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Abstract 

Circulating lipid concentrations are clinically associated with cardiometabolic diseases. The phenotypic variance 
explained by identified genetic variants remains limited, highlighting the importance of searching for additional 
factors beyond genetic sequence variants. DNA methylation has been linked to lipid concentrations in previous 
studies, although most of the studies harbored moderate sample sizes and exhibited underrepresentation of non-
European ancestry populations. In addition, knowledge of nongenetic factors on lipid profiles is extremely limited. 
In the Population Architecture Using Genomics and Epidemiology (PAGE) Study, we performed methylome-wide 
association analysis on 9,561 participants from diverse race and ethnicity backgrounds for HDL-c, LDL-c, TC, and TG 
levels, and also tested interactions between smoking or alcohol intake and methylation in their association with lipid 
levels. We identified novel CpG sites at 16 loci (P < 1.18E-7) with successful replication on 3,215 participants. One addi-
tional novel locus was identified in the self-reported White participants (P = 4.66E-8). Although no additional CpG sites 
were identified in the genome-wide interaction analysis, 13 reported CpG sites showed significant heterogeneous 
association across smoking or alcohol intake strata. By mapping novel and reported CpG sites to genes, we identified 
enriched pathways directly linked to lipid metabolism as well as ones spanning various biological functions. These 
findings provide new insights into the regulation of lipid concentrations.

Introduction
Circulating lipid concentrations are clinically associated 
with cardiometabolic diseases [1, 2]. Genome-wide asso-
ciation studies (GWAS) and whole-exome sequencing 
(WES)/whole genome sequencing (WGS) have identified 

thousands of genetic loci associated with high-density 
lipoprotein cholesterol (HDL-c), low-density lipoprotein 
cholesterol (LDL-c), total cholesterol (TC), and triglycer-
ides (TG) [3–5]. Similar to most complex polygenic traits, 
however, the phenotypic variances explained by these 
identified genetic loci remain limited and the underlying 
mechanisms remain to be fully understood [5].

More recently, blood DNA methylation has been linked 
to circulating lipid concentrations in several studies 
[6–12]. Over 900 unique CpG sites have been associated 
with HDL-c, LDL-c, TC, and TG levels, highlighting the 
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importance of looking for additional factors contribut-
ing to lipid variations beyond genetic sequence variants. 
All these published studies focused solely on European 
populations, except one study [12]. African Americans 
and Hispanic/Latino participants together with Euro-
pean participants were included in an effort from the 
Cohort for Heart and Aging Research in Genomic Epi-
demiology (CHARGE) Consortium, uncovering both 
population-agnostic and population-specific novel find-
ings and relatively low correlation of effect estimates of 
LDL-associated CpG sites across population groups [12]. 
These results emphasize the need to improve diversity 
and inclusion in epigenetic studies.

Previous studies have reported the modifying effects 
of nongenetic factors on lipid-gene associations, includ-
ing smoking and alcohol intake, leading to identifications 
of additional novel loci for lipids [13, 14]. Recent stud-
ies also demonstrated the effect of smoking and alcohol 
intake on DNA methylation changes [15–17]. However, 
no study has explored potential modifying effects of 
smoking or alcohol intake on associations between lipid 
levels and DNA methylation variation using interaction 
analysis.

Here, we first present methylome-wide association 
analyses for HDL-c, LDL-c, TC, and TG in over 12,000 
self-reported White, African American, Hispanic/Latino, 
Asian American, and Native American participants from 
eight studies. We then performed interaction analyses 
taking into account smoking and alcohol intake. We aim 
to identify novel CpG sites associated with HDL-c, LDL-
c, TC, and TG levels in a diverse race and ethnicity set-
ting and to explore the potential effect of smoking and 
alcohol intake on the association between CpG sites and 
lipid levels.

Methods
Study populations
A total of eight studies comprising over 12,000 partici-
pants were included in the analysis. Three studies, the 
Atherosclerosis Risk in Communities (ARIC) study [18, 
19], the Women’s Health Initiative (WHI) [20], and the 
Jackson Heart Study (JHS) [21], were included in the 
discovery stage. An additional five studies, the Amish 
study [22, 23], the Cardiovascular Health Study (CHS) 
[24], the Genetic Epidemiology Network of Arterio-
pathy (GENOA) [25], the Multi-ethnic Cohort (MEC) 
study [26], and the Multi-Ethnic Study of Atheroscle-
rosis (MESA) study [27], were included in the replica-
tion stage. Self-reported White, African American, and 
Hispanic/Latino participants formed the three largest 
population groups. Smaller numbers of Asian American 
and Native American participants were also represented 
in our analysis. Each participating study is detailed in 

the Supplemental Methods. All studies obtained writ-
ten informed consent from participants and were 
approved by local institutional review boards and ethics 
committees.

Lipid measurements
HDL-c, TC, and TG levels (mg/dL) in fasting blood were 
measured while LDL-c levels were calculated using the 
Friedewald equation. LDL-c levels were not calculated if 
the corresponding TG levels were greater than 400 mg/
dL. Lipid levels were further adjusted for medication 
use by adding a constant based on previous publications 
(Supplemental Table 1) [28]. If multiple medications were 
used, only the largest constant was applied. Participants 
who were pregnant at blood draw or who had fasted less 
than eight hours prior to blood draw were excluded from 
the analysis. TG levels after adjustment for medication 
were natural log transformed.

Smoking and alcohol intake measurements
To explore the potential modifying effects of behavioral 
factors on associations between DNA methylation and 
lipid levels, we collected information on smoking and 
alcohol intake in each study at the time of blood draw 
(Supplemental Table 2), for exploration of potential inter-
actions. According to smoking behavior, participants 
were divided into three groups: nonsmokers, past smok-
ers, and current smokers. According to alcohol intake 
and sex, participants were divided into four groups: non-
drinkers, light drinkers (≤ 3 servings of alcohol intake 
per week), moderate drinkers (3 < servings of alcohol 
intake per week ≤ 7 and 3 < servings of alcohol intake per 
week ≤ 14 for female and male, respectively), and heavy 
drinkers (> 7 and > 14 servings of alcohol intake per week 
for female and male, respectively). Amish and MEC stud-
ies were excluded from the analysis due to extremely 
limited sample sizes (n < 50) in heavy drinkers and/or 
current smoker groups.

DNA methylation measurement, quality control, 
and normalization
DNA methylation was quantified in each participat-
ing study independently. Levels were measured from 
peripheral blood leukocytes isolated from whole blood. 
The Illumina Infinium HumanMethylation450 BeadChip 
was used in the Amish, ARIC, CHS, and WHI studies, 
while the Illumina Infinium MethylationEPIC BeadChip 
was used in the GENOA, JHS, MEC, and MESA stud-
ies. Either the Beta MIxture Quantile dilation (BMIQ) 
[29], the normal-exponential out-of-band (Noob) [30], 
or the subset quantile normalization [31] approach was 
used to perform preprocessing and normalization in 
each study. A beta value was calculated for each CpG 
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site representing the percentage of methylation at that 
site. Houseman’s method was implemented to estimate 
white blood cell proportions [32]. Any single value with 
a detection p value > 0.01 was set to missing. Probes with 
missing data in greater than 5% of samples per study 
were excluded. Samples with greater than 5% of missing 
probes were also excluded. To avoid spurious signals in 
DNA methylation data, we excluded CpG sites that co-
hybridize to alternate genomic sequences or overlapped 
with genomic variations.

Methylome‑wide association analysis and meta‑analysis
Methylome-wide association analysis was performed 
in each study stratified by self-reported race and eth-
nicity groups, followed by population-combined and 
population-specific meta-analysis. In the study- and 
population-specific methylome-wide association analy-
sis, we first regressed the four lipid traits on age, sex, 
and study-specific covariates (if applicable) and esti-
mated the residual values. In the next step, the inverse-
normalized residual values were used as the outcome 
for testing association with each CpG site using linear 
mixed models. White blood cell proportions (CD8T, 

CD4T, NK, BCELL, MONO, and GRAN values esti-
mated using the Houseman’s method [30]), the first 10 
principal components (PCs, except in Amish, where a 
mixed model controlling for the fixed effects of covari-
ates, and the random effect of a genetic relationship 
matrix derived from the complete Amish pedigree 
structure was used [https://​mmap.​github.​io/]), row, 
and column were adjusted as fixed-effect covariates and 
chip was adjusted as random-effect covariates. Sum-
mary statistics from each study and ancestral group 
were combined through fixed-effect inverse-variance 
weighted meta-analysis using METAL [33]. Population-
specific meta-analysis was performed in African Amer-
ican, White, and Hispanic/Latino participants, which 
are the three largest population groups in our analysis. 
To control for bias and inflation, BACON [34] adjust-
ment was implemented for the meta-analysis results 
generated by METAL. CpG sites with P < 1.18E-7 were 
considered as genome-wide significant. These analy-
ses focused only on CpG sites that are available on the 
HumanMethylation450 BeadChip to maximize sam-
ple sizes. Due to the limited sample sizes of studies 
using the MethylationEPIC BeadChip, we summarized 

Table 1  Basic characteristics of participating studiesa

HDL-c, high-density lipoprotein; LDL-c, low-density lipoprotein; TC, total cholesterol; TG, triglycerides
a Values are shown in mean (SD) if not specified
b TG values are natural log transformed

Study Chip N (% female) Self-reported
race and ethnicity

Age (years) HDL-c (mg/dL) LDL-c (mg/dL) TC (mg/dL) TG (mg/dL) b

Discovery studies

ARIC 450 k 1090 (58.5) White 60.4 (5.4) 52.0 (18.2) 130.5 (36.8) 210.6 (38.6) 4.8 (0.5)

2274 (62.7) African American 57.4 (5.9) 53.1 (17.8) 134.5 (40.5) 211.1 (42.4) 4.6 (0.5)

WHI 450 k 2674 (100) White 69.9 (9.5) 56.0 (14.8) 144.4 (36.2) 230.5 (39.5) 4.9 (0.5)

1451 (100) African American 65.2 (8.8) 56.8 (14.8) 147.5 (43.6) 227.8 (46.6) 4.7 (0.4)

712 (100) Hispanic/Latino 61.5 (6.6) 52.7 (14.1) 140.6 (38.0) 226.4 (42.1) 5.0 (0.5)

125 (100) Asian American 65.4 (7.1) 60.1 (14.2) 125.0 (31.8) 219.7 (35.5) 5.0 (0.5)

48 (100) Native American 64.0 (7.9) 54.2 (15.4) 134.0 (36.3) 222.5 (41.5) 5.0 (0.5)

JHS EPIC 1187 (61.7) African American 56.9 (11.6) 51.3 (14.7) 134.9 (34.6) 208.0 (43.0) 4.6 (0.5)

Replication studies

Amish 450 k 346 (53.0) White 57.1 (13.6) 56.1 (14.6) 145.8 (43.5) 219.5 (48.0) 4.3 (0.5)

CHS 450 k 419 (60.1) White 75.0 (4.9) 52.4 (14.4) 121.6 (32.8) 204.4 (38.5) 4.9 (0.5)

324 (70.8) African American 73.1 (5.5) 57.4 (15.5) 122.2 (35.3) 202.1 (39.1) 4.6 (0.5)

GENOA EPIC 943 (71.6) African American 57.5 (10.3) 54.8 (16.8) 123.8 (42.0) 206.9 (45.7) 4.9 (0.4)

MEC EPIC 67 (67.2) African American 65.0 (7.1) 46.8 (19.0) 141.2 (41.7) 208.7 (45.6) 4.6 (0.5)

91 (41.8) Hispanic/Latino 67.0 (6.6) 41.7 (14.0) 130.9 (37.6) 205.7 (44.0) 5.0 (0.5)

34 (23.5) Asian American 63.0 (7.5) 43.2 (18.7) 112.3 (48.2) 184.0 (50.3) 4.8 (0.6)

57 (50.9) American Indian 64.4 (6.3) 40.1 (13.4) 126.8 (39.8) 188.9 (42.3) 4.6 (0.5)

MESA EPIC 395 (50.0) White 61.0 (9.9) 51.2 (14.7) 128.1 (30.5) 208.0 (36.9) 4.8 (0.5)

181 (58.0) African American 61.0 (9.6) 51.6 (14.8) 122.7 (37.5) 195.1 (42.5) 4.5 (0.5)

287 (55.0) Hispanic/Latino 58.6 (9.4) 47.6 (12.2) 125.2 (34.9) 202.8 (39.6) 4.9 (0.5)

71 (46.0) Asian American 60.8 (10.1) 48.4 (11.8) 129.1 (11.8) 211.4 (41.9) 5.0 (0.6)

https://mmap.github.io/
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association results of CpG sites on the MethylationE-
PIC BeadChip by combining all available studies in our 
analysis.

Methylome‑wide interaction analysis with smoking 
and alcohol intake
We performed methylome-wide interaction analysis in all 
eight participating studies except Amish and MEC due to 
limited sample sizes. Methylome-wide interaction analy-
sis (which has two degrees of freedom for the three-level 
smoking variable and three degrees of freedom for the 
four-level alcohol variable) was performed in each study 
stratified by population groups, followed by population-
combined and population-specific meta-analysis in the 
discovery stage and in the replication stage. In the meth-
ylome-wide interaction analysis, we used the inverse-
normalized residual values as the outcome and adjusted 
for the same set of covariates as in the methylome-wide 
association analysis. To combine study- and population-
specific results, we estimated a test statistic based on 
coefficients and variance–covariance matrix from each 
study and population group. This test statistic followed 

a χ2 distribution and was used to estimate P values. 
Genomic control was applied to the P values to account 
for inflation. CpG sites with P < 1.18E-7 were considered 
as genome-wide significant.

Stratified association analysis across smoking and alcohol 
intake strata
We then focused our efforts on better characterizing pre-
viously reported CpG sites and novel CpG sites identi-
fied in our methylome-wide association analysis in terms 
of their potential interactions with smoking and alcohol 
intake. Association analysis between each CpG site and 
each lipid level was performed in each smoking (non, 
past, and current) and alcohol intake stratum (none, light, 
moderate, and heavy) with the same adjustment imple-
mented in the methylome-wide association analysis. P 
values for heterogeneity were estimated across different 
strata and the significant threshold was set as P < 4.01E-5 
(0.05/1246 CpG sites tested). Stratified analyses were per-
formed only in the three discovery studies (ARIC, WHI, 
and JHS, Supplemental Table 2).

Table 2  Novel CpG sites identified in the population-combined and population-specific meta-analysisa

HDL, high-density lipoprotein; LDL, low-density lipoprotein; TC, total cholesterol; TG, triglycerides
a Association results presented in this table are derived from the discovery stage. Detailed results in the replication stage are presented in Supplemental Table 4–6

Marker Chr:pos Trait Gene Population-combined 
meta-analysis
(N = 9,561)

Meta-analysis in 
White participants
(N = 3,764)

Meta-analysis in 
African American 
participants
(N = 4,912)

Meta-analysis in 
Hispanic/Latino 
participants
(N = 712)

Beta (SE) P Beta (SE) P Beta (SE) P Beta (SE) P

Novel CpG sites identified in the population-combined meta-analysis

cg17438457 1:53,094,893 HDL –  −3.02 (0.43) 2.13E-12  −3.35 (0.68) 4.42E-7  −2.19 (0.71) 2.13E-3  −3.56 (1.50) 1.75E-2

cg00522451 2:113,464,048 HDL – 1.68 (0.30) 2.29E-8 1.81 (0.55) 5.83E-4 1.75 (0.41) 1.99E-5 0.31 (1.12) 7.79E-1

cg18194850 3:67,699,305 HDL SUCLG2  −1.60 (0.26) 1.10E-9  −2.22 (0.46) 9.00E-7  −1.19 (0.37) 1.28E-3  −1.08 (1.03) 2.95E-1

cg01671681 3:155,421,735 HDL PLCH1 1.43 (0.24) 2.19E-9 1.50 (0.38) 4.26E-5 1.25 (0.37) 6.28E-4 2.77 (0.97) 4.26E-3

cg02387843 4:9,892,887 HDL SLC2A9 2.10 (0.30) 4.54E-12 1.73 (0.51) 3.48E-4 2.39 (0.45) 8.80E-8 2.25 (1.19) 5.85E-2

cg16905822 10:924,646 HDL LARP4B  −2.24 (0.40) 2.40E-8  −2.28 (0.65) 3.47E-4  −2.38 (0.61) 9.57E-5  −0.81 (1.52) 5.97E-1

cg23669118 16:1,538,347 HDL C16orf38  −1.76 (0.29) 1.37E-9  −1.71 (0.50) 5.49E-4  −1.67 (0.41) 5.20E-5  −2.57 (1.14) 2.34E-2

cg24403644 20:42,574,624 HDL TOX2  −2.55 (0.43) 3.30E-9  −2.32 (0.72) 1.09E-3  −2.91 (0.63) 4.50E-6  −1.04 (1.57) 5.07E-1

cg03607951 1:79,085,586 LDL IFI44L 0.76 (0.12) 3.47E-10 0.75 (0.23) 1.14E-3 0.78 (0.16) 8.16E-7 0.13 (0.63) 8.34E-1

cg02387843 4:9,892,887 TG SLC2A9  −1.83 (0.32) 1.24E-8  −1.45 (0.43) 7.79E-4  −2.07 (0.41) 5.01E-7  −2.25 (1.25) 7.20E-2

cg00960906 5:31,769,846 TG -  −1.63 (0.30) 7.87E-8  −2.35 (0.44) 7.48E-8  −1.02 (0.37) 5.87E-3  −1.44 (1.19) 2.25E-1

cg07398791 5:118,676,053 TG TNFAIP8  −1.81 (0.28) 1.13E-10  −1.67 (0.37) 8.26E-6  −2.07 (0.36) 1.05E-8 0.09 (1.04) 9.28E-1

cg18722504 5:139,712,966 TG HBEGF  −2.39 (0.43) 2.97E-8  −2.97 (0.59) 4.11E-7  −1.70 (0.55) 2.02E-3  −3.40 (1.64) 3.85E-2

cg14761417 7:130,636,860 TG FLJ43663  −2.38 (0.33) 1.40E-12  −2.13 (0.47) 7.25E-6  −2.20 (0.41) 1.06E-7  −5.06 (1.30) 9.79E-5

cg04927537 17:76,976,091 TG LGALS3BP 1.11 (0.18) 2.42E-9 1.22 (0.28) 1.53E-5 1.11 (0.22) 2.53E-7  −0.18 (0.73) 8.01E-1

cg24673765 19:36,247,869 TG HSPB6 1.89 (0.35) 1.07E-7 1.47 (0.53) 5.64E-3 2.11 (0.42) 4.13E-7 1.30 (1.40) 3.55E-1

cg24403644 20:42,574,624 TG TOX2 2.84 (0.46) 4.87E-10 2.10 (0.62) 6.81E-4 3.43 (0.59) 5.05E-9 2.83 (1.65) 8.62E-2

cg04945608 20:43,118,723 TG TTPAL  −2.34 (0.36) 1.10E-10  −2.21 (0.52) 2.03E-5  −2.22 (0.44) 4.46E-7  −3.65 (1.44) 1.11E-2

Novel CpG site identified in the EA-specific meta-analysis

cg03584506 11: 39,689,828 TG -  −0.99 (0.22) 4.29E-6  −1.94 (0.36) 4.66E-8  −0.55 (0.24) 2.24E-2  −1.05 (0.90) 2.44E-1
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Pathway enrichment analysis
Gene ontology (GO) for biological processes (BP) was 
used to analyze the differentially methylated genes for 
functional enrichment using the R package “clusterPro-
filer” [35, 36]. We combined all previously reported CpG 
sites with the novel ones we identified in our meta-anal-
ysis for the pathway enrichment analysis. The annota-
tions of these CpG sites to the corresponding genes were 
performed using the R package “missMethyl” [37]. Asso-
ciations that were P < 0.05 after FDR adjustment were 
considered statistically significant.

Results
Participating studies were divided into discovery (ARIC, 
WHI, and JHS) and replication stages (Amish, CHS, 
GENOA, MEC, and MESA). Mean ages across studies 
ranged from 56.9 (JHS African American) to 75.0 (CHS 
white, Table  1). Smoking and alcohol intake status for 
participants in each study are summarized in Supple-
mental Table 2.

Novel CpG sites associated with lipids
In the discovery stage, a total of 9,561 participants from 
ARIC, WHI, and JHS were analyzed using both popu-
lation-combined and population-specific approaches. 
In the African American, White, and Hispanic/Latino 
populations, the sample sizes were 4,912, 3,764, and 712, 
respectively. Novel CpG sites identified in the discovery 
stage (P < 1.18E-7 and located > 500  kb away from any 
reported CpG sites) were carried forward for replication 
in 3,215 participants from the Amish, CHS, GENOA, 
MEC, and MESA studies. For this part, we focused on 
CpG sites available on the HumanMethylation450 Bead-
Chip to maximize sample sizes. Across all analyses, 
lambda values ranged from 0.997 to 1.258 after BACON 
adjustment, indicating limited amount of inflation (Sup-
plemental Table 3).

In the population-combined analysis, a total of 348 
CpG sites mapped to 303 loci (based on the genomic 
locations of CpG sites and each locus is > 500  kb away 
from each other) were significantly associated with at 
least one of the four lipid traits in the discovery stage 
(Supplemental Table  4). More than half of these CpG 
sites also displayed consistent directions of association 
in the replication stage (190 CpG sites mapped to 175 
loci, Supplemental Table  4). However, only eight, one, 
and nine loci were successfully replicated in the repli-
cation stage for HDL-c, LDL-c, and TG, respectively 
(P < 0.05/number of significant loci for each lipid trait, 
Table  2). In the African American- and White-specific 
meta-analysis, 12 and four additional novel CpG sites 
were identified, respectively (Supplemental Table 5), and 
one of them was successfully replicated for association 

with TG in self-reported White participants (P < 3.13E-3, 
0.05/16 significant loci in African American- and White-
specific meta-analysis, Table 2). The limited sample sizes 
in the replication stage compared to the discovery stage 
(3,215 and 9,516 participants, respectively) could have an 
impact on the statistical power and the failure of replica-
tion. In summary, we identified and replicated 17 novel 
CpG sites in the multi-population meta-analysis.

To maximize sample sizes for CpG sites only available 
on the MethylationEPIC BeadChip, we performed meta-
analysis including all studies and summarized 96 top 
CpG sites that have not been previously reported in Sup-
plemental Table 6 (P < 1.18E-7).

Replication of previously reported CpG sites
In order to assess the generalizability of previously 
identified CpG sites from the literature to our diverse 
populations in PAGE, we evaluated previously reported 
CpG sites in our population-combined and population-
specific meta-analysis from the discovery stage (Sup-
plemental Tables  7–10). In the population-combined 
analysis, 20.4% (383 out of 1,876), 21.0% (69 out of 
328), 7.8% (14 out of 180), and 19.4% (351 out of 1,824) 
reached genome-wide significance for association with 
HDL-c, LDL-c, TC, and TG, respectively (P < 1.18E-7 and 
with consistent association directions of the reported 
trait, Supplemental Table  7). The percentages increased 
to 57.1%, 59.5%, 60.6%, and 57.6% for HDL-c, LDL-c, 
TC, and TG, respectively, when setting the P value cut-
off to 0.05 (with consistent association directions of the 
reported trait, Supplemental Table 7). In the White- and 
African American-specific meta-analysis, the percent-
ages of reported CpG sites showing genome-wide sig-
nificance dropped to a maximum of 12.8% while the 
percentages of reported CpG sites with P < 0.05 stayed 
close to 50% (Supplemental Tables 8–9). In the Hispanic/
Latino-specific meta-analysis with a considerably smaller 
sample size, the percentages of reported CpG sites show-
ing genome-wide significance were all below 1% and 
roughly 15% reported CpG sites showed P < 0.05 (Sup-
plemental Table 10). It is worth mentioning that the vast 
majority of previously reported loci (85.4%) are reported 
by the recent multi-ethnic meta-analysis [12] and there 
are overlapping samples (60.4%) between our PAGE dis-
covery stage studies with the published multi-ethnic 
meta-analysis [12].

Interactions between CpG sites and behavioral factors 
on lipid levels
We first performed methylome-wide interaction analy-
sis aiming to identify additional CpG sites whose asso-
ciations with lipids were context specific, by allowing for 
interaction with smoking or alcohol intake status. We 
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performed methylome-wide interaction analysis in the 
discovery studies (ARIC, WHI, and JHS, Supplemental 
Table  2). However, no CpG sites reached genome-wide 
significance (P < 1.18E-7).

We then performed stratified association analysis 
focusing on the novel CpG sites we identified in our PAGE 
analysis and those that had been previously associated in 
the literature. A total of 914, 316, and 16 top CpG sites 
from literature, the population-combined meta-analysis, 
and the population-specific meta-analysis, respectively, 
were tested for association with lipid levels in each smok-
ing and alcohol intake stratum. In the smoking-strat-
ified analysis, three and eight CpG sites associated with 
HDL-c and TG, respectively, showed significant differ-
ences across the three strata (P < 4.01E-5, Supplemental 
Fig. 1). For the three CpG sites displaying heterogeneous 
associations with HDL-c, all of them showed more sig-
nificant association and larger effect sizes in nonsmok-
ers compared to past or current smokers (Supplemental 
Fig. 1A-B). For the eight CpG sites showing heterogene-
ous associations with TG, cg16411857, which is previ-
ously reported for association with LDL-c, showed more 
significant association and larger effect sizes in current 
smokers (P = 1.02E-5) while the other seven CpG sites 
all showed more significant associations and larger effect 
sizes in nonsmokers (Supplemental Fig. 1B). These eight 
CpG sites included a newly identified CpG site, SLC2A9-
cg02387843, which is associated with both HDL-c and 
TG levels in the population-combined meta-analysis and 
showed a more pronounced association with TG in the 
nonsmoking group (Supplemental Fig.  1B). In the alco-
hol-stratified analysis, one CpG site each in association 
with HDL-c (cg15804598) and TC (cg19377250), respec-
tively, showed significant heterogeneity across strata 
(P < 4.01E-5, Supplemental Fig.  1). Both these two CpG 
sites were reported previously (cg15804598 for associa-
tion with HDL-c and cg19377250 for association with 
TG) [12] and showed the largest effect sizes in moderate 
drinkers (Supplemental Fig. 1C and 1D).

Pathway enrichment analysis
To better understand the pathways enriched for genes 
affected by lipid-associated CpG sites, we mapped all 
previously reported CpG sites as well as novel CpG 
sites identified in the current study to corresponding 
genes and then identified GO pathways that were over-
represented by these genes. A total of 41, 57, 17, and 
50 GO pathways are enriched for the mapped genes for 
HDL-c, LDL-c, TC, and TG, respectively (Supplemental 
Table  11, FDR adjusted P < 0.05). Among these signifi-
cantly enriched pathways, 4 were shared across all four 
lipid traits, namely cholesterol biosynthetic process, cho-
lesterol metabolic process, sterol biosynthetic process, 

and secondary alcohol biosynthetic process. Notably, 
the genes mapped to these four shared pathways were 
not the same across the four lipids traits (Supplemen-
tal Table  11), indicating distinct CpG sites and genes 
contributing to the enrichment of the same pathways 
across lipid traits. It is also worth mentioning that some 
enriched GO pathways with entirely different descrip-
tions harbor the same set of genes. For example, the same 
five genes associated with LDL-c were mapped to both 
sterol metabolic process (GO:0016125) and secondary 
alcohol metabolic process (GO:1,902,652, supplemental 
Table  11). These connections across enriched pathways 
are displayed in Supplemental Fig. 2.

Discussion
We report here a large-scale methylome-wide associa-
tion analysis of blood lipids in diverse race and ethnic-
ity populations and the first interaction analysis focusing 
on smoking and alcohol intake. We identified and repli-
cated a total of 17 novel CpG sites in the meta-analysis. 
Although no additional novel CpG sites were identified in 
the interaction analysis, 13 CpG sites showed significant 
heterogeneity across smoking or alcohol intake groups 
in the stratified analysis. Pathway enrichment analysis, 
including both newly and previously identified CpG sites, 
revealed new inferences on lipid metabolism.

There are five population groups contributing to the 
combined meta-analysis, making it the most diverse 
study so far. Population-specific meta-analysis offered 
us an opportunity to identify potential population-spe-
cific signals and a CpG site in association with TG was 
revealed only in self-reported White participants. This 
CpG site, cg03584506, showed much larger effect sizes in 
White participants compared to African American par-
ticipants (Table 2). It is also worth mentioning here that 
we included not only CpG sites measured on the Illumina 
Infinium HumanMethylation450 BeadChip but also ones 
on the Illumina Infinium MethylationEPIC BeadChip, 
which almost doubles the number of tested CpG sites. 
To maximize the sample size for the CpG sites measured 
on the Illumina Infinium MethylationEPIC BeadChip, we 
simply combined all available studies and summarized 
significant findings in Supplemental Table 6. Future stud-
ies are needed to validate these potential novel findings.

The overlap between genes mapped by lipid-associated 
CpG sites and genes identified in previous GWAS studies 
is limited. Among the 17 novel CpG sites identified in our 
analysis, 13 CpG sites mapped to a gene region while the 
others are located in gene desert areas. Only one of these 
13 genes, TNFAIP8 which is associated with TG in our 
study, has been reported in a published GWAS study for 
association with HDL-c and TG [38]. At the same time, 
11 of the 13 mapped genes overlapped with reported 
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genes from previous methylome-wide association stud-
ies for association with cardiometabolic traits or diseases, 
including type 2 diabetes [39], ischemic heart disease 
[39], body mass index [40–44], waist circumference [41, 
42], and fasting insulin [45] (Supplemental Table  12). 
These observations demonstrate the strength of methyla-
tion studies for uncovering additional genes implicated 
in lipid metabolism and cardiometabolic traits and dis-
eases. These 11 genes have also been reported for asso-
ciation with smoking and/or alcohol intake [46–49]. The 
mechanisms connecting these CpG sites to lipids as well 
as smoking and alcohol intake need further investiga-
tion. Although C16orf38 and FLJ43663 show no overlap 
with genes reported for association with cardiometabolic 
traits or diseases in methylome-wide association stud-
ies, there is strong association of C16orf38 genetic vari-
ants with insulin-like growth factor 1 in previous GWAS 
studies [50, 51] and FLJ43663 is linked to lipogenesis in 
hepatocytes [52].

Previous genome-wide genetic variant interaction anal-
yses on lipids with smoking or alcohol intake identified 
additional genetic loci [13, 14], motivating us to imple-
ment the same strategy for CpG sites in the current study. 
However, no CpG site reached genome-wide significance 
in the interaction analysis. We further performed strati-
fied analyses focusing only on newly identified CpG sites 
and previously reported ones and observed 11 and two 
CpG sites exhibiting significant heterogeneity across 
smoking and alcohol intake strata, respectively. The 
majority of the heterogeneous associations across smok-
ing strata showed larger effect sizes in the nonsmoker 
group. The two heterogeneous associations across alco-
hol intake strata were both driven by larger effect sizes 
in the moderate drinker group, supporting previous stud-
ies which suggest an important influence of alcohol con-
sumption on lipid levels. Follow-up analyses are needed 
to confirm these findings and the biological mechanisms 
underlying these observed heterogeneous associations 
require further investigation.

The pathways identified using CpG sites in the cur-
rent study showed limited overlap with the ones identi-
fied using genetic variants from a previously published 
GWAS [53]. As expected, lipid metabolism-related path-
ways showed enrichment in both studies. In both stud-
ies, we observed that most of the enriched pathways 
were lipid-specific. It is worth noting that we identified 
immune response related pathways using LDL-associated 
CpG sites and it is well known that lipids are important 
factors in the host defense system [54]. We also identi-
fied blood cell differentiation related pathways using 
HDL-associated CpG sites, whose potential mechanisms 
have been explored in experimental studies in the set-
ting of atherosclerosis progression [55]. Another possible 

explanation for this is the inadequate adjustment for esti-
mated blood cell proportions in the association analyses.

There are three major limitations of our current study. 
First, examining additional factors, such as dietary habits, 
physical activity levels, geographic location, and preva-
lence of chronic diseases, might contribute to a better 
understanding of the association between CpG sites and 
lipid metabolism. These factors have been shown to influ-
ence lipid levels [56–58], and future studies are needed 
to explore the potential impact of these factors. Insuffi-
cient adjustment of confounding factors might also lead 
to the failure of replication of some CpG sites identified 
in the discovery stage. In addition, sex-stratified analyses 
could potentially help identify sex-specific associations 
that have been missed in the sex-combined analysis [59]. 
Secondly, whole blood-based DNA methylation was used 
in the current analysis while lipid metabolism-related tis-
sues, namely liver, adipose tissue, and muscle, were not 
available for evaluation. Recent studies have explored 
DNA methylation patterns across tissues and the cor-
relation varies based on genes, tissues, and the studied 
phenotypes [60–63]. Notably, findings from an epige-
netic study on lipid-related metabolites indicated that 
differential methylation of multiple CpG sites persists in 
both whole blood and adipose tissue [64]. Another study 
found that differentially methylated CpG sites at well-
established lipid-associated genes ABCG1 and SREBF1 
were also associated with insulin resistance and BMI in 
blood, liver, and adipose tissues [65]. Whole blood has 
been the most commonly used biological material in epi-
genetic studies due to its easy accessibility and minimal 
invasiveness. Studies using DNA methylation measure-
ments in whole blood benefit from much larger sample 
sizes compared to ones using tissue samples. Neverthe-
less, future studies on lipid metabolism in related tissues 
and experimental studies are needed to confirm findings 
from whole blood and to gain a more comprehensive pic-
ture of DNA methylation patterns across tissues. Thirdly, 
the cross-sectional design of our current study limits 
inference on temporality. Future Mendelian randomiza-
tion analyses in large sample sizes are needed to clarify 
whether the CpG variations cause lipid level changes or 
are a consequence of lipid variability. There are two minor 
limitations of the current study. The limited sample sizes 
of Asian American and Native American populations 
prevented us from performing meaningful analyses. Par-
ticipants in some of the included studies were originally 
selected for other phenotypes, which could potentially 
introduce a selection bias.

In conclusion, we identified 17 novel CpG sites in the 
methylome-wide association analysis and confirmed a 
considerable number of previously reported CpG sites. 
We identified 13 CpG sites which exhibit heterogeneous 
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associations across smoking or alcohol intake strata. Our 
analyses provided additional information on the genes 
and pathways associated with lipid concentrations com-
pared to GWAS studies.
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