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Abstract 

Background  Tobacco and alcohol are recognized risk factors for heart disease, yet their causal effects on electro-
cardiogram (ECG) signaling and mechanisms remain unclear. Previous studies may be susceptible to confounding 
or bias, and this study dissected the genetic architecture linking tobacco and alcohol consumption with P-wave dura-
tion, PR interval, and QT interval.

Methods  Utilizing genetic instruments for tobacco and alcohol consumption, associated methylation quantitative 
trait locus (mQTL), and summary-level GWAS data for ECG indices, we assessed heritability and genetic causal asso-
ciations using linkage disequilibrium score regression and Mendelian randomization (MR) analysis. Fine mapping 
was performed via colocalization analysis and summary-data-based MR (SMR) to identify potential shared genetic 
variants.

Results  A positive causal relationship was found between drinks per week (DrnkWk) and QT interval [β (95%CI): 1.06 
(0.91, 5.05), P = 0.005], with causality substantiated through multiple robust MR models. Multivariable MR confirmed 
independence from smoking phenotypes. In epigenetic MR analyses, two alcohol-related CpG loci (cg03345232 
and cg04605617) were causally associated with QT interval changes, with cg04605617 mapping to PLA2G2C gene sig-
nificantly prolonging QT. The mQTL rs10916683 at cg04605617 is a strong eQTL for PLA2G2C. Additionally, cg03345232 
shared a causal variant (rs12881206) with QT interval predisposition through colocalization analysis. SMR analysis did 
not identify shared putative functional genes passing the HEIDI test between DrnkWk and the QT interval.

Conclusions  There is a causal relationship between DrnkWk and QT interval prolongation, and targeting specific 
DNA methylation sites like cg04605617 mapped to PLA2G2C may provide novel targets for preventing QT interval 
prolongation.
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Graphic abstract

Introduction
Non-invasive indices derived from the electrocardiogram 
(ECG), such as P-wave duration, PR interval, and QT 
interval, play a pivotal role in providing insights into car-
diac structural and electrical conduction abnormalities 
[1–3]. These indices are closely associated with the risk 
of atrial and ventricular arrhythmias, with prolonged QT 
intervals linked to ventricular arrhythmias, particularly 
torsade de pointes (TdP) [4–9]. The clinical significance 
of these ECG parameters lies in their causal impact on 
conditions such as atrial fibrillation and sudden cardiac 
death (SCD) [10, 11].

Observational studies reveal that ECG signals are influ-
enced by various pathophysiological factors, such as age, 
gender, genetics, medications, electrolytes, hormones, 
and the autonomic nervous system [12, 13]. Underlying 

genetic and environmental determinants, such as poor 
lifestyle choices, possess the potential to disturb nor-
mal cardiac rhythms by modifying these pivotal factors 
that contribute to alterations in ECG indices [14]. Large 
cohort studies suggest that the amalgamation of genetic 
composition and collective health behaviors and factors 
exhibits a log-additive impact on the susceptibility to 
cardiovascular disease [15, 16]. The investigation of the 
causal association between these underlying factors and 
ECG signals prompts exploration into the impact of two 
prevalent adverse lifestyles, smoking and alcohol con-
sumption, on ECG indices.

Smoking and alcohol use, global modifiable risk factors, 
exhibit intricate connections with cardiovascular disease. 
Both tobacco use and alcohol consumption, whether 
acute or chronic, are associated with arrhythmias 
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[17–22]. Alcohol overdose is frequently associated with 
"holiday heart syndrome," characterized by a heart block 
PR and a prolonged QT interval [23–25]. Notably, epige-
nome-wide association studies (EWAS) show the effects 
of smoking and alcohol on DNA methylation, a regula-
tory mechanism influencing gene expression and poten-
tially regulating cardiac ion channel activity [26–28]. 
However, the extent to which such epigenetic changes 
mediate the response of electrocardiographic signaling 
molecules to smoking and alcohol consumption, thereby 
affecting the normal regulation of cardiac rhythm, 
remains unclear. Additionally, establishing causal asso-
ciations in observational studies is inherently challenging 
due to confounding bias, necessitating causal inference, 
and genetic architecture investigation.

Here, using large-scale genome-wide association stud-
ies (GWAS) and EWAS summary statistics, we sought 
to explore genetic correlations, causality, and shared risk 
loci with putative functions between tobacco and alcohol 
consumption and ECG indices, unraveling the underlying 
genetic association.

Method
Study design
This study aimed to investigate the genetic architec-
ture between smoking and drinking exposure and ECG 
parameters. Five different smoking and drinking pheno-
types were used as exposure factors, encompassing three 
distinct types of alcohol consumption behavior: drinks 
per week (DrnkWk, indicating the average number of 
drinks reported by each participant per week), alco-
hol use disorders (AUD, a binary phenotype represent-
ing a clinical diagnosis of chronic alcohol dependence), 
and problematic alcohol use (PAU, a broader pheno-
type incorporating both clinical and subclinical patterns 
of alcohol misuse), and two different stages of tobacco 
use: cigarettes per day (CigDay, a continuous meas-
ure reflecting the average number of cigarettes smoked 
daily), smoking initiation (SmkInit, a binary phenotype 
denoting whether an individual has ever smoked, serv-
ing as a proxy for early-life smoking behavior and lifetime 
exposure risk). The ECG markers, specifically P-wave 
duration (PWD), PR, and QT interval durations, were 
utilized as outcome measures. PWD, PR, and QT inter-
vals were chosen due to their established roles in arrhyth-
mic risk stratification and their potential modulation by 
genetic and environmental factors. Prolonged QT inter-
vals, in particular, are linked to ventricular arrhythmias 
and SCD. Other ECG parameters, such as QRS dura-
tion, were not included due to the limited availability 
of GWAS data with sufficient statistical power, specifi-
cally within European populations. We used linkage 
disequilibrium score regression (LDSC) to estimate the 

heritability and genetic correlations between exposures 
and outcomes [29]. LDSC provides an initial assessment 
of shared genetic background between smoking, alco-
hol consumption, and ECG traits. A genetic correlation 
would suggest common genetic influences but does not 
establish causality. Two-sample MR (TSMR) was used 
to provide genetically causal evidence in two independ-
ent, non-overlapping populations, and multivariable MR 
(MVMR) was applied to address crosstalk genetic effects 
between smoking and drinking phenotypes, given genetic 
correction between the two (|rg|= 0.16–0.27) [30–32]. To 
identify whether DNA methylation (mQTL) mediates the 
observed causal relationships, we conducted epigenetic 
methylation MR. Colocalization analysis was then used 
to determine whether the same genetic variant drives 
both methylation changes and ECG alterations, strength-
ening the mechanistic interpretation of the findings.[33]. 
Finally, we adopted summary-data-based MR (SMR) to 
investigate shared gene expression pathways using eQTL 
from whole blood and cardiac tissue [34]. 

GWAS summary statistics sources
We obtained GWAS summary statistics of smoking (Cig-
Day and SmkInit) and drinking (DrnkWk) from the 
GWAS & Sequencing Consortium of Alcohol and Nico-
tine Use (GSCAN) database [35]. GSCAN Phase 2 inte-
grated data from 60 GWAS involving up to 3.4 million 
participants from four major ancestries, focusing on nic-
otine and substance use [30]. To ensure genetic homoge-
neity, we extracted stratified GWAS data for European 
populations (n = 2,669,029) stratified without United 
Kingdom Biobank (UKB). Additionally, GWAS in the 
FinnGen consortium for AUD (diagnostic codes: ICD-10 
F10.2 or F10.3, 376,477 individuals) and the Million Vet-
eran Program (MVP) GWAS meta-analysis for PAU 
(435,563 individuals) were used [36]. Summary statistics 
for PR and QT intervals were obtained from the Cardio-
vascular Disease Knowledge Portal (CVDKP). The 
CVDKP database curates a multi-ancestry GWAS data-
set of 40 studies for the PR interval, with 271,570 Europe-
ans accounting for 92.6% of the total participants [37]. 
The QT interval GWAS is a large-scale meta-analysis of 
84,630 participants from the UKB [38]. PWD GWAS was 
derived from a recently published GWAS study 
(GCST004826) involving 37,678 Europeans, available in 
the NHGRI-EBI GWAS Catalog [39] (Table 1). Measure-
ments of these parameters in milliseconds (ms) were 
obtained from resting supine 12-lead or 3-lead ECGs 
taken in the first 15 s before exercise testing on a bicycle. 
Heart rate-corrected QT (QTc) intervals were calculated 
using the Bazett formula, defined as QTc =

QT(ms)
√
RR (s)

[38]. 
More detailed recordings of ECGs and covariate adjust-
ment for reliable results analysis can be found in the 
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original studies [37–39]. All studies, including the 
FinnGen consortium, have their study protocols and have 
been approved by local ethics committees.

Genetic proxies for alcohol and tobacco use
Genetic variants used as instrumental variables (IVs) 
meet the core assumptions of MR (Fig.  1). To serve as 
genetic proxies for smoking and alcohol use, single nucle-
otide polymorphisms (SNPs) needed to exhibit genome-
wide significance (GWS) of P < 5 × 10−8 from each 
exposure summary-level dataset. Extracted SNP data 

were subsequently subjected to linkage disequilibrium 
(LD) clumping (r2 = 0.001, kb = 10,000) to ensure genetic 
independence. Palindromic variants were excluded if 
they had intermediate allele frequencies that hindered 
the inference of positive-strand alleles. The F-statistic 
greater than 10 was used to exclude weak instrumental 
bias [40].

Genetic instruments for alcohol‐related DNA methylation
We obtained whole-blood DNA methylation pat-
terns associated with alcohol consumption from an 

Table 1  Information for GWAS summary statistics

GSCAN, GWAS & Sequencing Consortium of Alcohol and Nicotine Use; MVP Million Veteran Program, CVDKP Cardiovascular Disease Knowledge Portal

Exposure Samples Source Ancestry

Drinks per week (DrnkWk) 2,669,029 GSCAN European

Cigarettes per day (CigDay) 2,669,029 GSCAN European

Smoking initiation (SmkInit) 2,669,029 GSCAN European

Alcohol use disorders (AUD) 376,477 FinnGen consortium European

Problematic alcohol use (PAU) 435,563 MVP European

Outcome

P-wave duration (PWD) 37,678 NHGRI-EBI GWAS Catalog European

PR interval 271,570 CVDKP European

QT interval 84,630 CVDKP European

Fig. 1  Core assumptions of MR using genetic proxies for alcohol and tobacco use. The relevance assumption ensures IVs are strongly associated 
with the exposures. The independence assumption indicates IVs are independent of confounders. The exclusion restriction assumption ensures IVs 
affect ECG indices only through alcohol and tobacco use, not other pathways
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epigenome-wide association study (EWAS) with a meta-
analysis of 13 populations (13,317 individuals) in the 
MRC-IEU EWAS Catalog [41]. The Infinium Human-
Methylation450 BeadChip was employed to measure 
DNA methylation levels in blood samples, and an EWAS 
model was constructed using DNA methylation β value 
(the ratio of methylated probe intensities divided by the 
sum of methylated and non-methylated probe intensities) 
as the outcome variable and for multiple covariates (e.g., 
age, sex, BMI, smoking, batch effect, and white cell com-
position). A total of 363 CpG loci in 9643 Europeans were 
identified as being associated with alcohol consumption 
within the Bonferroni-adjusted threshold of epigenomic 
significance at P < 1 × 10−7 (0.05/440,000). We then 
derived mQTL robustly associated with these CpG loci 
based on the Accessible Resource for Integrated Epig-
enomic Studies (ARIES) project database (mQTLdb). The 
ARIES initiative utilized the Illumina Infinium Human-
Methylation450 (HM450) BeadChip for epigenetic 
data and the Illumina Infinium Human Hap550/660-w 
quad SNP genotyping platform for genetic data in 1018 
mother–offspring pairs from the Avon Longitudinal 
Study of Parents and Children (ALSPAC) cohort. Matrix 
eQTL software conducted preliminary SNP-CpG asso-
ciation analysis, followed by exact linear regression and 
genome-wide complex trait analysis (GCTA) for sig-
nificantly independent mQTLs related to each CpG site. 
Identified mQTLs at middle‐age time points were further 
analyzed for subsequent methylation MR.

Statistical analyses
Heritability and genetic correlation
LDSC methods have proven effective in estimating 
genetic correlations across multiple traits or diseases 
[32]. We used the ldscr package to assess single-trait 
SNP heritability (h2) and cross-trait genetic correlations 
(rg), including all exposures and outcomes. The analy-
sis began with preparing and cleaning GWAS summary 
statistics for each trait. LD scores were computed using 
reference panel data to quantify the extent of LD across 
the genome. SNP-based heritability was then calculated 
using a univariate LDSC model to estimate the propor-
tion of phenotypic variance explained by the SNPs. For 
cross-trait genetic correlations, a bivariate LDSC model 
was employed, leaving the intercept unconstrained to 
account for potential confounders such as population 
stratification. The genetic correlations (rg) between dif-
ferent phenotypes were estimated by fitting the bivari-
ate LDSC model to the GWAS summary statistics of the 
exposures and outcomes. The estimated rg values were 
interpreted to understand the genetic overlap between 
different traits.

Mendelian randomization
TwoSampleMR package (version 0.5.7) and MR plei-
otropy residual sum and outlier (MR-PRESSO) pack-
age for TSMR and MVMR, respectively, allowed us to 
assess causality through a variety of models and to per-
form sensitivity analyses on the results [31]. The analysis 
relies on the inverse variance weighted (IVW) method 
for unbiased and effective causal estimates. This method 
assumes the validity of all SNPs as IVs and estimates the 
causal effect by regressing the SNP-ECG measure on the 
SNP-alcohol and tobacco effect sizes, weighted by the 
inverse of the SNP-ECG marker standard error. Robust 
analyses were implemented using the MR-Egger regres-
sion, weighted median models, and the radial MR frame-
work [42]. Radial MR, particularly leveraging a Cochran’s 
Q-statistic-based weighted regression method, gener-
ates radial plots to transform data, providing immediate 
visual diagnostics and robust weighting that can detect 
subtle outlier effects often overlooked by traditional sta-
tistical methods [42]. Potential directional horizontal 
pleiotropy was addressed using the Egger intercept test 
and the MR-Robust Adjusted Profile Score (MR-RAPS) 
[43]. MR-RAPS generated a consistent and asymptoti-
cally normal estimate by adjusting for profile scores, with 
ANOVA results (P > 0.05), confirming that IVs weights 
were independent of regression residuals. This sug-
gests effective control of potential pleiotropy, thereby 
enhancing the reliability of causal effect estimation. 
Furthermore, additional sensitivity analyses, including 
heterogeneity assessments and leave-one-out analysis, 
were performed to ensure the robustness of the findings. 
When evaluating the causal effects of DNA methylation 
at alcohol-related CpG sites, the method varies based on 
the number of associated mQTLs. For CpG sites linked 
to a single mQTL, only the Wald ratio and its corre-
sponding SE are computed. In contrast, if a CpG site is 
associated with multiple independent mQTLs, the afore-
mentioned IVW method is applied. To address multiple 
tests, we employed Bonferroni correction.

Fine mapping under a single causal variant assumption
For those individual CpG loci convincingly associ-
ated with ECG marker changes (Bonferroni corrected 
P < 0.05/number of CpG loci), we performed an approxi-
mate Bayes factor colocalization analysis to finely map 
each feature under a single causal variant assumption. 
All available mQTLs for the CpG loci of interest were 
obtained from the Genetics of DNA Methylation Con-
sortium (GoDMC) [44], which includes a diverse range 
of 36 cohorts from various studies and populations, such 
as ALSPAC, Brisbane Systems Genetics Study (BSGS), 
and GSK, providing a valuable resource for examining 
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genetic influences on DNA methylation. These mQTL 
data were then integrated with the GWAS summary data. 
Colocalization analyses using the "coloc" R package were 
designed to investigate whether the association of these 
CpG locus-associated mQTL with ECG marker change 
was driven by shared causal variation. This analysis tested 
the posterior probability of five hypotheses: H0 (no caus-
ally variable loci), H1 (only trait 1 has causally variable 
loci), H2 (only trait 2 has causally variable loci), H3 (each 
of the two traits has a different causally variable locus), 
and H4 (the two traits share a causally variable locus). 
The results provide the Bayes factor and posterior prob-
ability for each SNP, and we considered an H4 posterior 
probability of 95% or higher for a single mQTL as evi-
dence of colocalization.

SMR
SMR is a robust methodology for investigating the 
shared genetic basis between traits using summary sta-
tistics from GWAS and QTL [34]. We used GWAS and 
eQTL data to detect associations between trait-associ-
ated SNPs and gene expression and applied the hetero-
geneity in dependent instrument (HEIDI) test to identify 
potential horizontal pleiotropy in causal associations. 
Whole-blood eQTL gene expression was obtained from 
cis-eQTL summary data from eQTLGen Consortium, 
while heart left ventricle eQTL data were from the GTEx 
project (v8, only SNPs with P < 1 × 10−5 are included). We 
utilized SMR software (version 1.3.1) with default param-
eters, configuring the cis window to 1  Mb, the MAF 
threshold to 0.01, and requiring at least one cis-eQTL 
at P < 5 × 10−8. The hg19 reference genome and Ensembl 
were used for gene annotation. Significant SMR probes 
were identified using Bonferroni-corrected thresholds 
(0.05/number of probes), and the HEIDI test P value 
thresholds > 0.05 were considered indicative of a lack of 
heterogeneity.

Result
Genetic risk effects of drinking, smoking, and ECG indices
We assessed the heritability and genetic associations of 
smoking, alcohol consumption, and ECG indices using 
univariate and bivariate LDSC. The phenotype of ciga-
rette and alcohol consumption could be explained by 
3.1–9.3% genetic background, whereas PWD, PR, and 
QT interval showed higher genetic effects from 10.5 to 
19.3%. Regarding cross-trait genetic correlations, we 
observed significant genetic correlations between AUD 
and QT interval (rg = 0.126, P = 0.002), SmkInit and QT 
interval (rg = 0.096, P = 0.002), and CigDay and QT inter-
val (rg = 0.184, P = 2.04E-6) (Table  S1). Before perform-
ing the TSMR analysis, we evaluated bias and Type I 
error rates related to sample overlap using the Burgess 

et  al. tool (https://​sb452.​shiny​apps.​io/​overl​ap/) under 
the null hypothesis. By inputting exposure and outcome 
sample sizes, we estimated overlap proportions (0.0–1.0) 
with default settings. The Type I error rate remained 
stable at 0.05, with no inflation, and the bias was con-
sistently 0.000, confirming the reliability of our estima-
tion method. When MR analyses were performed, we 
identified 10 (F-statistic: 42.17–286.69), 10 (F-statistic: 
30.68–71.09), 29 (F-statistic: 39.88–484), 16 (F-statis-
tic: 31.38–790.45), and 46 (F-statistic: 34.34–103.69) 
genetic instruments for DrnkWk, AUD, PAU, CigDay, 
and SmkInit, respectively (Table S2). IVW results showed 
that genetically predicted PAU was associated with 
longer PWD [β (95%CI): 11.64 (8.25, 15.03), P = 1.76E-
11], and SmkInit was associated with shorter PR intervals 
[β (95%CI): −1.23 (−2.12, −0.33), P = 0.007]. Notably, the 
QT interval was more significantly affected by the genetic 
predisposition to tobacco and alcohol consumption, with 
three of the five exposures significantly prolonging the 
QT interval [AUD, β (95%CI): 1.35 (0.24, 2.46), P = 0.017; 
DrnkWk, β (95%CI): 1.06 (0.91, 5.05), P = 0.005; SmkInit, 
β (95%CI): 2.06 (0.32, 3.80), P = 0.020] (Fig. 2).

To gauge the stability of the TSMR results, multi-
ple robust models were further used to provide causal 
estimates consistent with IVW. The casual correla-
tion between PAU and longer PWD passed the test of 
weighted median models and radial IVW, but failed 
MR-Egger’s assumptions [β (95%CI): −0.17 (−24.28, 
23.93), P = 0.990]. In contrast, MR-Egger suggested 
a weak correlation between SmkInit and longer PR 
intervals, but weighted median models radial IVW did 
not provide significant causal inference (Fig.  3A and 
Table  S3). The radial plot revealed that no influential 
outliers were affecting the causal relationship between 
PAU and PWD. However, 9 potential outlier points were 
detected in the association between SmkInit and longer 
PR intervals (Fig.  3B). The outlier-corrected analy-
sis (radial Egger corrected) maintained the negative 
result consistent with other robust methods (Fig.  3A). 
For QT intervals, genetic predispositions to AUD and 
SmkInit were found to have potential outliers, with 1 
and 5 outlier points, respectively. Although the causal 
relationship remained significant after outlier removal, 
this association between genetically determined AUD, 
SmkInit, and prolonged QT intervals was almost 
exclusively rejected in other sensitivity analyses due 
to inconsistent causal directions (Fig.  3A). Neverthe-
less, all robust analytical models, including radial MR 
outlier correction, supported a causal effect between 
DrnkWk and longer QT intervals [βMR-Egger (95% CI): 
4.59 (0.85, 8.33), P = 0.018; βpenalized weighted median (95% 
CI): 5.05 (2.00, 8.10), P = 0.001; βRadial IVW (95%CI): 2.98 

https://sb452.shinyapps.io/overlap/
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(0.91, 5.05), P = 0.005] (Fig.  3 and Table  S3). Impor-
tantly, after adjusting for CigDay and SmkInit, the 
MVMR analysis substantiated that the DrnkWk is caus-
ally linked to prolonged QT intervals (Table  2). Addi-
tionally, examinations based on the MR-Egger intercept 
and MR-RAPS tests indicated the absence of direc-
tional horizontal pleiotropy (P > 0.05) for DrnkWk and 
QT interval, further suggesting adherence to the MR 
exclusive restriction assumption in the aforementioned 
analyses (Table  3). Leave-one-out analysis showed no 
single SNP significantly impacted results and no heter-
ogeneity was observed (IVW: P = 0.061) (Fig. 4A and B). 
MR-RAPS diagnostics (ANOVA: P = 0.221) indicated 
IV weights were independent of residuals, ensuring 
unbiased estimates. Residual and Q-Q plots validated 
normality assumptions, supporting reliable MR find-
ings (Fig. 4C).

The causal effect of alcohol‐related DNA methylation CpG 
loci on QT interval predisposition
Given the observed causal relationship between 
DrnkWk and prolonged QT intervals, and the fact that 
EWAS suggests that drinking influences DNA methyla-
tion in blood and tissues, and that aberrant epigenetic 
mechanisms (patterns of DNA methylation) potentially 
modulate a wide range of cardiovascular disorders, 
including cardiac arrhythmias [26–28], using GCTA 
results, we identified 65 SNPs associated with 56 CpG 
sites from the mQTLdb database, all of them belonging 
to cis-mQTL (Table S4). These mQTL were integrated 
with the QT interval GWAS to be included in the 
methylation MR analyses. Eight CpG loci (cg03345232, 
cg04605617, cg07091481, cg07104958, cg07512517, 
cg07567724, cg12807764, and cg20374917) were iden-
tified as causally associated with QT interval suscep-
tibility, achieving nominal significance at the P < 0.05 

Fig. 2  Mendelian randomization (MR) estimates the causal effect between tobacco and alcohol consumption and cardiac ECG indexes. A MR 
estimates are evaluated by the inverse variance weighted (IVW) method. B Scatterplot for MR-estimated individual variant regression coefficients 
for tobacco and alcohol consumption on PWD. C Scatterplot for MR-estimated individual variant regression coefficients for tobacco and alcohol 
consumption on PR interval. D Scatterplot for MR-estimated individual variant regression coefficients for tobacco and alcohol consumption on QT 
interval. PWD, P-wave duration; AUD, alcohol use disorders; PAU, problematic alcohol use; DrnkWk, drinks per week; CigDay, cigarettes per day; 
SmkInit, smoking initiation; β, effect sizes; 95%CI, 95% confidence interval
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level; two of these loci, cg03345226 and cg04605617, 
in particular, survived Bonferroni correction 
(P < 0.05/56 = 8.93E-04) (Fig. 5A, Tables 4 and S5). The 

CpG site cg04605617 was most significantly associated 
with QT interval prolongation [β (95%CI): 0.175 (0.13, 
0.22), P = 1.82E-13] and mapped to the promoter region 
of the protein-coding gene Phospholipase A2 Group 
IIC (PLA2G2C) (chr1: 20,501,558) (Fig.  5B). Although 
the function of PLA2G2C is poorly understood, it is 
predicted to enable calcium ion binding activity. To 
investigate whether the two mQTLs rs10916683 and 
rs2872909 of cg04605617 affect the expression of the 
PLA2G2C gene in blood and or heart, we queried it 
on eQTLGen and GTEx Portal and found rs10916683 
to be a strong eQTL for the PLA2G2C gene in whole 

Fig. 3  Robust Mendelian randomization (MR) estimates the causal relationship between tobacco and alcohol consumption and ECG indices. A 
Forest plot of causal results assessed by applying robust MR methods. B Radial MR plots showing ratio estimates for each genetic variant as well 
as overall MR estimates, and variant outliers that affect causal estimates. PWD, P-wave duration; AUD, alcohol use disorders; PAU, problematic 
alcohol use; DrnkWk, drinks per week; SmkInit, smoking initiation; PWM, penalized weighted median; radial IVW, radial inverse variance weighted; β, 
effect sizes; 95%CI, 95% confidence interval. Radial Egger corrected represents outlier(s)-corrected analyses

Table 2  Multivariable Mendelian randomization analysis 
adjusted for smoking phenotypes

DrnkWk, drinks per week; CigDay, cigarettes per day; SmkInit, smoking initiation

Exposure Outcome Adjusted 
phenotypes

Beta Std. Error P value

DrnkWk QT interval CigDay 5.05 2.25 0.025

SmkInit 4.97 2.23 0.009



Page 9 of 16Zheng et al. Clinical Epigenetics           (2025) 17:40 	

blood (P = 9.36E-16) (Table  S6). Another CpG locus 
cg03345232 exhibited a significant causal relation-
ship with a shortened QT interval [β (95%CI): −0.435 
(−0.657, −0.213), P = 1.22E-04], and it was mapped 
to the protein-coding gene Ras and Rab interactor 3 
(RIN3). Nevertheless, we did not find evidence sup-
porting the classification of either of the two mQTLs, 

rs77826962, or rs12884739 at this locus, as eQTLs 
influence gene expression (Table S6).

Genetic basis shared between alcohol consumption 
and QT interval susceptibility
For the convincing causal relationship between the CpG 
locus and QT interval alteration described above, we 

Table 3  Directional horizontal pleiotropy test

PWD P-wave duration, AUD alcohol use disorders, PAU problematic alcohol use, DrnkWk drinks per week, SmkInit smoking initiation, CigDay cigarettes per day, 
MR-RAPS MR-Robust Adjusted Profile Score, radial Egger corrected represents outlier(s)-corrected analyses

Exposure Outcome Method Intercept value Std. Error F value P value

AUD PWD MR-Egger intercept 0.14 1.19 0.926

MR-RAPS 3.54 0.352

PR interval MR-Egger intercept 0.002 0.04 0.952

MR-RAPS 0.12 0.988

QT interval MR-Egger intercept 0.01 0.12 0.904

MR-RAPS 2.36 0.456

Radial Egger 0.36 0.93 0.715

Radial Egger corrected  − 0.55 0.34 0.197

PAU PWD MR-Egger intercept 0.22 0.22 0.399

MR-RAPS 14.96 0.191

PR interval MR-Egger intercept 0.01 0.04 0.727

MR-RAPS 0.41 0.861

QT interval MR-Egger intercept  − 0.08 0.06 0.191

MR-RAPS 1.10 0.396

DrnkWk PWD MR-Egger intercept  − 0.15 0.37 0.698

MR-RAPS 2.24 0.133

PR interval MR-Egger intercept 0.006 0.03 0.831

MR-RAPS 1.48 0.178

QT interval MR-Egger intercept  − 0.031 0.03 0.315

MR-RAPS 0.86 0.538

Radial Egger  − 0.27 0.27 0.317

Radial Egger corrected  − 0.22 0.21 0.303

CigDay PWD MR-Egger intercept  − 0.82 0.52 0.187

MR-RAPS 0.78 0.693

PR interval MR-Egger intercept  − 0.005 0.03 0.891

MR-RAPS 1.09 0.384

QT interval MR-Egger intercept 0.09 0.07 0.171

MR-RAPS 0.21 0.969

SmkInit PWD MR-Egger intercept  − 0.15 0.20 0.459

MR-RAPS 0.93 0.490

PR interval MR-Egger intercept  − 0.07 0.02 0.002

MR-RAPS 2.83 0.046

Radial Egger  − 1.71 0.44 1.41E-04

Radial Egger corrected  − 0.92 0.37 0.014

QT interval MR-Egger intercept 0.03 0.05 0.573

MR-RAPS 0.38 0.980

Radial Egger 1.16 0.46 0.012

Radial Egger corrected 1.17 0.34 0.001
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performed an approximate Bayes factor colocalization 
analysis to replicate the MR findings and attempted to 
find individual causal variants mediating this relation-
ship. We obtained a broader spectrum of mQTLs asso-
ciated with cg03345232 and cg04605617 in the GoDMC 
dataset. Figure 5C shows that methylation at cg03345232 
shared a genetic causal variant, rs12881206, with a 99.7% 
posterior probability of H4 (PPH4) with QT GWAS 
signaling. However, for the mQTLs at cg04605617, the 
colocalization analysis did not reveal a single shared 
variant site with a posterior probability exceeding 95.0%. 
Furthermore, we applied SMR integrating eQTL and 
GWAS summary data, to identify putative functional 
genes underlying the association between DrnkWk and 
QT interval. We identified 77 and 33 significant vari-
ants in whole-blood eQTL for DrnkWk and QT inter-
vals, respectively (PDrnkWk < 0.05/15629 = 3.20E-06, 

PQT < 0.05/15617 = 3.20E-06), and 19 significant variants 
(P < 0.05/4662 = 1.07E-05) were found for QT intervals in 
heart left ventricle (Table S7). Among these variants, we 
observed that DrnkWk and QT intervals share a protein-
coding gene, NPIPB6, and a long non-coding RNA gene, 
NONHSAG018995.2 (ENSG00000251417). Unfortu-
nately, both of these variants did not pass the horizontal 
pleiotropy test by HEIDI (P < 0.05) (Table S7).

Discussion
This study presents evidence of a genetic association 
and causality between tobacco and alcohol consumption 
and ECG indices. It sheds light on the molecular genetic 
architecture underlying alcohol consumption’s impact on 
QT interval prolongation and provides valuable insights 
into their regulatory mechanisms.

Fig. 4  MR sensitivity analysis of the causal relationship between DrnkWk and prolonged QT intervals. A Leave-one-out analysis identifying 
the effect of individual variables on the total effect. B Funnel plot showing the results of the heterogeneity analysis of the instrumental variable 
(IV) for causal estimation; C MR-RAPS diagnostic plots of the association between DrnkWk and QT interval prolongation, including residual plots 
showing the IV weights versus the standardized residuals and Q-Q plots assessing normality
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Fig. 5  Epigenetic MR estimates and colocalization analysis. A Epigenetic causal estimates of significant CpG loci for alcohol-related methylation 
on QT interval susceptibility. B Genomic localization of DNA methylation site: CpG island cg04605617.cg04605617 localizes to chromosome 1 
at position 20,501,558 and maps to the promoter region of the gene PLA2G2C. C Regional map of evidence for colocalization of methylated CpG 
sites with QT interval susceptibility. 99.7% posterior probability supports that rs12881206 is a shared causal variant for cg03345232 methylation 
and QT interval susceptibility. IVW, radial inverse variance weighted; mQTL, methylation quantitative trait loci

Table 4  Causal estimates of significant CpG loci for alcohol-related methylation on QT interval susceptibility by epigenetic Mendelian 
randomization

IVW Inverse variance weighted, SE standard error, LCI lower 95% confidence interval, UCI upper 95% confidence interval

CpG CpG.Chr CpG.Pos Nearest gene(s) No.SNP Method Beta SE LCI UCI P value

cg03345232 14 92,981,121 RIN3 2 IVW − 0.44 0.11 − 0.66 − 0.21 1.22E-04

cg04605617 1 20,501,558 PLA2G2C 2 IVW 0.18 0.02 0.13 0.22 1.82E-13

cg07091481 10 82,169,149 C10orf58 1 Wald ratio 1.04 0.52 0.02 2.06 0.046

cg07104958 10 46,168,551 ANUBL1 1 Wald ratio − 0.77 0.24 − 1.24 − 0.30 0.001

cg07512517 7 38,408,106 - 1 Wald ratio 0.77 0.38 0.02 1.52 0.045

cg07567724 1 153,777,721 GATAD2B 1 Wald ratio 0.55 0.27 0.01 1.09 0.045

cg12807764 5 146,864,669 - 1 Wald ratio 0.75 0.31 0.14 1.36 0.017

cg20374917 11 128,603,874 FLI1 1 Wald ratio -0.78 0.37 -1.50 -0.05 0.036
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The evaluation of genetic associations across traits 
supports the hypothesis that genetic factors play a cru-
cial role in the association between tobacco and alcohol 
consumption and ECG indices. Substantial genetic causal 
associations between tobacco and alcohol exposure and 
cardiac electrophysiological changes were highlighted by 
MR analysis. Using multiple robust MR hypothesis mod-
els, we provided compelling causal evidence in univariate 
MR analyses between weekly alcohol consumption and 
QT interval prolongation. To maintain the direction and 
significance of the causal effects, we employ stringent cri-
teria, such as MR-Egger and weighted median models, to 
ensure the robustness of the MR estimates and to reduce 
the Type 1 error rate. MVMR further confirmed the inde-
pendence of this genetic association from the smoking 
phenotype, eliminating the confounding effect of genetic 
correction between smoking and alcohol phenotypes. 
Epigenetic MR analyses revealed a significant causal rela-
tionship between alcohol-related DNA methylation and 
QT interval prolongation. Eight CpG loci were identi-
fied as potential mediators of this causality, with two 
surviving Bonferroni corrections, including cg04605617 
mapping to the promoter region of PLA2G2C. The 
mQTL rs10916683 at cg04605617 is a robust eQTL for 
PLA2G2C. Despite SMR not identifying shared func-
tional genes without pleiotropy for alcohol-induced QT 
interval prolongation, the colocalization analysis revealed 
an mQTL, rs12881206, shared with a high posterior 
probability between cg03345232 methylation and QT 
GWAS signals. They underscore the potential regulatory 
role of DNA methylation in modulating QT intervals.

These results align with observational studies indicat-
ing a positive correlation between alcohol consumption 
and QT interval prolongation, suggesting a potential 
increased arrhythmia risk by affecting ventricular repo-
larization [25, 38, 45, 46]. Importantly, the identification 
of the CpG locus cg04605617 in the promoter of the 
relatively obscure gene PLA2G2C provides an intriguing 
avenue for cardiovascular genetic exploration. PLA2G2C 
encodes a calcium-dependent phospholipase belong-
ing to the phospholipase A2 (PLA2) family, contribut-
ing to signal transduction, membrane homeostasis, and 
immune regulation [47–49]. Although limited, polymor-
phisms in PLA2G2C sense changes in plasma triglyc-
erides, and functional experiments have found that it 
produces a lysophospholipid antigen in mouse hepato-
cytes, leading to the propagation of an antiviral immune 
response via NKT cells [50–52]. Moreover, allergy and 
inflammation appear to induce the expression of PLA2, 
including PLA2G2C [53]. Other members of the PLA2 
family, such as SPLA2-IIA, have also been associated 

with cardiovascular diseases, particularly atherosclerosis. 
Elevated levels of SPLA2-IIA are linked to an increased 
cardiovascular risk, likely due to its role in promoting 
inflammation within the arterial wall [54]. Given the 
structural similarities, PLA2G2C may also affect simi-
lar pathways; however, direct evidence supporting this 
hypothesis is currently lacking. Notably, EWAS reveals 
that methylation at the cg04605617 site within PLA2G2C 
is significantly linked to high arsenic exposure, hinting at 
a potential association with cardiovascular disease [55]. 
We also note that PLA2G2C is functionally annotated in 
Gene Ontology to enable calcium binding [56], and that 
the significant PLA2G2C mQTL and eQTL identified, 
rs10916683, are also notable polymorphic sites where its 
homolog, PLA2G2A, functions [57]. The observed causal 
link between cg04605617 methylation and QT interval 
prolongation suggests that alterations in DNA methyla-
tion at this locus may impact PLA2G2C expression and 
calcium ion kinetics in cardiac cells, which are integral 
to cardiac excitation–contraction coupling and have 
profound effects on cardiac electrophysiology [58, 59]. 
However, the precise mechanistic contributions remain 
incompletely understood. Determining how methyla-
tion at this specific locus regulates PLA2G2C expression 
could uncover novel epigenetic regulatory networks gov-
erning cardiac electrical activity. Functional validation 
studies addressing these gaps would significantly enhance 
the translational relevance of the current findings.

Furthermore, we identified rs12881206 between alco-
hol consumption and QT interval predisposition with 
a posteriori probability exceeding 0.95 to match the H4 
hypothesis from colocalization analysis, implying that 
they share the same causal variant in this genomic region. 
Upon querying dbSNP, we identified this polymorphic 
locus as an intronic variant of RIN3 on chromosome 14, 
previously undocumented for clinical significance. How-
ever, RIN3 is a guanine nucleotide exchange factor that 
activates Ras and Rab5 proteins [60]. Given their roles 
in cell signaling and endocytosis regulation [60], further 
exploration of the potential mechanistic links between 
these findings has the potential to uncover new insights 
into cardiovascular risk factors. In contrast, this study 
did not identify a definitive genetic causal relationship 
between smoking and ECG alterations. Nevertheless, it is 
imperative to emphasize that smoking constitutes a well-
established role as a cardiovascular risk factor through 
diverse mechanisms such as inflammation, oxidative 
stress, and endothelial dysfunction [61]. Consequently, 
the research findings should not be misconstrued as 
indicating that smoking is benign for cardiovascular 
health. Statistical significance should not be confused 
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with biological relevance, and caution should be exer-
cised in attributing causality based solely on observa-
tional data and statistical associations. Previous studies 
have reported associations between smoking and ECG 
indices, particularly QT interval prolongation [17, 20]. 
While CigDay showed a strong genetic correlation with 
QT interval, MR did not confirm causality, underscoring 
the need to distinguish correlation from causation. LDSC 
quantifies the overall genetic overlap between traits by 
assessing genome-wide correlations, which may arise 
from shared genetic influences rather than direct causal 
pathways. In contrast, MR leverages genetic variants as 
IVs to estimate the direct effect of an exposure on an 
outcome, minimizing confounding and reverse causa-
tion. By relying on independent genetic instruments, MR 
helps distinguish true causal relationships from associa-
tions driven by pleiotropy or indirect genetic linkages, 
providing stronger evidence for causal inference. The 
strengths of our study lie in leveraging large-scale, high-
quality GWAS data, employing multiple robust MR mod-
els to ensure stable causal inference, and using mQTL 
datasets for genetic co-localization and SMR analyses to 
explore potential sharing mechanisms. However, limita-
tions include the use of blood DNA samples, which may 
not fully represent tissue-specific methylation profiles. 
The reliance on mQTL effects from a specific demo-
graphic and age group (middle-aged time point), along 
with the European pedigree in MR analyses, raises con-
cerns about generalizability. Our MR analyses, primarily 
in European ancestry individuals, enhance population 
homogeneity but limit generalizability to other popula-
tions. Additionally, the CpG loci associated with alcohol 
consumption in our study were derived from the latest 
EWAS in the EWAS Catalog, which linked alcohol use to 
specific methylation sites. The mQTL data for these loci 
were obtained from ALSPAC. However, due to differ-
ences in alcohol consumption rates across cohorts, while 
the mQTL-CpG associations are robust, the extent of 
behavioral influence across cohorts is difficult to estimate 
[62]. These limitations underscore the need for diversi-
fied populations and tissues in future research to enhance 
the validity and applicability of the findings. In conclu-
sion, our study reveals a potential genetic mechanism for 
alcohol-induced QT interval prolongation, identifying 
the CpG locus cg04605617 in the promoter region of the 
little-known PLA2G2C gene. This suggests that alcohol-
related DNA methylation may influence the QT interval 
through a novel pathway. The presence of rs10916683 as a 
significant eQTL variant implies broader systemic effects 
of alcohol on the cardiovascular system. However, the 
limited understanding of the biological function of the 
CpG locus and its associated shared variant (rs12881206) 

raises questions about its direct impact on cardiac physi-
ology. Despite these limitations, our findings provide 
valuable insights into the complex genetic architecture 
linking alcohol consumption to specific cardiac electro-
physiologic changes. The identification of a causal rela-
tionship between alcohol consumption and QT interval 
prolongation underscores the importance of lifestyle 
factors in cardiovascular health. Specifically, the study 
highlights the significant role that genetic and epigenetic 
mechanisms play in mediating the effects of alcohol on 
cardiac electrical activity. Understanding these pathways 
can guide clinical interventions aimed at reducing alco-
hol-related cardiac risks. Identifying specific DNA meth-
ylation sites like cg04605617 mapped to PLA2G2C offers 
potential biomarkers for risk stratification. Clinically, 
these findings support routine ECG monitoring in indi-
viduals with heavy alcohol use and genetic predisposition 
to prolonged QT intervals. Moreover, epigenetic inter-
ventions, such as targeted methylation modulators, could 
be explored as a novel therapeutic approach for arrhyth-
mia prevention. To further validate and expand these 
findings, future studies should replicate the associations 
in larger, multi-ethnic cohorts with broader age ranges. 
Functional experiments in vitro or animal models could 
elucidate the underlying mechanisms, and prospective 
clinical studies evaluating changes in alcohol consump-
tion on methylation profiles and ECG parameters would 
strengthen the causal inference. Importantly, although 
blood-based mQTLs provide useful insights into sys-
temic regulatory mechanisms, their relevance to cardiac-
specific methylation remains uncertain. Tissue-specific 
differences in DNA methylation patterns could influence 
the functional interpretation of our findings. Future stud-
ies integrating cardiac tissue-derived mQTL and single-
cell epigenomic data will be crucial to validating whether 
methylation changes at PLA2G2C directly impact QT 
interval regulation.

Conclusion
This study reveals a causal link between alcohol con-
sumption and QT interval prolongation through 
specific genetic and epigenetic mechanisms. The identi-
fication of cg04605617 within PLA2G2C as a candidate 
locus offers new insights into the regulatory mecha-
nisms underlying cardiac electrophysiology. However, 
given the tissue-specific nature of epigenetic modifica-
tions, further validation in cardiac tissues is warranted. 
These findings contribute to the broader understand-
ing of alcohol’s influence on cardiac function and may 
inform future research into epigenetic-based therapeu-
tic strategies.
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