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Abstract 

Background Sleep disturbances are known to have adverse effects on health, but knowledge on the effect of sleep 
disturbances on epigenetic ageing is limited. We investigated (1) whether symptoms of insomnia, obstructive sleep 
apnoea, sleep deprivation, and circadian rhythm lateness are associated with epigenetic ageing, and (2) whether years 
spent in shift work moderates these associations.

Methods We used the population‑based Young Finns data (n = 1618). Epigenetic clocks such as  AgeDevHannum, 
 AgeDevHorvath,  AgeDevPheno,  AgeDevGrim, and DunedinPACE were utilized to measure epigenetic ageing. Sleep 
was evaluated using various validated self‑report questionnaires. Covariates included sex, array type, smoking status, 
health behaviours, socioeconomic factors, and cardiovascular health factors.

Results Among the various sleep measures, obstructive sleep apnoea symptoms were most consistently linked 
to accelerated epigenetic ageing, as measured by  AgeDevGrim and DunedinPACE. Insomnia, sleep deprivation, 
and years spent in shift work were not associated with epigenetic ageing after adjusting for health‑related or socio‑
economic covariates. Additionally, we found interactions between years spent in shift work and sleep disturbances 
when accounting for epigenetic ageing. Among those with little to no history of shift work, both insomnia and sleep 
deprivation were associated with more accelerated epigenetic ageing in  AgeDevGrim when compared to long‑term 
shift workers. However, the pace of epigenetic ageing (measured with DunedinPACE) appears to be higher in those 
with both sleep deprivation and longer history of shift work.

Conclusions Among various sleep measures, symptoms of obstructive sleep apnoea appear to be most consistently 
associated with accelerated epigenetic ageing even after adjusting for various health‑related and socioeconomic 
factors. Shift work seems to have a crucial role in the relationship between sleep disturbances and epigenetic ageing 
in working‑age adults.
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Introduction
Epigenetic ageing measures, also known as epigenetic 
clocks, are biological indicators of the ageing process. 
The first-generation clocks—Hannum [1] and Hor-
vath [2] methods—predict chronological age based on 
CpG methylation patterns in the genome. The second-
generation epigenetic clocks, such as PhenoAge [3] and 
GrimAge [4], were built using a variety of surrogate bio-
markers instead of chronological age. The most recent 
epigenetic ageing measure and the only one built on 
longitudinal data, DunedinPACE, measures the pace of 
epigenetic ageing and is based on 19 biomarkers from 
several organ systems [5]. All epigenetic clocks predict 
morbidity, mortality, and disability, although the first-
generation clocks have limitations in health research 
due to their more accurate ability to predict chronologi-
cal age [6–8]. Various health conditions have been linked 
to accelerated epigenetic ageing, but the relationship 
between sleep disturbances and epigenetic clocks has 
received less research attention.

Sleep disturbances, including insomnia, obstruc-
tive sleep apnoea, and excessive daytime sleepiness, are 
known to be common in the general population. It has 
been reported that up to 40% of the population are dis-
satisfied with their quantity of sleep, while 16–21% often 
suffer from difficulty falling asleep or maintaining sleep 
[9]. The prevalence of diagnosed insomnia has been esti-
mated to be 4.4–11.7% [9], while prevalence estimates of 
obstructive sleep apnoea vary between 9 and 38% [10]. 
It is also known that sleep disorders, sleep quality, and 
sleep quantity are associated with numerous health con-
ditions, including type II diabetes, hypertension, hyper-
cholesterolemia, coronary heart disease, and possibly 
cognitive decline and dementia [11–17]. These findings, 
among others, indicate a significant public health bur-
den surrounding sleep disturbances. This study focuses 
on insomnia, sleep deprivation, symptoms of obstruc-
tive sleep apnoea, and chronotype while also considering 
years in shift work.

Regarding the association between sleep disturbances 
and epigenetic ageing, evidence is still limited. Insom-
nia symptoms have previously been found to be associ-
ated with accelerated epigenetic ageing as measured 
by GrimAge and accelerated pace of epigenetic ageing 
as measured by DunedinPACE [18] as well as accel-
erated extrinsic epigenetic ageing (EEAA, Hannum 
method) [19]. Insomnia was also associated with accel-
erated DunedinPACE in a previous study [20]. Regard-
ing sleep duration and epigenetic ageing, the results have 
been contradictory: some studies report an association 
between shorter sleep duration and accelerated epige-
netic ageing [18, 21], others have found no association 
[19, 22], but longer sleep duration has also been linked 

to accelerated epigenetic ageing [23]. Sleep disordered 
breathing, of which obstructive sleep apnoea is consid-
ered to be a severe form, has been found to be associated 
with accelerated epigenetic ageing as measured by Phe-
noAge in a study including only older adults [24]. There 
is also some evidence that epigenetic clocks can reverse 
after treatment for obstructive sleep apnoea [25]. Regard-
ing chronotype, an earlier chronotype has been found 
to be associated with slower epigenetic ageing as meas-
ured by GrimAge in older men [26]. Most existing stud-
ies on epigenetic ageing and sleep have small sample sizes 
(n < 50), only include women or men, or only include 
older adults (aged over 50 years).

To date, no study has examined possible interactions 
between sleep disturbances and shift work on epige-
netic ageing. Shift work is known to commonly co-occur 
with sleep disturbances [27]. Shift work has been found 
to be associated with all-cause mortality, immunologi-
cal issues, obesity, metabolic syndrome, cardiovascular 
disease, depression, cancer mortality, and all-cause mor-
tality [28, 29]. Previous studies also suggest that shift 
work is associated with accelerated epigenetic ageing, 
especially among women [30, 31]. There is evidence for 
interactions between sleep disturbances with shift work 
when predicting various health outcomes, such as cancer 
risk [32], chronic kidney disease [33], periodontal disease 
[34], or morbidity [35]. However, interactions between 
sleep and shift work have not been investigated in rela-
tion to epigenetic ageing.

This study aims to examine the relationship between 
epigenetic ageing and various sleep disturbances in 
a population-based sample of working-aged Finnish 
adults (aged 34–49  years). Second, we aim to examine 
whether shift work is associated with epigenetic age-
ing and whether shift work modifies the associations 
between sleep disturbances and epigenetic ageing. Our 
sleep measures include insomnia symptoms, sleep dep-
rivation, symptoms of obstructive sleep apnoea and cir-
cadian rhythm lateness. In addition, our data enabled us 
to adjust for numerous possible confounders, including 
health-related factors such as diagnosed hypertension, 
blood pressure, the presence of cardiovascular disease 
such as congestive heart failure and history of stroke, 
BMI, alcohol use and physical activity as well as socioec-
onomic factors including education and income.

Methods
Participants
The Young Finns Study (YFS) is an ongoing prospec-
tive follow-up study that has begun in 1980 (baseline 
assessment), and follow-ups have been conducted in 
1983, 1986, 1989, 1992, 1997, 2001, 2007, 2011/2012, 
and 2018–2020. Altogether 4320 subjects were invited 
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(born in 1962, 1965, 1968, 1971, 1974, or 1977), and 
3596 of them participated in the baseline study.  The 
sampling was designed to include a population-based 
sample of non-institutionalized Finnish children, 
representative with regard to most crucial sociode-
mographic factors. In practice, the sampling was con-
ducted in collaboration of five Finnish universities 
with medical schools (i.e. Universities of Helsinki, 
Turku, Tampere, Oulu, and Kuopio). A more detailed 
description of the YFS can be found elsewhere [36].

Of the 3596 participants, we first excluded 1885 par-
ticipants who had no data on epigenetic clocks. Later, 
participants were excluded if they had no data avail-
able on the sleep measure of interest or any of the 
covariates in a particular model. Out of participants 
who had data available on epigenetic clocks, 93 did not 
have data on minimal covariates, 250 had no data on 
all health covariates and 270 had no data on all socio-
economic covariates. The sample size varied between 
1439 and 1618 in analyses regarding sleep measures, 
and between and 581 and 716 in analyses regarding 
shift work.

Indicators of epigenetic ageing
Epigenetic ages were calculated for blood samples from 
2011. Genome-wide DNA methylation levels from 
whole blood were obtained with Illumina Infinium 
HumanMethylation450 BeadChip (n = 182) or Illumina 
Infinium MethylationEPIC BeadChip (n = 1529) fol-
lowing standard protocol by Illumina. Preprocessing 
and normalization of the methylation data have been 
described in detail elsewhere [37].

Indicators of epigenetic age included in the study 
were the Horvath clock [2], Hannum clock [1], Pheno-
Age [3] and GrimAge [4]. For all these clocks, we uti-
lized the measure of epigenetic age deviation, which 
is defined as the residual that results from regressing 
epigenetic age on chronological age [38]. These are 
denoted as  AgeDevHorvath,  AgeDevHannum,  AgeDevPheno, 
and  AgeDevGrim. We also included a measure for pace 
of ageing, DunedinPACE [5]. In sensitivity analyses, 
we used the derivatives of the Horvath and Hannum 
clocks,  IEAAHorvath,  IEAAHannum, and  EEAAHannum 
[38] as well as principal component (PC)-based epige-
netic clocks including  AgeDevPCPheno,  AgeDevPCGrim, 
 AgeDevPCHannum, and  AgeDevPCHorvath [39]. All meas-
ures of epigenetic age deviation or pace of epigenetic 
ageing were calculated according to published meth-
ods described above. Pearson correlations between 
different measures of epigenetic ageing can be found 
in Supplementary Fig. 1.

Sleep measures
Participant responses for all sleep measures (except for 
circadian rhythm lateness) were gathered in both 2007 
and 2011. In the final analyses, we used the average scores 
between the measurement years because, first, also previ-
ous studies on sleep and epigenetic ageing have averaged 
sleep scores if data was  available on multiple measure-
ment years [22]. Second, evidence from intervention 
studies suggests that lifestyle factors need to be examined 
over periods of years to observe changes in epigenetic 
clocks [40]. Third, because there were some missing val-
ues in 2007 and 2011, using the average scores allowed 
us to increase the sample size and thereby the statistical 
power of our analyses.

Insomnia symptoms were measured using Jenkins 
Sleep Scale (JSS) [41] in 2007 and 2011, capturing the fre-
quency and severity of symptoms. JSS includes four items 
(e.g. “During the past month, how often have you experi-
enced trouble falling asleep?”) with a 6-point Likert scale 
(1 = “not at all”, 6 = “every night”). JSS has demonstrated 
high internal consistency and its reliability and construct 
validity appear to be good [42]. Additionally, the JSS has 
shown good predictive validity in various health out-
comes, including weight gain [43] and type II diabetes 
[15]. The Finnish translation of the JSS is also found to 
have adequate internal consistency and construct validity 
in a previous cohort study [44]. In this study, an averaged 
score of the JSS items was calculated for 2007 and 2011 
separately (if the participant had responded to at least 
50% of the items), with higher scores indicating more 
severe insomnia symptoms. Then, the scores for both 
years were averaged. If the score for only one year was 
available, it was used instead. The value of Cronbach’s 
alpha was α = 0.77 in the 2007 survey and α = 0.76 in the 
2011 survey, indicating high consistency between items 
in both surveys and thus sufficient reliability. Partici-
pants’ scores in 2007 and 2011 showed moderate corre-
lation (Pearson’s r = 0.54, p < 0.001), indicating moderate 
stability.

Symptoms of obstructive sleep apnoea were meas-
ured using Epworth Sleepiness Scale (ESS) [45] and 
three additional items more specific to obstructive sleep 
apnoea. ESS measures excessive daytime sleepiness, 
which can be related to disorders such as obstructive 
sleep apnoea and narcolepsy. ESS was used in follow-ups 
of 2007 and 2011, and it includes eight items measuring 
the tendency to fall asleep in various everyday situations 
(e.g. “How likely will you fall asleep when you are watch-
ing TV?”), and answers are given with a 4-point Likert 
scale (0 = “I would never doze”, 4 = “a high chance of doz-
ing”). The internal consistency of the ESS has been found 
to be good [46]. In our sample, the Cronbach’s alpha for 
ESS was α = 0.72 in both 2007 and 2011, indicating high 
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consistency between items. ESS has previously correlated 
with other measures of sleep apnoea and the measure 
seems to have good test–retest reliability in non-clinical 
samples  [47]. In addition to the items of the ESS, three 
other items from 2007 and 2011 were included in the 
sleep apnoea symptom measure of this study. They were 
related to frequency of snoring (1 = “once a month or 
less”, 5 = “every night or nearly every night”), quality of 
snoring (1 = “I do not snore”, 5 = “loud and uneven snor-
ing”) and frequency of episodes of stopped breathing 
during sleep (1 = “once a month or less”, 5 = “every night 
or nearly every night”). Average scores of the eight ESS 
items were calculated for 2007 and 2011, with higher 
scores indicating more severe symptoms. The scores of 
2007 and 2011 were then averaged. The same process 
was then repeated for the three additional items. Then, 
the ESS average and the average score of the three other 
items were standardized. Finally, the two standardized 
scores were averaged. Participants were excluded from 
analyses if responses were unavailable for more than 50% 
of items in both years. Participants’ sleep apnoea symp-
toms scores in 2007 and 2011 showed high correlation 
(Pearson’s r = 0.73, p < 0.001), indicating high stability.

A sleep deprivation score was computed for both 2007 
and 2011 as the difference between self-reported opti-
mal amount of sleep and actual amount of sleep. For the 
latter, participants were instructed to report their usual 
amount of sleep (reported as 5 h or less, 6 h, 6.5 h… 10 h 
or more). Scores for both years were then averaged. Exist-
ing evidence suggests that both sleep deprivation and 
excessive sleeping may be associated with poor health 
outcomes, including diabetes [48], indicating curvilinear 
associations between sleep deprivation and health out-
comes. A curvilinear association has been reported when 
examining sleep deprivation and phenotypic age [49]. 
Therefore, the sleep deprivation score was also squared 
(with high values indicating both sleep deprivation and 
hypersomnia) and used as a quadratic term in additional 
models. In addition, we utilized a measure of sleep dura-
tion, calculated as the average of actual amount of sleep 
in 2007 and 2011. The responses between the measure-
ment years showed moderate stability (Pearson’s r = 0.43, 
p < 0.001, and Pearson’s r = 0.56, p < 0.001, for sleep depri-
vation and sleep duration, respectively).

Circadian rhythm lateness was measured with a 
shortened version of the Morningness-Eveningness 
Questionnaire (MEQ) [50]. The predictive validity of 
MEQ is good since it has been found to be associated 
with various metabolic biomarkers among those with 
type II diabetes [51] as well as health behaviours and car-
diovascular health among women [52]. The measure used 
in this study includes six selected items from the MEQ 
(items 4, 5, 9, 15, 17, and 19; e.g. “How easy do you find 

it to wake up in the morning (when you are not woken 
up unexpectedly)?”) and responses were given using a 4- 
or 5-point Likert scale (five items and one item, respec-
tively). Responses were available from 2011, and the 
value for Cronbach’s alpha was α = 0.81, indicating high 
consistency between items. Each item was first standard-
ized. Then, an average score was calculated for all avail-
able items so that higher scores indicate a later circadian 
rhythm. Participants were excluded from analyses if they 
had no available data for 50% or more of items. Pearson 
correlations between different sleep measures can be 
found in Supplementary Fig. 1.

Covariates
The data on all covariates were gathered in 2011. All our 
models were adjusted for sex, self-reported smoking sta-
tus (daily smoking vs. not) and DNA array type as these 
have been found to be associated with differences in 
DNA methylation and the pace of epigenetic age accel-
eration [6]. In addition, we utilized a set of health-related 
and socioeconomic covariates as described below.

A Physical activity index was based on a question-
naire including questions on the frequency and intensity 
of physical activity, frequency of vigorous physical activ-
ity, time spent on vigorous exercise (in hours), participa-
tion in organized physical activity, and average duration 
of a physical activity session. A more detailed description 
of the index and its creation can be found elsewhere [53].

To construct an alcohol consumption index, partici-
pants were asked to report their consumption of differ-
ent alcohol beverages during the past week. The volumes 
were then summed to determine consumption measured 
in alcohol units (1 unit = 14 g of alcohol). The final cate-
gorization was done based on daily alcohol consumption 
(average of the week) as follows: 1: no alcohol consump-
tion during the past week, 2: > 0 to < 2 units per day, 3: 2 
to < 4 units per day, and 4: ≥ 4 units per day. The creation 
of this alcohol consumption index has been described in 
more detail elsewhere [54].

Other health covariates included diagnosed hyper-
tension, systolic blood pressure, diastolic blood pres-
sure, cardiovascular disease status, diabetes, and BMI. 
Diagnosed hypertension was self-reported by partici-
pants (0 = no, 1 = yes). Diastolic and systolic blood pres-
sure were also included as covariates in order to better 
account for possible undiagnosed cases of hypertension. 
Blood pressure was measured in sitting position after 
5-min rest. A mercury sphygmomanometer at phases 
1 and 2 and with a random zero sphygmomanometer 
(Hawksley & Sons Ltd) at phase 3 was used. Cuff size for 
the measurement covered two-thirds of the participant’s 
arm length. Korotkoff’s first phase was determined as 
the indicator of systolic blood pressure. Readings to the 
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nearest even number of millimetres of mercury were 
conducted 3 times for each participant. In the analyses, 
the average values of diastolic and systolic blood pres-
sure were used between the three measurements.  Car-
diovascular disease status was considered positive (= 1) 
if the participant self-reported a history of stroke, chest 
pain related to coronary heart disease, congestive heart 
failure, coronary artery bypass surgery, or coronary 
angioplasty (all reported as 0 = no, 1 = yes). Otherwise, 
cardiovascular disease status was coded as 0. Diabetes 
was also self-reported and included in models separately 
(0 = no, 1 = yes). Separate items for type I and type II dia-
betes were combined: if either of these was reported as 1, 
the diabetes variable was coded as positive.

Socioeconomic covariates included gross yearly 
income, years of education and working hours (regu-
lar daytime job vs. not), all of which were self-reported. 
Gross yearly income was reported with a 13-point Likert 
scale (1 =  < 5 000 €, 13 =  > 60 000€). The education vari-
able indicates years of education, including years of voca-
tional training. Working hours during the past 12 months 
were reported with six categories (regular daytime job, 
shift work with two rotating shifts, shift work with three 
rotating shifts, fixed evening or nighttime working hours, 
irregular working hours, and not working outside home). 
The variable of working hours was dichotomized: regu-
lar daytime job (= 0) or shift work (= 1), which included 
all other categories except those not working outside 
home (coded as missing). Thus, those not working out-
side home were excluded from models where working 
hours were included as a covariate. In analyses regard-
ing shift work, a measure of years in shift work was used. 
Participants freely self-reported the total amount of years 
they have spent in shift work. This resulted in a range of 
0–30 years.

Statistical models
All analyses were conducted using R (versions 4.3.1 and 
4.4.0). Stata MP 18.0 was used for plotting.

The associations between the sleep measures and 
epigenetic ageing measures were examined with linear 
regression models. Separate models were estimated 
for each epigenetic ageing measure  (AgeDevHannum, 
 AgeDevHorvath,  AgeDevPheno,  AgeDevGrim, and Dun-
edinPACE). Each sleep measure was added as pre-
dictor separately (insomnia symptoms, sleep apnoea 
symptoms, sleep deprivation, and circadian rhythm 
lateness). There is evidence that health-related and 
socioeconomic factors seem to mediate the associa-
tion between sleep and health [55]. Accordingly, to gain 
insight into possible mediating mechanisms between 
sleep disturbances and epigenetic ageing, we ran the 
regression analyses using three models with partially 

different sets of covariates (Models 1, 2, and 3). Model 
1 only included minimal covariates (sex, daily smoking 
status, and DNA array type). Model 2 was additionally 
adjusted for health variables (BMI, cardiovascular dis-
ease status, diabetes, hypertension, systolic and dias-
tolic blood pressure, alcohol use, and physical activity). 
Model 3 was adjusted for minimal covariates and socio-
economic covariates (gross yearly income, years of edu-
cation, and regular daytime job vs. shift work).

To account for multiple testing, we used the false 
discovery rate (FDR) correction with the Benjamini–
Hochberg method to adjust p-values [56]. The analyses 
were conducted for the whole sample, as no statistically 
significant sex interactions were observed while exam-
ining the associations between sleep measures and epi-
genetic ageing (p > 0.05).

Next, we examined whether years in shift work mod-
ify the associations between sleep measures and epige-
netic ageing. Separate models were again estimated for 
each sleep measure. An interaction term between each 
sleep measure and years in shift work was added to the 
models, utilizing the same sets of covariates (Models 1, 
2 and 3).

In order to assess the robustness of the results, the 
analyses were repeated using only cases where Illu-
mina Infinium MethylationEPIC BeadChip was used 
for DNA methylation profiling. Additionally, the main 
analyses were repeated with  IEAAHannum,  IEAAHorvath, 
and  EEAAHannum and four principal component (PC)-
based clocks designed for reduction in technical noise 
and increased reliability [39]. These are denoted as 
 AgeDevPCPheno,  AgeDevPCGrim,  AgeDevPCHannum, and 
 AgeDevPCHorvath.

Attrition over the follow-up period was examined in 
order to evaluate possible differences between included 
and dropped-out participants. This was done using inde-
pendent samples t-tests (for continuous variables) and 
chi-square tests (for categorical variables).

Results
Descriptive statistics
Descriptive statistics on demographic variables, sleep 
measures, epigenetic ageing measures, and covariates 
are shown in Table 1. Our attrition analyses showed that 
compared to included participants, dropped-out par-
ticipants had a lower proportion of women (41.9% vs. 
56.1%), a higher proportion of daily smokers (19.4% vs. 
14.3%), and slightly higher averaged scores on Jenkins 
Sleep Scale (2.34 vs. 2.26). There were no statistically sig-
nificant differences in other sleep measures or health var-
iables. Additional details can be found in Supplementary 
Table 1.
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Main analyses
First, we examined the main effect of insomnia symptoms 
on epigenetic ageing measures. The results are shown in 

Table  2. An association between insomnia and epige-
netic age acceleration as measured by DunedinPACE 
was observed in Model 1 (β = 0.01, p = 0.007), but not in 

Table 1 Descriptive characteristics of the included population

All participants included in at least one model were included in this table (n = 1618)
* Sum variables (averaged from 2007 and 2011) reported, but variables used in analyses were averaged across items (JSS) or standardized item by item and averaged 
(ESS, MEQ). MEQ was coded so that larger values indicate later chronotypes

Proportion (%) Mean (SD) Range (min, max)

Age (2011) 42.04 (4.98) 34.00, 49.00

Sex (Female) 56.1

Health variables

Daily smoking status 14.3

Physical activity index 9.05 (1.88) 5.00, 15.00

Alcohol consumption 0.80 (1.19) 0.00, 14.29

BMI 26.59 (4.99) 17.47, 58.47

Hypertension, diagnosis 9.1

Systolic blood pressure 118.80 (13.91) 83.33, 178.67

Diastolic blood pressure 74.76 (10.47) 44.00, 113.33

Cardiovascular disease status 0.7

Diabetes 2.6

Socioeconomic variables

Years of education 15.32 (3.56) 8.00, 30.00

Gross annual income 7.37 (3.08) 1.00, 13.00

Irregular working hours 31.1

Sleep measures

Jenkins Sleep Scale (JSS)* 9.00 (3.62) 4.00, 24.00

Epworth Sleepiness Scale (ESS)* 5.43 (3.20) 0.00, 20.00

Sleep deprivation score 0.49 (0.74) − 2.00, 4.00

Morningness‑Eveningness Questionnaire (MEQ; 
shortened)*

12.98 (3.40) 6.00, 24.00

Measures of epigenetic ageing/pace of ageing

AgeDevPheno 0.11 (5.35) − 17.47, 20.11

AgeDevGrim − 0.03 (3.70) − 9.21, 16.14

AgeDevHannum 0.07 (4.17) − 19.22, 14.17

AgeDevHorvath 0.07 (4.18) − 22.69, 19.49

DunedinPACE 0.94 (0.10) 0.61, 1.35

Table 2 Results of regression analyses when predicting epigenetic ageing measures by insomnia symptoms

Statistically significant associations (p < 0.05, unadjusted) are bolded, and those that remained significant after FDR correction are marked with an asterisk. Model 
1 was adjusted for sex, daily smoking status, and array type. Model 2 was adjusted for Model 1 covariates and health factors. Model 3 was adjusted with Model 1 
covariates and socioeconomic factors

Model 1
(n = 1617)

Model 2
(n = 1451)

Model 3
(n = 1440)

β 95% CI p β 95% CI p β 95% CI p

AgeDevPheno 0.15 − 0.14, 0.44 0.307 0.02 − 0.28, 0.33 0.888 0.14 − 0.17, 0.45 0.379

AgeDevGrim 0.07 − 0.09, 0.23 0.365 − 0.07 − 0.24, 0.09 0.380 0.00 − 0.16, 0.17 0.959

AgeDevHannum − 0.05 − 0.28, 0.17 0.635 − 0.13 − 0.37, 0.11 0.299 − 0.07 − 0.31, 0.17 0.559

AgeDevHorvath 0.05 − 0.17, 0.28 0.650 − 0.07 − 0.31, 0.18 0.594 − 0.02 − 0.26, 0.22 0.867

DunedinPACE 0.01 0.00, 0.01 0.007* 0.00 0.00, 0.01 0.199 0.00 0.00, 0.01 0.112
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Model 2 (with added health-related covariates) or Model 
3 (with added socioeconomic covariates). No associa-
tions were observed between insomnia and the other 
epigenetic clocks, including  AgeDevPheno,  AgeDevGrim, 
 AgeDevHannum, and  AgeDevHorvath (Table  2) in Models 
1, 2, or 3. The results of analyses regarding Horvath and 
Hannum clock derivatives are displayed in Supplemen-
tary Table 2.

Next, we examined the association of sleep deprivation 
with epigenetic ageing. In Models 1, sleep deprivation 
was associated with  AgeDevHorvath (β = 0.45, p = 0.028) 
(Table 3). The sleep deprivation variable was then added 
to the models as an additional quadratic term, as previ-
ous studies suggest that both excessive sleeping and lack 
of sleep are associated with adverse health outcomes [48]. 
The quadratic sleep deprivation term was associated with 
 AgeDevGrim Model 1 (β = 0.17, p = 0.029), but not after 
correction for multiple testing (p = 0.058). The quadratic 
sleep deprivation term was not associated with any other 
epigenetic ageing measure in Models 1, 2, or 3 (Supple-
mentary Table 3).

In addition to sleep deprivation, we examined the asso-
ciation between sleep duration (hours of sleep) and meas-
ures of epigenetic ageing. The results are displayed in 
Supplementary Table 7. To summarize, longer sleep dura-
tion was associated with lower DunedinPACE in Model 1 
(β = –0.01, p < 0.001), Model 2 (β = –0.01, p = 0.001), and 
Model 3 (β = –0.01, p < 0.001). We also found an associa-
tion between hours of sleep and  AgeDevGrim in Model 1, 
but this association did not sustain after FDR correction.

For circadian rhythm lateness, no effects were observed 
for any epigenetic ageing measure (p = 0.083–0.769). The 
results of these analyses can be found in more detail in 
Supplementary Table 4.

Symptoms of obstructive sleep apnoea were found 
to be associated with epigenetic age deviation in 
 AgeDevGrim in Model 1 (β = 0.51, p < 0.001), Model 2 
(β = 0.24, p = 0.036), and Model 3 (β = 0.44, p < 0.001). 

Figure  1 displays differences in  AgeDevGrim when par-
ticipants were grouped based on their sleep apnoea 
symptom score. Similarly, sleep apnoea symptoms were 
associated with pace of epigenetic ageing as measured by 
DunedinPACE in Model 1 (β = 0.02, p < 0.001), Model 2 
(β = 0.01, p = 0.030), and Model 3 (β = 0.02, p < 0.001). In 
Models 1, sleep apnoea symptoms were also associated 
with  AgeDevPheno (β = 0.42, p = 0.030),  AgeDevHorvath 
(β = 0.29, p = 0.046), and  IEAAHorvath (β = 0.29, p = 0.045). 
The results are displayed in more detail in Table 4.

Sensitivity analyses
The analyses were first repeated so that only cases with 
Illumina Infinium MethylationEPIC BeadChip were 
included (n = 1529). All other results were replicated, 
except for the associations between sleep deprivation and 
 AgeDevHorvath (please see Supplementary Table 5).

We also reran the analyses using principal component 
(PC) clocks. Again, we found an association between 
sleep apnoea symptoms and  AgeDevPCGrim (p = 4.44e-
7). The association between sleep apnoea symptoms and 

Table 3 Results of regression analyses when predicting epigenetic ageing measures by sleep deprivation

Statistically significant associations (p < 0.05, unadjusted) are bolded, and those that remained significant after FDR correction are marked with an asterisk. Model 
1 was adjusted for sex, daily smoking status, and array type. Model 2 was adjusted for Model 1 covariates and health factors. Model 3 was adjusted with Model 1 
covariates and socioeconomic factors

Model 1
(n = 1616)

Model 2
(n = 1451)

Model 3
(n = 1439)

β 95% CI p β 95% CI p β 95% CI p

AgeDevPheno 0.14 − 0.38, 0.66 0.588 0.09 − 0.44, 0.63 0.734 0.24 − 0.30, 0.78 0.384

AgeDevGrim − 0.15 − 0.44, 0.13 0.287 − 0.14 − 0.43, 0.15 0.331 − 0.07 − 0.36, 0.22 0.638

AgeDevHannum 0.02 − 0.38, 0.42 0.923 − 0.05 − 0.47, 0.38 0.832 0.04 − 0.39, 0.46 0.867

AgeDevHorvath 0.45 0.05, 0.85 0.028* 0.37 − 0.06, 0.80 0.090 0.39 − 0.04, 0.81 0.074

DunedinPACE 0.00 − 0.01, 0.01 0.552 0.01 0.00, 0.02 0.082 0.01 0.00, 0.02 0.206

Fig. 1 Estimated differences in  AgeDevGrim by the level of sleep 
apnoea symptoms. Differences were estimated separately 
for participants with low (− 1 SD) mean or high (+ 1 SD) levels of sleep 
apnoea symptoms. The model was adjusted for sex, array type, 
and smoking status
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 AgeDevPheno, however, was not replicated when using 
 AgeDevPCPheno (p = 0.251). Finally, we reran the analy-
ses using the Hannum and Horvath clock derivatives 
 IEAAHorvath,  IEAAHannum, and  EEAAHannum. The main 
results were replicated: We found associations between 
sleep deprivation and  IEAAHorvath (β = 0.48, p = 0.018) 
and between sleep apnoea symptoms and  IEAAHorvath 
(β = 0.29, p = 0.033). The results of these analyses can be 
found in more detail in Supplementary Table 2.

The moderating effect of shift work on the associations 
of sleep and epigenetic ageing
First, we examined whether years in shift work are asso-
ciated with epigenetic ageing. Years of shift work had a 
main effect on DunedinPACE in Model 1 (β = 0.001, 
p = 0.016). A similar effect in Model 2 did not remain 
statistically significant after multiple testing correction 
(p = 0.077). The results are displayed in more detail in 
Supplementary Table 6.

Finally, we examined whether years spent in shift work 
could moderate the associations between the sleep meas-
ures and epigenetic ageing. Thus, we examined interac-
tion effects between each sleep measure and years spent 
in shift work when predicting indicators of epigenetic 
ageing. An interaction between insomnia and years in 
shift work was observed when predicting  AgeDevGrim in 
Model 2 (β = − 0.04, p = 0.012) (see Fig.  2a). When pre-
dicting  AgeDevGrim with sleep deprivation, there was an 
interaction effect between sleep deprivation and years in 
shift work in Model 2 (β = − 0.05, p = 0.006) (see Fig. 2b). 
Similarly, when predicting DunedinPACE with the quad-
ratic sleep deprivation model, there was an interaction 
effect with years in shift work in Model 1 (β = − 0.001, 
p = 0.028) (see Fig.  2c). No other significant interaction 
effects were found between years in shift work and sleep 
measures when predicting epigenetic ageing.

Taken together, the interaction effects indicated that 
the associations of insomnia and sleep deprivation with 

accelerated epigenetic ageing as measured by  AgeDevGrim 
seem to be stronger in those with little to no history of 
shift work (Fig. 2a and b). When the quadratic sleep dep-
rivation term was included, sleep deprivation seemed to 
be associated with a more accelerated pace of epigenetic 
ageing as measured with DunedinPACE in those with 
over one year of shift work history (Fig. 2c).

Discussion
This study is the first to examine the associations between 
multiple sleep measures, years in shift work, and epige-
netic ageing in a population-based sample of working-age 
adults. Insomnia, symptoms of obstructive sleep apnoea, 
and sleep deprivation were associated with accelerated 
epigenetic ageing. When considering health-related and 
socioeconomic covariates, the effect of obstructive sleep 
apnoea symptoms seemed to be the most robust. The 
sleep measures predicted epigenetic ageing most consist-
ently in  AgeDevPheno,  AgeDevGrim, and DunedinPACE. In 
addition, years spent in shift work were associated with 
accelerated pace of epigenetic ageing. Insomnia and sleep 
deprivation had different effects on epigenetic ageing 
depending on years in shift work.

Among various sleep measures, symptoms of obstruc-
tive sleep apnoea had the most consistent associations 
with epigenetic ageing. Also, the associations between 
obstructive sleep apnoea and  AgeDevGrim and Dun-
edinPACE sustained after controlling for a range of 
health-related, and socioeconomic factors not previ-
ously examined, including cardiovascular disease status, 
diagnosed hypertension and blood pressure. Therefore, 
symptoms of obstructive sleep apnoea appear to be 
associated with accelerated epigenetic ageing indepen-
dently from health-related factors such as hyperten-
sion, cardiovascular disease and socioeconomic factors. 
Previously, sleep apnoea has been found to be associ-
ated with alterations in cellular immunity [57–59], but 
it has also been reported that there are no differences 

Table 4 Results of regression analyses when predicting epigenetic ageing measures by sleep apnoea symptoms

Statistically significant associations (p < 0.05, unadjusted) are bolded, and those that remained significant after FDR correction are marked with an asterisk. Model 
1 was adjusted for sex, daily smoking status, and array type. Model 2 was adjusted for Model 1 covariates and health factors. Model 3 was adjusted with Model 1 
covariates and socioeconomic factors

Model 1
(n = 1618)

Model 2
(n = 1452)

Model 3
(n = 1441)

β 95% CI p β 95% CI p β 95% CI p

AgeDevPheno 0.42 0.07, 0.77 0.018* 0.13 − 0.25, 0.51 0.488 0.39 0.03, 0.76 0.036*
AgeDevGrim 0.51 0.32, 0.70 1.21e-7* 0.24 0.04, 0.44 0.019* 0.44 0.25, 0.64 1.10e-5*
AgeDevHannum − 0.06 − 0.33, 0.21 0.646 − 0.21 − 0.51, 0.09 0.171 − 0.13 − 0.41, 0.16 0.386

AgeDevHorvath 0.29 0.02, 0.56 0.037* 0.18 − 0.12, 0.49 0.236 0.16 − 0.13, 0.45 0.269

DunedinPACE 0.02 0.02, 0.03 1.32e-12* 0.01 0.00, 0.02 0.014* 0.02 0.02, 0.03 3.27e-10*
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Fig. 2 Interaction effects between years of shift work and sleep measures. Interaction effects between years of shift work and insomnia symptoms 
(a), sleep deprivation (b), and the quadratic term of sleep deprivation (c) when predicting  AgeDevGrim or DunedinPACE. (c) was adjusted for array 
type, sex, and smoking status. (a) and (b) were additionally adjusted for health covariates
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in methylation-inferred blood cell composition between 
patients with obstructive sleep apnoea and healthy con-
trols [25]. The compositions are also reported not to 
change longitudinally after sleep apnoea treatment. This 
indicates that our finding is not explained by differences 
in peripheral blood counts.

Insomnia has previously been reported to be associated 
with accelerated DunedinPACE and GrimAge [18, 20]. 
Since we only observed an effect in DunedinPACE when 
using minimal covariates (DNA chip type, smoking sta-
tus, and sex), the association may be partially explained 
by other health-related or socioeconomic variables not 
previously considered, including physical activity and 
hypertension. It is also possible that age could influence 
the relationship between insomnia and epigenetic ageing, 
since earlier studies have mostly included older adults.

Insomnia had a stronger accelerating effect on 
 AgeDevGrim in those with little to no history of shift work 
(when compared to longer-term shift workers). This sug-
gests the possibility of an adaptation effect to shift work 
over long periods of time. This is in accordance with a 
previous study reporting accelerated epigenetic ageing 
among short-term night shift workers (2–6 years) but not 
among long-term night shift workers [31]. Additionally, 
insomnia among shift workers is often attributed to an 
external factor, while insomnia among non-shift work-
ers may imply broader challenges in managing health and 
lifestyle, which in turn may possibly further accelerate 
epigenetic ageing. However, when using DunedinPACE, 
we had quite an opposite finding: sleep deprivation was 
associated with more accelerated pace of epigenetic age-
ing in DunedinPACE in long-term shift workers (when 
compared to those with at most a one-year history of 
shift work). Taken together, the results suggest that Dun-
edinPACE and GrimAge may capture the ageing effects 
of sleep deprivation differently. This is further supported 
by our finding that years in shift work had a main effect 
on DunedinPACE but not on any other measure of epi-
genetic ageing. DunedinPACE has been trained using a 
measure of pace of ageing over 20 years, capturing a total 
19 indicators of organ-system ageing, including BMI, 
triglycerides, total cholesterol, and waist-hip ratio [5]. It 
may therefore be able to detect effects of long-term shift 
work better than GrimAge, which is based on cross-sec-
tional data of smoking pack-years and a set of surrogate 
blood biomarkers, including adrenomedullin and CRP 
among others.

Reliance on self-reported data on all of our sleep 
measures can be considered as a limitation of this study, 
as objective measures such as polysomnography may 
describe some aspects of sleep more accurately  [48]. 
This may not be the case for sleep quality, which 
insomnia symptoms also affect. According to a recent 

meta-analysis, there is discrepancy in objective and sub-
jective sleep measures especially regarding sleep quality, 
possibly indicating that objective sleep measures do not 
capture sleep quality adequately [60]. Self-rated sleep 
quality and quantity have also been found to be associ-
ated with various aspects of cardiovascular health [17, 
61]  , indicating that self-reported sleep measures have 
predictive validity when examining health outcomes. 
Another limitation of our study is related to attrition. 
Our analyses revealed that included and dropped-out 
populations had differences in proportion of sexes 
(included population had a larger proportion of females), 
smoking status (with dropped-out population including 
more smokers), and insomnia symptoms (dropped-out 
population had higher scores). However, especially in 
insomnia symptoms, the differences were minor by effect 
size. Dropped-out and included populations were also 
very similar with regard to cardiovascular health, socio-
economic factors, and other sleep measures.

Third, our study design did not allow for direct exami-
nation of causal relationships between sleep measures 
and measures of epigenetic ageing. However, there is evi-
dence that epigenetic clocks have reversed as a response 
to treatment of sleep apnoea [25], indicating that this 
kind of a relationship is the most likely explanation for 
the effects we observed. In addition, a possible cell-level 
mechanism has been suggested: sleep disturbances can 
lead to metabolic and endocrine disturbances, eventually 
leading to DNA damage which in turn can contribute to 
biological ageing [62]. Epigenome-wide association stud-
ies (EWAS) with a larger sample size could be utilized in 
the future to clarify the mechanisms behind the associa-
tion between sleep disturbances and epigenetic ageing. 
A previous EWAS found numerous methylation sites to 
be associated with nighttime shift work and overall shift 
work [30]. These sites were all distinct from the ones used 
to calculate Hannum and Horvath clocks and PhenoAge.

This study also has notable strengths. Most previous 
evidence on epigenetic ageing and sleep comes from 
smaller and more limited samples, but our study allows 
generalization to the working population. We were also 
able to consider several sleep measures, measures of 
epigenetic ageing, and possible confounders including 
various health conditions and socioeconomic factors. In 
addition, the modifying effect of years spent in shift work 
has not previously been examined in the context of sleep 
and epigenetic ageing.

Conclusion
Insomnia, sleep deprivation, and symptoms of obstruc-
tive sleep apnoea predict accelerated epigenetic ageing 
in the working-age population. Notably, symptoms of 
obstructive sleep apnoea appear to be associated with 
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accelerated epigenetic ageing independently of a variety 
of other health-related and socioeconomic factors. Fur-
thermore, our results showed that insomnia and sleep 
deprivation are related to epigenetic ageing differently 
among shift workers and non-shift workers. These find-
ings provide new insights to the public health burden 
posed by sleep disorders, underscoring the importance 
of addressing obstructive apnoea to mitigate its poten-
tial long-term effects on biological ageing.
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