04 1.01, 1.06 9.82E‑04 1709 1.03 1.00, 1.06 0.01 1866

IEAA 1.03 0.99, 1.07 0.13 1709 1.00 0.96, 1.04 0.97 1866

EEAA 1.03 1.00, 1.05 0.02 1709 1.01 0.98, 1.05 0.49 1866

MRSa 1.41 1.16, 1.71 4.47E‑04 1458 – – – –

MRS (modified)a 1.41 1.18, 1.68 1.15E‑04 1664 1.27 1.06, 1.53 9.83E‑03 1866
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at F4, under the fully adjusted model (with comparable 
effect size in FF4).

For the regression analysis of MetS score, the Brant 
test on each of the DNAm-based predictors indicated 
no violation of the proportional odds assumption. In the 
sensitivity analysis removing outliers using the Tukey’s 
1.5 IQR rule, the observed significant associations in 
the three aforementioned DNAm-based predictors 
remained unchanged (see Additional file 2: Table S1–S3 
for all sensitivity analysis results). Further adjustment 
for leukocyte count did not attenuate the associations 
observed in GrimAA and PhenoAA difference, except for 
the association between PhenoAA difference and T2D in 
FF4.

It is noteworthy that the modified version of MRS, 
which was computed using only eight out of the ten CpGs 
in MRS, reported a comparable (if not larger) effect size 
and statistical significance in association with metabolic 
conditions at F4 as the original MRS. The modified 
version had two less CpGs which were not present in the 
EPIC850K BeadChip used at FF4.

Association of GrimAge components with metabolic 
conditions
With the concordantly significant associations 
demonstrated by GrimAA difference across the 
metabolic conditions, we examined further each of 
the eight GrimAge components. Of the eight, all 
components, except for cystatin C, growth differentiation 
factor 15, and smoking pack-years, reported a positive 
and statistically significant association with MetS at 
F4 and FF4 (Additional file  2: Table  S4). Plasminogen-
activation inhibition 1 (DNAmPAI1) reported the 
strongest association with MetS consistently at F4 and 
FF4 (p = 1.1E–27, 9.5E–34, respectively). Additionally, 
DNAmPA1 was the only GrimAge component to 
demonstrate a significant association with T2D in both 
F4 and FF4 (p = 2.4E–08, 4.8E–14, respectively).

Longitudinal analysis of time‑to‑incident T2D
Of the 1456 participants without baseline T2D at S4, 
196 (13.5%) developed T2D over the follow-up period. 
Incidence rate was 9.7 per 1000-person-years [95% CI 
8.3–11.1], with median follow-up time of 15.6 years [IQR 
13.7–16.0]. Among the 196 participants who were then 
diagnosed with incident T2D, median time-to-incidence 
was 7.1 years [IQR 3.8, 11.3]. In the remaining censored 
participants, one participant developed another diabetes 
type, 898 remained non-diabetic by the end of the last 
follow-up, while 361 were lost to follow-up.

Of the seven DNAm-based predictors, GrimAA 
and PhenoAA difference were significantly associated 
with time-to-incidence of T2D in both crude and fully 

adjusted models (Fig.  1). One-year increase in GrimAA 
and PhenoAA difference was significantly associated 
with an increased hazard of 5.5% [1.0–10.2%] and 2.5% 
[0.1–4.9%] of developing incident T2D, respectively, in 
the fully adjusted model. However, both were no longer 
significant after adjustment for leukocyte count. Upon 
removal of outliers, only PhenoAA difference remained 
significant (Additional file 2: Table S5).

Prognostic value for 8‑year T2D incidence risk
Of the 1456 participants without T2D at baseline (S4), 
those aged ≤ 54 years (n = 818) had no measurement 
of fasting glucose and/or lipid levels and were excluded 
from the AUC analysis. Additionally, 24 and 133 
participants were further excluded due to fasting glucose 
level above 126  mg/dL (which was indicative of T2D) 
and missing values for BP or parental history of T2D, 
respectively. The final sample included 481 participants, 
out of whom 31 participants were newly diagnosed with 
T2D by the 8th year.

In both cross-sectional and longitudinal analyses, Gri-
mAA and PhenoAA difference showed consistently sig-
nificant associations (Fig. 2A). Accordingly, we compared 
the AUC between the model fitted only with clinical 
covariates, comprising predictors from the Framingham 
8-year T2D risk function, with models fitted with the 
DNAm-based predictors. When comparing the model 
with the Framingham clinical predictors to the model 
with GrimAA or PhenoAA difference (adjusted for age 
and sex), both models showed comparable discrimina-
tive ability, as evidenced by the overlapping receiver-
operating-characteristic (ROC) curves (Fig. 2B). With the 
inclusion of DNAm-based predictor to the model with 
Framingham clinical predictors, the discriminative abil-
ity improved, though not significantly. For example, after 
adding GrimAA difference, the C-statistic increased from 
0.8 [0.7–0.9] to 0.9 [95% CI 0.8–0.9] in the model with 
Framingham clinical predictors alone.

As for the model fit of MRS, which was significantly 
associated with metabolic conditions in cross-sectional 
analyses, the model’s discriminative ability similarly 
improved, though not significantly, upon adding MRS 
to the model with Framingham clinical predictors 
(Additional file  2: Table  S7). Conversely, adding two 
DNAm-based predictors, instead of only one, did not 
improve model fit, as depicted by the overlapped ROC 
curves (see Additional file 2: Figure S5).

Discussion
Of the seven DNAm-based predictors, GrimAA and 
PhenoAA difference were identified to be consistently 
significant in their associations with prevalent MetS 
and T2D as well as incident T2D, independent of 
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established risk factors. MRS and the modified version 
showed significant associations with the metabolic 
conditions cross-sectionally, but not longitudinally 
with incident T2D. Lastly, the DNAm-based predictors 
demonstrated largely comparable prognostic values for 
the 8-year risk of developing T2D as the model with 
Framingham clinical predictors alone. While adding the 
DNAm-based predictor to the clinical model improved 
the model’s discriminative ability, the improvement 
was not significant. Our findings support the literature 
in the following aspects: (i) existing DNAm-based 
predictors presented differential association with 
diseases, with the second-generation epigenetic 
measures to be more closely related with metabolic 

conditions than the first-generation measures; (ii) in 
predicting incident T2D, DNAm-based predictors 
might contribute additional prognostic value.

This study sought to compare the utility of the various 
DNAm-based predictors, in line with the postulation 
that each of them, with its respective CpGs coverage, 
represents different aspects of biological aging, despite 
some biological similarities in terms of overlapping 
genomic locations [17]. Epigenetic measures have 
reported varying associations with health outcomes 
in the literature, which was similarly reported in 
this study. Unsurprisingly, all DNA-based predictors 
showed poor correlation with each other, except for 

Fig. 1 Association of DNAm‑based predictors with time‑to‑incident T2D. Scatter plot showing the effect estimates generated using Cox 
proportional hazards model under the crude and fully adjusted models. The former adjusted for age, sex and technical covariates, the latter 
included additionally body mass index, physical activity, smoking status, and alcohol consumption. Abbreviations: T2D, type 2 diabetes; MRS, 
mortality risk score; AA, age acceleration; EEAA, extrinsic epigenetic age acceleration; IEAA, intrinsic epigenetic age acceleration. *Effect estimate 
standardized to one standard deviation of the DNAm‑based predictor
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the two pairs of related measures, as observed in other 
studies [12, 14, 15, 25]. Overall, the observed patterns 
suggest that metabolic conditions were more related 
to the training phenotypes of MRS, GrimAA and Phe-
noAA difference, namely age correlates of all-cause/

aging-related mortality, as compared to chronological 
age used in the first-generation clocks.

Association of second‑generation epigenetic measures 
with metabolic conditions
GrimAA difference reported the strongest statistical 
significance in all analyses among the DNAm-based 

Fig. 2 Prognostic value for 8‑year T2D incidence risk using DNAm‑based predictors which were consistently significant in the preceding analyses 
using both F4 and FF4 subsample. The Venn diagram (Panel A) shows the predictors significant at p < 0.05 under the fully adjusted model 
for the respective outcome. Panel B (left) illustrates the receiver‑operating‑characteristic curves of the (i) model comprising the clinical predictors 
from the Framingham 8‑year T2D risk function, (ii) model including GrimAA difference, age and sex additionally, and (iii) model with GrimAA 
difference, age and sex (without Framingham clinical predictors). Panel B (right) illustrates the corresponding curves with PhenoAA difference. 
AUC indicates the C‑statistic value. Abbreviations: BMI, body mass index; T2D, type 2 diabetes; AA, age acceleration; IEAA, intrinsic epigenetic age 
acceleration; MRS, mortality risk score; AUC, area under the curve
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predictors. This finding concurs with other recent 
studies, in which GrimAA difference, or its counterparts 
(GrimAA residual/DNAmGrimAge), outperformed 
other measures in the association or prediction of 
metabolic phenotypes [10, 16, 22, 24, 32]. Notably, 
some of these studies differed in the profile of study 
participants, with samples from other ancestries, such as 
East Asian (Korean) and African American populations 
[16, 22, 24], suggesting generalizability across ancestries. 
Nevertheless, the longitudinal association observed 
between GrimAA difference and incident T2D should be 
interpreted with caution, as it may have been driven by 
outliers.

The associations between GrimAA and metabolic 
conditions could be attributed to its constituents, 
consisting of seven DNAm-estimated plasma proteins 
and smoking pack-years [10]. Similar to other studies, 
DNAm-plasminogen activator inhibitor-1 (PAI1) 
appeared to predominantly drive the associations, 
given that it reported the smallest p-value among the 
eight components [10, 22]. Lu et al., who developed the 
GrimAge clock, found that DNAm-PAI1 outperformed 
other components and even GrimAA in the association 
with metabolic conditions [10]. Growing evidence 
indicated that the relationship could be bi-directional. 
In vitro studies highlighted that glucose and triglycerides, 
stimulated the expression of PAI-1 [32, 33]. Conversely, 
elevated PAI-1 level could impair insulin clearance as 
well as promote insulin resistance, thrombosis, and 
fibrosis, consequently resulting in the development of 
MetS, T2D and macrovascular complications [34–36]. As 
for adrenomedullin (ADM), the second most significantly 
associated GrimAge component after PAI-1, its positive 
associations with the metabolic conditions are consistent 
with its physiological effects. Increased ADM level 
has been linked to acute hyperinsulinemia, oxidative 
stress, and endothelial injury, contributing to diabetic 
complications [37].

Compared to GrimAA, PhenoAA in relationship to 
metabolic traits/diseases was less frequently studied in 
the literature. The significant associations of PhenoAA 
with MetS and T2D in this study concur with the findings 
from Levine et  al.’s large-scale study, which reported 
significant positive correlations between PhenoAA 
and all metabolic components, including glucose, 
triglycerides and HDL-C [9]. On the other hand, in a 
different study cohort of African Americans, PhenoAA 
was found to be significantly associated with glucose but 
not with lipid traits [16].

After adjusting for leukocyte count, the significant 
associations observed in GrimAA and PhenoAA 
difference remained largely unattenuated. This suggests 
that PhenoAA and GrimAA difference, as extrinsic 

measures of aging, capture not only immunosenescence 
processes but also intrinsic epigenetic changes. 
Conversely, EEAA, a measure of immune system aging, 
was not significant in most of the examined associations. 
This is also reflected in the study by Nannini et al., which 
postulated that cell-intrinsic aging plays a larger role than 
immunosenescence in MetS [21].

To our knowledge, existing research has focused only 
on the association of MRS with metabolic phenotypes 
other than MetS and T2D. For example, MRS, as a 
categorical variable, was significantly associated with 
time to cardiovascular-related mortality in the KORA 
cohort, which was not reported in other measures, 
such as HorvathAA and HannumAA [11]. In the same 
study cohort, we observed that MRS was significantly 
associated with prevalent metabolic conditions. Notably, 
the modified version of MRS remained as robust a 
predictor as the original in our study. The previous 
methylation array (Infinium HumanMethylation450K) 
was no longer commercially available, however the 
modified version based on the new EPIC array, which is 
missing CpG probes cg06126421 and cg23665802, has 
demonstrated similar associations. This suggests that the 
two missing CpGs are likely less relevant to metabolic 
conditions. Similarly, the DNAmAgeHorvath and 
DNAmAgeHannum clocks, using the EPIC array, have 
several missing CpGs; however, McEwen et al. concluded 
that this difference did not affect their utility [38].

While this study does not aim to ascertain the biological 
mechanisms, one possible pathway underlying the 
observed associations with metabolic conditions is the 
mediating role of aging-related sterile proinflammatory 
mechanisms, a condition coined as “inflammaging”, 
which drives various chronic disease phenotypes [39]. It 
has been proposed that MRS tracks effects of oxidative 
stress and the resulting systematic inflammation, given its 
robust association with oxidative stress markers [13, 39]; 
while PhenoAge has been associated with the activation 
of proinflammatory pathways, such as interferon 
signaling [9]. As for GrimAge, several genomic locations 
of its CpGs have been implicated in inflammaging, 
including the cytokine-mediated signaling pathway and 
the response to interferon-gamma [10, 39, 40]. However, 
the underlying inflammaging-pathways may be unique 
for each DNAm-based predictor, as there is no overlap 
between the 513 CpGs in PhenoAge and the 10 in MRS 
[10, 11]. Overlap with the CpGs in GrimAge could not be 
determined since the list has not been published.

Overall, we observed a clear pattern of significant 
associations between metabolic conditions and second-
generation epigenetic measures, despite the mixed 
evidence in the literature regarding associations with 
first-generation measures. This could be partly attributed 
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to the different study samples. For example, Nannini et al. 
observed positive associations between MetS score and 
both IEAA and EEAA among participants of European 
and African American ancestry (while our study 
consisted solely of Europeans) [21]. In fact, it has been 
shown that African Americans had lower EEAA than 
Europeans [7]. Grant et  al. found a positive association 
between HorvathAA difference and fasting glucose; 
however, the study participants were post-menopausal 
women while our sample was from the general adult 
population [23].

Study implications
As elucidated earlier, comparisons across existing 
studies and interpretation of the varying findings on 
the association with metabolic traits/diseases are 
not straightforward due to the different profile of 
study participants, covariates for adjustment, and 
disease endpoints. Given the inconclusive evidence 
on DNAm-based predictors for metabolic conditions, 
future research should focus on replication in other 
independent cohorts, trans-ancestry meta-analyses, 
and ancestry-specific studies to account for methylation 
differences across ancestries.

Additionally, studies using methods such as Mendelian 
randomization are needed to examine causality. While 
we prospectively examined baseline methylation in 
relation to disease incidence, we did not determine 
whether DNAm drives aging leading to aging-related 
diseases like T2D, or simply serves as a surrogate marker 
for early-stage disease methylation variation. The largest 
genome-wide association study to date, analyzing 
epigenetic measures across 150 traits using Mendelian 
randomization, reported a causal effect of BMI and waist 
circumference on increased GrimAA and PhenoAA but 
no effects of epigenetic measures on T2D or vice-versa 
[41]. This suggests a possible mediating role of DNAm-
based predictors in metabolic conditions. Should DNAm 
changes at the CpGs of these predictors be shown to 
mediate or induce metabolic conditions, they could 
provide insights into potential therapeutic targets for 
preventing or treating the disease.

Lu et al. published an updated version of DNAmGrim-
Age (version 2), which included two additional DNAm-
estimated plasma proteins: C-reactive protein and 
hemoglobin A1c [42]. The AA measure of DNAmGrim-
Age version 2 reported stronger associations with several 
age-related conditions and time-to-incidence of cardio-
vascular diseases, as compared to the original version 
[42]. Future research is needed to explore the relation-
ship between GrimAA version 2 and metabolic condi-
tions in the European population, particularly given the 

significant associations of GrimAA difference observed 
in our study.

Our findings demonstrated the comparable utility 
of DNAm-based predictors as clinical predictors in 
predicting the risk of T2D. GrimAA and PhenoAA 
difference, measured as the extent of divergence from 
chronological age, appeared to capture an aspect of aging 
in the development of metabolic conditions which was 
not reflected in chronological age alone. This is further 
supported by the lack of correlation between the DNAm-
based predictors and chronological age, as reported 
similarly in other studies [14, 23, 25]. In light of their 
potential prognostic value for T2D incidence, further 
research is warranted to explore their clinical utility 
as biomarkers for risk stratification and prognosis of 
chronic diseases.

Study strengths and limitations
Strengths include the prospective nature of the study 
with a long duration of follow-up to complement the 
cross-sectional analyses to reflect the associated risk with 
prevalent and incident metabolic conditions. Findings are 
based on the KORA cohort, which is a well-characterized 
prospective study while the participants are largely 
representative of the general population of European 
ancestry. Our findings portrayed a consistent pattern of 
associations observed for the second-generation clocks, 
highlighting their relevance to metabolic conditions, with 
potentially some shared biological mechanisms.

A key limitation is the small sample size and the 
relative low number of events in the AUC analyses, 
since the majority had no measurement of one or more 
of the predictors required in the Framingham 8-year 
T2D risk function. To prevent overfitting, we included 
the batch variable and the first five PCs, instead of 20 
PCs used in the other analyses. Nevertheless, the AUC 
analyses lacked adequate power, resulting possibly in the 
insignificant improvement observed in the models added 
with DNAm-based predictors.

Overall, residual confounding after adjustment for cell 
type confounding and technical effects cannot be ruled 
out. We observed that most of the significant associations 
were not fully attenuated after adjusting for leukocyte 
count, indicating that the relationships were not merely 
spurious associations between the metabolic conditions 
and cell type proportions. We have also adjusted for 
batch effects, which may arise due to the processing of 
DNAm across different timepoints and array types used.

Of note, studies have highlighted the unreliability of 
these epigenetic clocks due to technical noise, particularly 
compromising longitudinal tracking of epigenetic age 
[43]. While our analyses did not assess changes in 
repeated measures over time, technical variations were 
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unlikely to alter the observed association patterns in 
our study. Additionally, we repeated all analyses using 
AA residuals in the fully adjusted model (results not 
shown here), as AA residuals have been proposed as 
more robust than AA difference in accounting for these 
technical effects [38], and we did not observe any notable 
differences. Nonetheless, given this limitation, future 
longitudinal research should leverage the improved 
reliability of PC-based epigenetic clocks for more robust 
results [43]. Conversely, when integrating epigenetic 
markers into clinical screening, the inefficiency of PC 
clocks should be considered, as this approach requires 
substantially more CpGs than the traditional method to 
generate results.

Another limitation is the risk of informative censoring 
among participants lost to follow-up, particularly if 
they were at a higher risk of dying or withdrawing from 
the study due to worse health conditions, including the 
development of T2D. Compared to participants who 
remained in the study cohort until the last follow-up 
(FF4), both groups differed significantly in age and 
several health and lifestyle factors. However, the 
differential distribution of these characteristics likely 
had no impact on the overall association patterns, as 
we used the same study sample to compare associations 
across the seven DNAm-based predictors. Lastly, we did 
not adjust for multiple testing for the multiple analyses 
conducted across seven DNAm-based predictors, given 
the exploratory nature of the study for hypothesis-
generating purposes.

Conclusions
In evaluating the cross-sectional and longitudinal 
associations between the seven DNAm-based predictors 
with metabolic conditions (MetS and T2D), we identified 
a concordant positive association for GrimAA and 
PhenoAA difference, indicating that a higher AA 
difference is linked to increased odds of prevalent 
metabolic conditions and higher risk of incident 
T2D. MRS and its modified version were found to be 
robustly and positively associated with both conditions 
cross-sectionally (but not in longitudinal analysis). 
These DNAm-based predictors showed comparable 
discriminative ability to the Framingham clinical 
predictors and, when added to the model, improved 
the prediction of 8-year incident T2D, though not 
significantly.

Overall, our findings are in line with multiple studies 
on the associations between metabolic conditions and 
the DNAm-based predictors. These three epigenetic 
measures from the second-generation clocks likely 
capture some of the biological variability underlying 
aging-related diseases, making them potentially 

valuable biomarkers for risk stratification and disease 
progression prognosis. Although we did not examine 
the underlying biological mechanisms, our findings 
support the hypothesis that inflammaging, cellular 
senescence and, to a lesser extent, immune system aging, 
are implicated in the pathophysiology of epigenetic 
aging and the development of MetS and T2D. Future 
research is required to assess the utility and feasibility 
of incorporating these DNAm-based biomarkers into 
clinical settings, as well as their generalizability across 
ethnicities. Additionally, functional analyses of genetic 
and epigenetic regulation are warranted to understand 
the complex dynamics between epigenetic aging and 
disease development.
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