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Abstract 

Background Lung adenocarcinoma (LUAD) is the most common histological subtype of lung cancer. The distinc-
tive genetic and epigenetic modifications in tumors and paired non-malignant samples, such as adjacent peri-tumor 
and tumor-distant normal lung tissues, have not been adequately studied.

Methods We recruited 57 patients with resectable stage I-III LUAD and collected matched samples of the primary 
tumor, peri-tumoral tissues, and tumor-distant normal lung tissue. We performed bisulfite sequencing using a cus-
tom methylation panel to profile DNA methylation levels and obtained somatic variation landscape through tar-
geted next-generation sequencing (NGS). We attempted to identify differential methylation blocks (DMBs) 
between the tumor, peri-tumor, and normal tissues.

Results We analyzed the DNA methylation patterns of matched tumor, peri-tumor, and normal lung tissue samples 
from 57 LUAD patients. No significantly different methylation blocks were found between peri-tumoral and normal 
tissues, while they both exhibited distinct methylation profiles compared to tumor tissues. A total of 1329 tumor-
specific DMBs, which are potentially associated with aberrant gene expression in LUAD, were identified. Utilizing 
a consensus clustering algorithm, we classified the tumor samples into two subgroups (C1 and C2) based on dis-
tinct methylation profiles, independent of the patient’s sex, tumor stage, smoking history, and tumor cell fraction. 
The C2 subgroup exhibited a higher malignancy density ratio (MD ratio), suggesting a more pronounced degree 
of field cancerization, while the C1 subgroup was characterized by a higher frequency of EGFR mutations. The DMBs 
between the two subgroups were enriched in the calcium signaling pathway. Notably, P2RX2 shows significant hyper-
methylation in the C2 subgroup, and its low expression in the external The Cancer Genome Atlas (TCGA) cohort may 
correlate with reduced overall survival in LUAD patients.

Conclusion Our findings revealed distinct methylation patterns between tumor and pre-malignant samples, such 
as peri-tumor and normal tissues. Moreover, our study suggests that distinct clustering based on DNA methylation 
may indicate different prognoses in LUAD patients.
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Introduction
Lung cancer remains the leading cause of cancer-related 
deaths worldwide. Lung adenocarcinoma (LUAD) is 
the most common histological subtype of lung cancer, 
accounting for 50% of all lung cancer cases [1]. Epigenetic 
aberrations, as well as genetic mutations, are known to 
be crucial in the onset and progression of cancer [2]. The 
combined effect of both genetic and epigenetic altera-
tions facilitates the development of human cancer [3, 4]. 
DNA methylation, a well-studied epigenetic mechanism, 
involves the addition of a methyl group to the fifth carbon 
of cytosine in DNA. Aberrant DNA methylation, charac-
terized by global hypomethylation and dense hypermeth-
ylation of gene regulatory CpG islands, is regarded as a 
hallmark of carcinogenesis [5].

There is an emerging recognition that genetic and epi-
genetic alterations in cancer are interconnected rather 
than isolated. Hypermethylation of tumor suppressor 
genes, such as CDKN2A encoding p16, has been recog-
nized as an alternative mechanism of tumor-suppressor 
inactivation [6–8]. Conversely, oncogene promoter hypo-
methylation can upregulate gene expression, similar to 
genomic amplification or oncogene translocation. Sev-
eral tumor-related genes, including CDKN2A, RASSF1A, 
RARbeta, and MGMT, have been reported to be methyl-
ated in lung cancer [6, 9–11]. DNA methylation profiling 
in lung cancer revealed extensive hypomethylation and 
tumor-specific hypermethylation of CpG islands [12–14]. 
Despite the promising findings of these studies in lung 
cancer, comparative studies with matched normal tis-
sues are scarce. Furthermore, most studies have focused 
on genetic or epigenetic aspects in isolation, with limited 
exploration of their interaction.

Field cancerization refers to the phenomenon where 
normal-appearing tissues or cells are affected by carci-
nogenic alterations, thereby becoming more susceptible 
to malignant transformation [15]. Genetic and epige-
netic alterations associated with tumors can be identi-
fied in non-tumor cells surrounding the tumor, blurring 
the definition of “normal tissue” in the context of tumor 
proximity [16, 17]. Previous studies have demonstrated 
that aberrant DNA methylation is associated with the 
early development of lung cancer, suggesting that epi-
genetic analysis of the tumor-adjacent region may serve 
as a potential tool for assessing field cancerization and 
evaluating the risk of malignant transformation [15, 18, 
19]. A study by Yang et  al. developed a novel individu-
alized scoring system (known as the malignant den-
sity ratio, MD ratio) based on methylation detection 
to quantify the degree of field cancerization in tumor-
adjacent tissues, and they found that the MD ratio is an 
independent predictor of recurrence risk in early-stage 
lung adenocarcinoma [20]. This quantitative analysis of 

field cancerization offers better reproducibility, can be 
extended to more clinical scenarios, and better reflects 
tumor heterogeneity, aiding in understanding the impact 
of tumors on the peri-tumoral environment.

In this study, we evaluated and compared the genomic 
and DNA methylation landscapes of matched primary 
tumor, peri-tumor, and tumor-distant normal lung tis-
sues from untreated LUAD patients and calculated the 
MD ratio to quantify the degree of field cancerization. 
We characterized subgroups with distinct tumoral DNA 
methylation patterns and analyzed the biological differ-
ences between subgroups, aiming to discover the prog-
nostic signature of LUAD.

Method
Patients
Patients were enrolled following the inclusion criteria: (1) 
newly diagnosed with lung adenocarcinoma via histolog-
ical examination at Tianjin Cancer Hospital Airport Hos-
pital (Tianjin, China) from December 2017 to June 2021; 
(2) underwent lung surgery; (3) provided matched sam-
ples of primary tumor, peri-tumor (about 2 cm from the 
tumor), and tumor-distant normal lung tissue (about 5 
cm from the tumor); (4) the tumor cell proportion (tumor 
percent) in tumor tissues, assessed by pathologists fol-
lowing hematoxylin and eosin (H&E) staining, should 
meet the detection criteria, while the peri-tumoral and 
normal tissues were confirmed to be cancer-free.

DNA extraction and methylation profiling
DNA samples from formalin-fixed, paraffin-embedded 
(FFPE) tissues were extracted using the QIAamp DNA 
FFPE Tissue Kit (Qiagen, Hilden, Germany) and quan-
tified using the Qubit dsDNA assay (Life Technolo-
gies, Carlsbad, CA, USA). DNA methylation profiling 
was performed as previously described [21]. Briefly, the 
bisulfite sequencing (BS-seq) libraries were prepared via 
the brELSA™ method. Custom-designed methylation 
profiling RNA baits targeting 80,672 CpG sites spanning 
over 1.05 megabases of the human genome were utilized 
for the enrichment of regions of interest. The librar-
ies were quantified and sequenced on a NovaSeq 6000 
(Illumina, San Diego, CA, USA) with an average depth 
of 1000 × . Further bioinformatic analyses included adap-
tor sequence removal, low-quality base filtering, paired-
end read alignment and merging, and methylation block 
construction.

Somatic variation sequencing
We performed targeted next-generation sequencing 
(NGS) with a 520 cancer-related gene panel (OncoScreen 
plus, Burning Rock Biotech, Guangzhou, China, Supple-
mental Table  S1). Somatic mutations were called using 
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optimized bioinformatics pipelines that can accurately 
report various cancer-related genetic alterations, includ-
ing single-nucleotide variants (SNVs), insertion-deletion 
variants (indels), copy number variants (CNVs), and 
genomic rearrangements, as described previously [22]. 
The tumor mutational burden (TMB) per patient was 
calculated as the ratio of non-synonymous mutations to 
the panel’s total coding region size [23]. Tools utilized are 
detailed in Supplemental Table S2.

Identification of differential methylation blocks (DMBs) 
and sample clustering
The 80,672 CpG sites included in the panel were grouped 
into 8312 methylation blocks as described previously 
[24]. We applied a region-defined algorithm consider-
ing the co-methylation effect among adjacent CpG sites. 
Tools utilized are detailed in Supplemental Table S2. To 
estimate the predefined coefficients of the algorithm, a 
series of methylation data of different tissues were used 
with the same panel in this study. Methylation blocks 
were defined as genomic regions consisting of neighbor-
ing CpG sites that were close in distance and correlated in 
methylation levels. Briefly, the methylation frequency dif-
ferences between each pair of CpG sites were calculated 
by Pearson’s correlation analysis and then normalized 
against genomic distance and methylation level variance. 
Blocks with a |fold change|> 2 and a false discovery rate 
(FDR, Benjamini-Hochberrg-corrected) < 0.05 between 
comparative groups were defined as DMBs. Tumor-
specific DMBs were ranked according to the median 
absolute deviation (MAD) across diverse patient tumor 
samples. The clustering of tumor samples was conducted 
with the ConsensusClusterPlus R package based on the 
top 100 DMBs with the highest MAD.

Pathway enrichment analysis
For KEGG terms, c2.cp.kegg.v7.4.entrez.gmt and c2.cp.
v7.4.entrez.gmt were used separately. We employed the R 
package "clusterProfiler" for Gene Ontology (GO) anno-
tations and visualization of enriched GO terms, including 
biological process, cellular component, and molecular 
function analysis.

Quantification of the field cancerization in tumor‑adjacent 
tissues
We used a previously reported method to quantify the 
degree of field cancerization in adjacent tissues [20]. 
Briefly, the baseline methylation signatures of normal tis-
sues and tumors were estimated via maximum likelihood 
estimation, and the malignancy density ratio (MD ratio) 
of peri-tumoral tissues was calculated with a mixed beta-
binomial model, reflecting the proportion of malignant 

methylation signals in the peri-tumoral tissue shared by 
the corresponding tumor tissue.

Statistical analysis
Statistical analysis was performed using R version 4.1.0. 
The Fisher’s exact and nonparametric tests were used 
to compare categorical data, and the Wilcoxon test was 
used to analyze differences in the TMB and gene expres-
sion between groups. P values < 0.05 were considered to 
indicate statistical significance.

Results
Patient characteristics
57 LUAD patients who underwent lung resection were 
enrolled in this study. The median age was 60 years 
(range 51.5–65 years), and 47.4% of patients were male. 
Twenty-three patients (40.4%) were smokers, and the 
majority (n = 48, 84.2%) had stage I disease. The clinico-
pathological characteristics of all patients are summa-
rized in Table 1.

The methylation profile of LUAD tumors is different 
from that of non‑tumor tissues
We assessed the DNA methylation patterns in 171 FFPE 
samples across 8312 blocks and compared the methyla-
tion profiles among the tumor, peri-tumor, and normal 
lung tissues of each patient. Generally, 84% of the blocks 
were gene-associated, with 59% in promoters, 7% in 
exons, and 18% in introns (Fig. 1A). Principal component 
analysis (PCA) indicated that the peri-tumor and normal 

Table 1 Clinicopathological characteristics of the enrolled 
patients

IQR interquartile range, N/A not available

Characteristic Total Cohort (n = 57)

Number %

Age

 Median (IQR) 60.0 (51.5, 65.0)

Sex

 Male 27 47.4

 Female 28 49.1

 N/A 2 3.5

History of smoking

 Yes 23 40.4

 No 33 57.9

 Unknown 1 1.8

Staging

 IA 43 75.4

 IB 5 8.8

 IIB 3 5.3

 III 6 10.5
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tissues had similar methylation profiles, while there was 
a clear distinction between these two groups and tumor 
tissues (Fig.  1B). Heterogeneous methylation profiles 
were observed within tumor tissues (the first principal 
component [Dim.1] = 32.2%). We also evaluated the cor-
relations between the first two principal components 
(Dim.1, and Dim.2) and patient clinical characteristics 
(Fig. 1C). There was a significant but weak positive cor-
relation between patient age and Dim.1 (Fig. 1D).

We then performed a receiver operating characteristic 
(ROC) analysis based on Dim.1 to assess the efficacy of 
DNA methylation as a tumor identification biomarker. 
DNA methylation could distinguish tumor tissues from 

peri-tumor or normal tissues with significant sensitiv-
ity and specificity, as demonstrated by the area under 
the curve (AUC) values of 0.971 and 0.984, respectively 
(Supplemental Figure S1A, S1B). However, methylation 
signals could hardly distinguish between peri-tumor and 
normal tissues (AUC = 0.477, Supplemental Figure S1C).

Identification and functional analysis of differential 
methylation blocks in tumors
We identified 1329 tumor-specific differential meth-
ylation blocks (DMBs), including 1311 hypermethylated 
and 18 hypomethylated blocks, in contrast to normal tis-
sues (Fig. 2A) In comparison to peri-tumoral tissues, the 

Fig. 1 Analysis of DNA methylation in LUAD patient tissues. A Distribution of DNA methylation blocks across the gene body. B Principal 
component analysis (PCA) of methylation profiles of various samples. C Analysis of the relationships between the top two principal components 
of the methylation profiles (Dim.1, Dim.2) and clinical characteristics. D Correlation between Dim.1 and patient age. *: P < 0.05, **: P < 0.01



Page 5 of 12Zhou et al. Clinical Epigenetics           (2025) 17:50  

numbers of hyper- and hypomethylated DMBs in tumors 
were 1350 and 18, respectively (Fig.  2B). The majority 
of DMBs identified when comparing tumors to normal 
tissues (1195 hypermethylated and 15 hypomethylated 
blocks) are also observed as DMBs when comparing 
tumors to peri-tumoral tissues (Fig. 2C). No DMBs were 
found between the peri-tumor and normal tissues (data 
not shown).

To explore the related functions and pathways of these 
tumor-specific hypermethylated DMBs, we conducted 
enrichment analysis with Gene Ontology (GO) terms 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway information (Fig.  2D). The most significantly 
enriched biological process (BP) terms were associated 
with cell differentiation, encompassing pattern specifi-
cation process, regionalization, embryonic organ devel-
opment/morphogenesis, and cell fate commitment. 
Regarding cellular component (CC), the most enriched 
terms were mostly related to synapses and ion channels. 
The enriched molecular function (MF) terms extended 
this trend, including several ion channel-related entries 
and terms associated with DNA-binding transcription 
repressors. KEGG pathway analysis to identify activated 
and suppressed pathways in tumor versus normal tissues 
indicated that hypermethylated DMBs were enriched in 
neuroactive ligand-receptor interactions and calcium 
signaling pathways (Fig. 2E). Pathways related to MAPK 
signaling and cell adhesion were markedly enriched with 
hypermethylated DMBs, suggesting potential dysregula-
tion of these processes. The analysis of hypermethylated 
DMBs located in promoters revealed a similar pattern 
(Supplemental Fig. 1C).

Additionally, we investigated whether the tumor-
specific hypermethylation of DMBs might impact gene 
expression. The hypermethylated DMBs affected 396 
genes. By analyzing the expression of these genes in 
the TCGA-LUAD dataset, we discovered that 81 genes 
(20.5%), such as CDO1 and ITGA8, exhibited downregu-
lated expression in tumor samples (Fig. 2F, Supplemental 
Table S3).

Subtype classification in lung adenocarcinoma revealed 
by differential methylation blocks
We divided the tumor samples into two distinct 
subtypes based on the DMBs exhibiting the most 

significant heterogeneity across patients (Fig. 3A). The 
comparison of clinical characteristics between the two 
subtypes did not reveal significant differences (Fig. 3B, 
Supplemental Figure S3A-E), suggesting that the clus-
tering predominantly reflects the inherent heteroge-
neity of the tumor. Notably, Cluster 2 (C2) exhibited a 
significantly higher malignancy density ratio (MD ratio) 
compared to Cluster 1 (C1, P = 0.013), suggesting a 
greater degree of tumor aggressiveness in C2 (Fig. 3C).

We performed a comprehensive analysis of genomic 
alterations in 36 tumor samples, including 20 from the 
C1 subtype and 16 from the C2 subtype. Mutations 
were detected in 33 samples (91.7%, 19 from C1, 14 
from C2), including EGFR (n = 22, 61%), TP53 (n = 16, 
44%), and KRAS (n = 5, 14%, Fig. 3D). Notably, a greater 
prevalence of EGFR mutations was observed in the C1 
subtype than in the C2 subtype (17/20 vs. 5/16, P < 0.05, 
Fig.  3E). The tumor mutational burden (TMB) also 
showed an increasing trend in the C2 subtype (4.99 vs. 
1.99 mut/MB), although the difference did not reach 
statistical significance (P = 0.080, Supplemental Figure 
S3F).

To further investigate the role of methylation in 
tumor progression, we compared the DMBs between 
subtypes. 151 hypermethylated and 2 hypomethyl-
ated DMBs were found in the C2 subtype compared to 
the C1 subtype (Fig.  4A), and KEGG pathway analysis 
indicated enrichment in the calcium signaling path-
way (Fig.  4B). Among the DMBs associated with this 
pathway (Supplemental Table  S4), the P2RX2 pro-
moter (block br1029) was hypermethylated in the 
C2 subtype (P < 0.001, Fig.  4C). Analysis of the public 
database revealed significantly lower expression of 
P2RX2 in tumor tissues (Fig. 4D), with this downregu-
lation becoming more pronounced in advanced stages 
(Fig.  4E). This finding indicates a potential role for 
P2RX2 in oncogenesis and progression. In the TCGA-
LUAD cohort, patients with lower P2RX2 expression 
had significantly shorter overall survival than those 
with higher P2RX2 expression (HR 0.64, P < 0.01, 
Fig. 4F), suggesting that the downregulation of P2RX2, 
including promoter methylation, may be associated 
with more aggressive tumor features.

(See figure on next page.)
Fig. 2 Differentially methylated blocks (DMBs) in tumor tissues compared with peri-tumor and normal tissues. A Volcano plot of DMBs 
between tumor and peri-tumoral tissues. B Volcano plot of DMBs between tumor tissues and normal lung tissues. C Venn diagram depicting 
the distribution of DMBs across various tissues. D Gene Ontology enrichment of genes linked to tumor-specific hypermethylated DMBs. E KEGG 
pathway enrichment for genes linked to tumor-specific hypermethylated DMBs. F Expression of selected genes associated with hypermethylated 
DMBs in LUADs and normal tissues within the public datasets. *: P < 0.05
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Fig. 2 (See legend on previous page.)
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Discussion
Because of its stability, reversibility, and easy detecta-
bility, changes in DNA methylation have attracted clini-
cal attention as powerful diagnostic, prognostic, and 
predictive biomarkers, including in lung cancer [24]. 
LUAD is the most common subtype of lung cancer, 
and it is also a highly heterogeneous disease. Previous 
research has shown that methylation profiles in LUAD 
patients exhibit variations related to demographic and 
clinical characteristics [25]. In the presented study, we 
identified the DNA methylation landscape of tumors, 
adjacent non-cancerous tissues, and normal lung tis-
sues from 57 early-stage LUAD patients. The tumor 
tissues exhibited specific methylation characteristics 
distinct from those of adjacent or normal tissues and 
demonstrated notable inter-patient heterogeneity. This 

heterogeneity may be partly attributed to differences in 
patient age and tumor stage and may represent a “DNA 
methylation age” in tumor tissues elucidated in previ-
ous studies [25, 26].

The methylation blocks we detected were primar-
ily located in cancer-related, CpG-rich gene promoter 
regions. Most tumor-specific DMBs were hypermethyl-
ated compared to those in peri-tumor or normal tissues, 
consistent with previous findings on DNA methylation 
in lung cancer [12, 13]. The hypermethylation of pro-
moters and CpG islands may inhibit the expression of 
nearby genes, thereby regulating the biological processes 
of cancer [27]. Among the genes affected by the hyper-
methylated DMBs we identified, some were significantly 
downregulated in TCGA-LUAD tumors. CDO1 is a rep-
resentative tumor suppressor gene that undergoes pro-
moter hypermethylation and downregulated expression 

Fig. 3 DMB-based binary clustering of tumor tissues and somatic mutation contributions in subtypes. A Consensus clustering of tumor tissue 
samples. B Relationships between subtypes and patient clinical features/molecular markers. C Distribution of the malignancy density ratio (MD 
ratio) across subtypes. D Somatic mutation landscape in the tested tumors (n = 44). E Detection ratios of driver gene mutations in the two subtypes. 
*: P < 0.05, **: P < 0.01
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Fig. 4 Analysis of DMBs and associated genes between subtypes. A Volcano plot of DMBs between tissues of different subtypes. B KEGG 
enrichment of genes associated with DMBs between subtypes. C Distribution of P2RX2 promoter (block br1029) methylation levels in the two 
subtypes. D Expression of P2RX2 in LUAD tissues and normal tissues within public datasets. E Expression of P2RX2 in LUADs at different stages. F 
Overall survival analysis of TCGA-LUAD patients grouped based on tumor P2RX2 expression. *: P < 0.05
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in various cancers[28–33]. In lung cancer, methylation 
of the CDO1 promoter region is considered a notable 
biomarker [34–36], potentially influencing tumor pro-
liferation through the regulation of cysteine metabolism 
[37]. ITGA8, which encodes an integrin subunit, is impli-
cated in clear cell renal carcinoma and colorectal cancer 
[38, 39]. A recent study by Li et al. suggested that lower 
expression of ITGA8 can alter the immune microenvi-
ronment and stemness of lung adenocarcinoma [40]. 
Our research did not assess the efficacy of LUAD-specific 
methylation features as cancer detection biomarkers, nor 
did it explore the functions of the affected genes in can-
cer progression. However, these findings may represent 
promising avenues for future investigations.

Given the relative ease of DNA sample collection, sev-
eral studies have attempted molecular subtyping and 
risk stratification of cancer patients utilizing DNA meth-
ylation. Guidry et  al. divided 88 LUAD patients into six 
distinct molecular subtypes based on whole-genome 
methylation sequencing, revealing variations in clini-
cal characteristics, driver mutations, immune microen-
vironments, and survival [25]. Xu et  al. identified seven 
molecular subtypes with public methylation microarray 
data and further distinguished two groups with differ-
ent prognoses using 33 methylation sites [41]. Yu et  al. 
categorized TCGA LUAD samples into three subgroups 
based on 40 sites and conducted a multifaceted compara-
tive analysis [42]. Other molecular subtype investigations 
have integrated DNA methylation data with additional 
omics data [43, 44]. Our research clustered the cohort 
based on tumor-specific DMBs and generated a binary 
classification model independent of clinical features. 
Aberrations in DNA methylation are considered early 
events in carcinogenesis and are thus suitable for detect-
ing field cancerization in adjacent tissues, a concept 
fundamental to cancer progression that was previously 
applied in research [20]. Employing a similar methodol-
ogy, we assessed the degree of field cancerization in two 
clusters and found that the C2 subtype exhibited greater 
invasiveness. This variation may lead to differences in 
patient prognosis, which needs to be supplemented with 
more extensive outcome data.

We discovered that the C2 subtype was enriched with 
hypermethylation events related to calcium signaling 
pathway genes compared to the C1 subtype, and this pat-
tern was also evident when comparing tumors with non-
tumor tissues. Calcium is a major second messenger in 
cells and plays significant roles in cell proliferation, apop-
tosis, and oncogenesis [45, 46]. The activation of receptor 
tyrosine kinases (RTKs), such as EGFR, mediates the reg-
ulation of the calcium signaling pathway. These enzymes 
can generate inositol 1,4,5-trisphosphate by activating 
downstream phospholipase Cc isoforms, subsequently 

triggering the release of calcium ions stored in the endo-
plasmic reticulum into the cytoplasm [46–48]. Given 
the higher incidence of EGFR mutations in the C1 sub-
type than in the C2 subtype, the differential methyla-
tion within the calcium signaling pathway might suggest 
distinct strategies employed by tumors in the regulation 
of cytoplasmic calcium. Additionally, cytoplasmic cal-
cium ions can boost the turnover of peripheral adhesions 
and facilitate the formation of focal adhesions, thereby 
enhancing the motility of cancer cells [45, 47]. This 
mechanism may play a key role in field cancerization. 
Nevertheless, the impact of the observed methylation 
differences on protein expression needs to be confirmed, 
and further validation through cytological experiments is 
also essential.

Among the top DMBs-associated genes identified, 
several have been previously reported to be associated 
with cancer. RYR3 mutations have been detected in over 
20% of NSCLC patients, potentially correlating with 
younger patient age, smoking history, higher TMB, and 
distant recurrence [48, 49]. ADCY2 germline mutations 
are related to pulmonary function and smoking cessa-
tion ability in genome-wide association studies [50, 51]. 
In colorectal cancer, ADCY2 mutations are associated 
with metastasis [52], while its overexpression is related 
to poor prognosis [53]. As co-family members of ADCY2, 
ADCY4 and ADCY8 are subject to hypermethylation-
induced suppression in NSCLC [54]. PDE1C encodes an 
enzyme that regulates the proliferation and migration of 
vascular smooth muscle cells, and it is highly expressed in 
abdominal aortic aneurysms and can drive the prolifera-
tion, migration, and invasion of glioblastoma cells in vitro 
[55, 56]. The DMB associated with the P2RX2 promoter 
exhibited significant differences in methylation levels 
between the two subtypes. Analysis of public expres-
sion datasets also demonstrated its prognostic value, 
although methylation inhibition of this gene has only 
been reported in presbycusis [57]. In prostate cancer, 
P2RX2 expression may positively correlate with immune 
cell infiltration and immune checkpoint gene expression, 
with its low expression associated with poorer survival 
rates [58]. The roles of these genes in lung cancer have 
not been fully elucidated, and further research is needed 
to explore the regulatory effects of methylation on their 
expression and the biological processes involved.

Our study has certain limitations. First, due to the 
availability of samples, we were unable to obtain patient 
tissues for RNA analysis, preventing confirmation of how 
DNA methylation in our cohort regulates gene expres-
sion. Only a subset of genes identified with differential 
methylation showed corresponding expression level 
changes in the TCGA-LUAD cohort, which constrains 
the interpretability of our results. Second, the DMBs 
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identified through NGS were not validated by additional 
experimental methods, necessitating a careful and accu-
rate assessment of their validity. Third, we did not obtain 
sufficient treatment response or survival data in our 
cohort for analysis. Therefore, the relationship between 
tumor malignancy and field cancerization or differen-
tial methylation in specific genome regions should be 
regarded with caution. Finally, the limited size of our 
study cohort means that our conclusions need further 
validation across a broader spectrum.

Conclusions
In summary, we delineated a unique DNA methyla-
tion landscape in lung adenocarcinoma, pinpointing 
tumor-specific signals potentially serving as biomark-
ers for early lung cancer detection. Based on methyla-
tion exhibiting notable inter-tumoral heterogeneity, we 
established a binary classification model related to cancer 
cell invasiveness and identified several potential prog-
nostic biomarkers. Our study contributes to the field of 
epigenetic studies of lung adenocarcinoma, enhancing 
our understanding of its pathogenesis and providing bio-
markers for lung cancer screening, diagnosis, and patient 
stratification.
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