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Abstract 

Epigenetics is currently considered the investigation of inheritable changes in gene expression that do not rely 
on DNA sequence alteration. Significant epigenetic procedures are involved, such as DNA methylations, histone 
modifications, and non-coding RNA actions. It is confirmed through several investigations that epigenetic changes 
are associated with the formation, development, and metastasis of various cancers, such as colorectal cancer (CRC). 
The difference between epigenetic changes and genetic mutations is that the former could be reversed or pre-
vented; therefore, cancer treatment and prevention could be achieved by restoring abnormal epigenetic events 
within the neoplastic cells. These treatments, consequently, cause the anti-tumour effects augmentation, drug 
resistance reduction, and host immune response stimulation. In this article, we begin our survey by exploring basic 
epigenetic mechanisms to understand epigenetic tools and strategies for treating colorectal cancer in monotherapy 
and combination with chemotherapy or immunotherapy.
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Introduction
Colorectal cancer (CRC) poses a significant global health 
concern. It is estimated that 153,020 individuals will be 
diagnosed with CRC in the USA in 2023, with around 
19,550 cases occurring in individuals under 50  years 
old. The decline in CRC incidence has slowed, partly 
due to increased cases among those under 55. Addition-
ally, there has been a notable shift towards left-sided 
tumours, with rectal cancer accounting for 31% of all 
cases in 2019, highlighting the importance of early detec-
tion and targeted interventions. Despite advancements 
in treatment, CRC mortality remains a challenge, with 
an expected 52,550 deaths in 2023. However, there has 
been an overall 2% annual decline in mortality from 2011 
to 2020. It is important to note that mortality rates have 
increased annually by 0.5% to 3% in individuals younger 
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than 50  years and Native Americans younger than 
65 years [1]. In summary, efforts to advance progress in 
CRC prevention and treatment should urgently focus on 
understanding the rising incidence, improving screening 
accessibility, and tailoring interventions to address the 
changing landscape of CRC diagnosis to reduce mortality 
and improve outcomes for affected individuals.

In most cases, surgical intervention is often necessary 
for complete tumour removal. Following surgery, adju-
vant therapies such as chemotherapy or radiotherapy, 
administered before (neoadjuvant) or after (adjuvant) the 
procedure, can help reduce tumour size or enhance its 
stability. Current chemotherapy options include mono-
therapy with 5-fluorouracil (5-FU) and combination 
therapy, typically consisting of oxaliplatin (OX), capecit-
abine (CAP), and irinotecan (IRI) [2]. The most com-
mon combination therapy regimens are 5-FU/OX, 5-FU/
IRI, CAP/OX, and CAP/IRI, which remain the mainstay 
approaches in first-line treatment [3]. Patients with a 
low risk of disease progression are typically treated with 
monotherapy. The choice of additive agents appears to 
have similar efficacy, with variations primarily observed 
in side effect profiles. However, this treatment approach 
presents several irreversible drawbacks, including sys-
temic toxicity, suboptimal response rates, the emergence 
of resistance (both innate and acquired), and limited 
selectivity for tumour sites.

A complex interplay of factors influences CRC risk. 
While 5–10% of cases are attributed to genetics, 90–95% 
relate to lifestyle and environment [4]. Key environmen-
tal risks include tobacco, pollutants [5], radiation, certain 
infections (e.g., Epstein-Barr virus [6], Helicobacter pylori 
[7], Schistosoma mekongi [8]), and inflammatory bowel 
disease [9]. Family history, age over 50 [10], and living in 
developed countries [11] also increase risk. Furthermore, 
some medications, such as hormone therapies and spe-
cific chemotherapy drugs, can heighten the long-term 
risk of secondary cancers like CRC, particularly when 
combined with radiotherapy [12, 13]. In essence, CRC 
development is a multifaceted process requiring compre-
hensive risk assessment.

From the molecular aspect, CRC arises from a com-
plex interplay of genetic and epigenetic alterations that 
disrupt normal cell behaviour. Genetically inherited 
mutations in genes like APC, associated with familial 
adenomatous polyposis, or MLH1, linked to Lynch syn-
drome, predispose individuals to CRC [14]. Environmen-
tal factors like UV radiation or chemicals in cigarette 
smoke can also cause DNA mutations in these critical 
genes. Chromosomal abnormalities, such as deletions or 
duplications of chromosomal regions, can further con-
tribute to the disease [15]. Epigenetically modifications 
like DNA methylation can silence tumour suppressor 

genes such as CDKN2A, effectively removing a brake 
on cell growth [16]. Similarly, histone modifications can 
activate oncogenes like KRAS, promoting uncontrolled 
cell proliferation [17]. Working in concert, these genetic 
and epigenetic changes lead to the aberrant cell growth 
and tumour formation characteristic of CRC.

This review explores epigenetics’ role in treating colo-
rectal cancer (CRC) by examining innovative drug strat-
egies that go beyond traditional therapies. We focus on 
key mechanisms, including DNA methylation, histone 
modifications, and the roles of non-coding RNAs in CRC 
development. Additionally, we analyse existing epigenetic 
drug regimens, highlighting their limitations and identi-
fying areas for improvement. We also consider the poten-
tial of combining epigenetic drugs with chemotherapy 
or immunotherapy to enhance anti-tumour effects and 
address issues of drug resistance. Ultimately, we empha-
sise the importance of personalised therapies and the 
need for ongoing research to fully leverage the therapeu-
tic potential of epigenetic modifications in the treatment 
of CRC.

Epigenetic modification mechanisms
Epigenetic alterations are pivotal in the development and 
progression of CRC. These modifications, which influ-
ence gene expression without changing the underlying 
DNA sequence, are frequently observed in CRC. A com-
mon alteration is aberrant DNA methylation, particularly 
the hypermethylation of promoter regions belonging to 
tumour suppressor genes [18]. Furthermore, changes to 
histones post-transcription modifications, such as altered 
acetylation or methylation patterns [19], can profoundly 
impact chromatin structure and gene expression, con-
tributing to CRC pathogenesis. In addition to these well-
established mechanisms, non-coding RNAs, including 
microRNAs and long non-coding RNAs, are recognised 
as important regulators of gene expression, with their 
dysregulation implicated in CRC progression [20]. The 
reversible nature of many epigenetic modifications makes 
them an attractive target for therapeutic intervention, 
offering the potential for novel CRC treatments either as 
monotherapy or in conjunction with existing therapies 
(Fig. 1).

DNA methylation
Numerous Aberrant DNA methylation patterns are a 
hallmark of many cancers and contribute significantly 
to tumorigenesis. In normal cells, DNA methylation, 
primarily occurring at CpG islands within gene pro-
moter regions, plays a role in regulating gene expression. 
However, in cancer, this tightly controlled system is dis-
rupted. A frequent observation in cancerous cells is the 
hypermethylation of CpG islands within the promoters 
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of tumour suppressor genes [21]. This aberrant methyla-
tion is mediated by DNA methyltransferases (DNMTs). 
The addition of a methyl group from S-adenosylmethio-
nine (SAM) to cytosine creates 5-methylcytosine (5mC), 
which subsequently hinders transcription factor binding 
and recruits methyl-binding domain proteins (MBDs) 
[22]. This cascade of events leads to chromatin remodel-
ling and ultimately silences the expression of genes that 
would otherwise inhibit tumour growth.

The enzymes responsible for establishing and maintain-
ing these aberrant methylation patterns are the DNMTs. 
While DNMT1 primarily maintains existing methylation 
patterns during replication, DNMT3A and DNMT3B 
can establish de novo methylation, contributing to the 
silencing of tumour suppressor genes [23]. This aber-
rant silencing effectively removes crucial hindrances to 
cell proliferation and contributes to uncontrolled tumour 
growth. Conversely, global hypomethylation, particularly 
in repetitive DNA sequences, is also observed in can-
cer and can contribute to genomic instability. The ten-
eleven translocation (TET) family of enzymes facilitates 

aberrant DNA methylation reversal [24]. However, the 
balance between methylation and demethylation is often 
skewed towards hypermethylation of critical genes in 
cancer. Given the significant role of aberrant DNA meth-
ylation in cancer, DNMT inhibitors have emerged as 
promising therapeutic agents [25]. By inhibiting DNMT 
activity, these drugs can potentially reactivate silenced 
tumour suppressor genes, restoring their normal func-
tion and inhibiting cancer progression.

RNA methylation
One of the modification mechanisms carried out after 
the transcription is RNA methylation. There are more 
than 150 detected RNA modifications; moreover, N6 
methyladenosine (m6A), the methylation at the 6th N of 
adenylate in RNA, is commonly observed in the modi-
fication processes of eukaryotic cells and impacts all 
RNA life cycle procedures [26]. Various types of RNA 
methylation, including m1A, m5C, m6Am, etc., have 
recently been detected. [27]; also, considerable results 
have been achieved as a result of m6A demethylase (FTO, 

Fig. 1 Three main epigenetic mechanisms: A DNA methylation, in which DNA methyl transferase enzymes (DNMTs) transfer a methyl group 
to carbon 5 of cytosine residues B Histone modifications such as acetylation, methylation and phosphorylation are accomplished by their 
specific transferase enzymes on certain peptide residues C most known non-coding RNA action maybe the X chromosome inactivation which 
occurs in female mammals due to dosage compensation. In this process, one of the X chromosomes is randomly transcribed on the XIST gene 
locus; the XIST long non-coding RNA–protein complexes bind to the X chromosome in special places called ‘entry sites’, which plays a major role 
in the formation of inactivated X chromosome or ‘Barr body’ (the red circle). Designed by BioRender.com
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ALKBH5) discovery and sequencing technology advance-
ment (m6A-seq, MERIP-seq) [28]. Due to the significant 
m6A-resulted biological functions of RNA modification, 
investigators tend to conduct more research and imple-
ment this procedure in different fields of study. The 
current study aimed to explore the functions, sequenc-
ing technology, biological functions, expression, and 
implementation of the mechanism mentioned above in 
the physiological or pathological state of RNA methyla-
tion-modified proteins and, consequently, illustrate the 
importance of its application in fundamental medical and 
clinical medicine studies.

Histone modifications
In eukaryotes, 146bps of DNA is wrapped around histone 
octamer proteins, which consist of two sets of H2A, H2B, 
H3, and H4, forming a nucleosome. The N- and C-termi-
nal tails of these histone proteins are exposed and can be 
post-translationally modified [29]. Various histone modi-
fications exist, some of which are more studied, such as 
acetylation, methylation, and phosphorylation.

Histone methylation is a process in which methyl 
groups (mono-, di-, or trimethylation) are transferred 
from S-adenosyl-L-methionine (SAM) to the ε-amino 
group of lysine or the guanidino nitrogen atom of argi-
nine residues on histone tails. Lysine Methyltransferases 
(KTMs) [30] and Lysine Demethylases (KDMs) [31] 
are two enzyme families that catalyse the addition and 
removal of methyl groups on histone lysine residues, 
respectively. EZH2, a histone methyltransferase (KMT), 
and KDM6A, a histone demethylase (KDM), are fre-
quently altered in digestive cancers [32]. Nakazawa et al. 
highlighted that alterations in global H3K9me2 levels are 
a significant epigenetic factor in colorectal tumourigen-
esis and carcinogenesis, influencing gene regulation in 
neoplastic cells through chromatin remodelling [33]. We 
suggest that readers explore other outstanding reviews 
available in the literature [34].

Histone acetylation is carried out by enzymes called 
histone acetyltransferases (HATs), which transfer an 
acetyl group from acetyl-CoA to lysine residues. HATs) 
catalyse the transfer of an acetyl group from acetyl-coen-
zyme A (acetyl-CoA) to the ε-amino group of lysine resi-
dues on histone tails. Prominent HAT families include 
P300/CBP, GNAT, MYST, P160, PCAF, and TAFII230 
[35]. In contrast, histone deacetylases (HDACs) remove 
acetyl groups, performing deacetylation. HDACs com-
prise a family of 18 enzymes categorised into four 
classes (I, II, III, and IV) based on their homology. Class 
I HDACs (HDACs 1, 2, 3, and 8) are localised in the 
nucleus. Class II HDACs are divided into two subclasses: 
IIa (HDACs 4, 5, 7, and 9) and IIb (HDACs 6 and 10). 
Class III HDACs, known as sirtuins (SIRT1-7), are found 

in various cellular compartments, including the nucleus 
(SIRT1, 6, 7), mitochondria (SIRT3, 4, 5), and cytoplasm 
(SIRT2). These enzymes utilise nicotinamide adenine 
dinucleotide (NAD +) as a cofactor for their deacetylation 
activity. Class IV consists of a single member, HDAC11. 
Class I, II, and IV HDACs require  Zn2+ ions for catalytic 
activity, distinguishing them as  Zn2+-dependent HDACs 
[36]. Increased acetylation of H3K27 at oncogene pro-
moters, like TIMELESS, correlates with their overexpres-
sion in CRC [37], while decreased H3K27ac and H3K9ac 
levels at the TP53 promoter lead to its inactivation [38].

Histone phosphorylation is one of the most common 
modifications in histones, occurring on certain serine 
residues. Histone serine phosphorylation is associated 
with gene expression activation in most cases. H3K9 
and H3K27 share the same subsequent serine residues 
that can be phosphorylated; this close position modifi-
cation site leads to the hypothesis that there is a cross-
talk between methylation and phosphorylation that can 
change the affinity of some readers and writers associated 
with lysine residues and could regulate gene expression 
in a more precise and complex manner [29]. Lee et  al. 
stated that high expression of phosphorylated H2AX in 
colorectal cancer tissues is linked to a more aggressive 
form of cancer [32].

Non‑coding RNAs
Non-coding RNAs (ncRNAs) are diverse RNA molecules 
that do not function as templates for protein synthesis 
but are essential for biological processes like gene regu-
lation and cell differentiation. They are divided into two 
main, including housekeeping ncRNAs, which include 
ribosomal RNAs (rRNAs), transfer RNAs (tRNAs), small 
nuclear RNAs (snRNAs), and small nucleolar RNAs 
(snoRNAs) that are crucial for protein synthesis and 
ribosome biogenesis, and regulatory ncRNAs, which 
modulate gene expression. Regulatory ncRNAs are fur-
ther classified by size: short non-coding RNAs such as 
microRNAs (miRNAs), small interfering RNAs (siRNAs), 
and Piwi-interacting RNAs (piRNAs) play roles in post-
transcriptional regulation, while long non-coding RNAs 
(lncRNAs), exceeding 200 nucleotides, regulate gene 
expression at multiple levels, including transcription and 
translation [39]. ncRNAs are essential for gene regula-
tion at various stages, including transcription, transla-
tion, and post-translational modifications. Additionally, 
ncRNAs are important for regulating cell differentiation 
and developmental processes. Some ncRNAs can also 
modify chromatin structure, influencing gene expression 
through epigenetic mechanisms [40].

The dysregulation of ncRNAs has been linked to 
various human diseases. In cancer, non-coding RNAs 
significantly contribute to tumour development and 
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progression. NcRNAs can act as oncogenes or tumour 
suppressors depending on their functions and expression 
levels. For instance, miR-34a suppresses tumour growth 
[41], while miR-138-5p can inhibit growth by targeting 
programmed cell death ligand 1 (PD-L1) [42]. Similarly, 
lncRNA NALT1 promotes cell proliferation and invasion 
[43], while lncRNA GAS5 suppress these processes [44].

Epigenetic tools
Epigenetic modifications are dynamically regulated 
through a complex interplay of enzymes that establish, 
interpret, and remove these marks. These enzymes can 
be broadly classified into writers, readers, and erasers. 
In the context of cancer, aberrant activity of these epige-
netic regulators is frequently observed. Epigenetic writ-
ers are enzymes that catalyse the addition of chemical 
modifications to DNA or histone proteins. Key examples 
implicated in cancer include DNA methyltransferases 
(DNMTs), which add methyl groups to DNA, often lead-
ing to gene silencing. Other writers include histone lysine 
methyltransferases, protein arginine methyltransferases, 
and histone acetyltransferases, all modifying histone pro-
teins, thereby influencing chromatin structure and gene 
expression. Epigenetic readers are proteins that contain 
specialised domains capable of recognising and binding 
to specific epigenetic marks. For example, methyl-CpG 
binding proteins (MBPs) recognise and bind to methyl-
ated DNA. Other readers, such as those containing Tudor 
domains, chromodomains, or bromodomains, recognise 
specific histone modifications. By binding to these marks, 
readers can recruit other proteins, ultimately influenc-
ing gene expression. Epigenetic erasers are enzymes that 
remove epigenetic modifications, effectively reversing the 
actions of writers. In cancer, the activity of erasers like 
the ten-eleven translocation (TET) family, which medi-
ates DNA demethylation, can be dysregulated. Other 
important erasers include histone demethylases, such 
as lysine-specific demethylase (LSD1), and histone dea-
cetylases (HDACs), which remove acetyl groups from 
histones.

Alterations in the expression or activity of these epi-
genetic regulators, through either mutations or changes 
in expression levels, are frequently observed in cancer 
and can contribute to tumourigenesis [28]. For instance, 
overexpression of DNMTs can lead to hypermethylation 
and silencing of tumour suppressor genes, while muta-
tions in TET enzymes can impair their demethylation 
activity. Consequently, targeting these epigenetic tools 
has emerged as a promising avenue for cancer therapy. 
Inhibitors of writers, readers, and erasers are being devel-
oped and investigated for their potential to reverse aber-
rant epigenetic modifications and restore normal gene 
expression patterns in cancer cells. This rapidly evolving 

field offers a hopeful outlook for the future of cancer 
treatment, with the potential for more targeted and effec-
tive therapies based on manipulating the epigenetic 
landscape.

Epigenetic drugs (Epidrugs)
In the past few years, new treatments that affect the 
epigenetic mechanism have been developed by under-
standing the role of manipulating epigenetic changes in 
treating various cancers, including CRC. The proportion 
of epigenetic changes that cause aberrant gene expression 
is higher than genetic mutations, so epigenetic changes 
play an essential role in the formation of CRC [45].

Epidrugs are drugs that can target the epigenome. The 
use of epidrugs alone or combined with chemotherapy 
or immunotherapy shows promising results, such as 
increasing anti-tumour effects, overcoming the impact 
of drug resistance, and activating the host’s immune 
response [46]. A large number of epigenetic modifiers are 
classified into different categories based on their mode 
of action, such as inhibitors of enzymes involved in DNA 
methylation (such as DNMTi), histone modification 
(such as HMTs, HDMs, and HDACs), and also agents 
that modulate miRNA expression therapeutically. Some 
have received FDA approval for treating diseases, includ-
ing CRC, some of which have been tested preclinically or 
early in CRC clinical trials [47].

Their use in the early stages of CRC may be more effec-
tive because epigenetic changes are the first events in car-
cinogenesis, and the burden of genomic changes is lower. 
On the other hand, one potential application of epige-
netic modifiers is in the advanced stage of CRC, although 
they must be combined with cytotoxic drugs. Epigenetic 
modifiers can sensitise CRC cells to radiotherapy, cyto-
toxic therapy, and immunotherapy, thereby reducing the 
dose of cytotoxic drugs, thus improving patient tolerance 
[48].

Cautious approaches to guide epigenetic inhibitors 
from the preclinical to the clinical level
The burgeoning field of epigenetic drug discovery has 
witnessed remarkable progress, fueled by an improved 
understanding of epigenetic mechanisms and the intri-
cate interplay between "readers, writers, and erasers"—
the key protein families orchestrating the epigenetic 
landscape. This deeper comprehension, coupled with 
encouraging preclinical findings, has spurred the devel-
opment of small-molecule epigenetic inhibitors and 
their subsequent evaluation in clinical trials [49]. While 
preclinical studies have shown promise, translating 
these findings into robust clinical outcomes remains a 
significant challenge. Several factors contribute to this 
complexity, including the heterogeneity of epigenetic 
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alterations across different cancer types, the potential 
for off-target effects, and the need to identify predictive 
biomarkers to select patients most likely to benefit from 
epigenetic therapy.

Early clinical investigations predominantly focused on 
single-agent epigenetic inhibitors. However, a paradigm 
shift is underway, with a growing emphasis on combi-
nation therapies that leverage synergistic interactions 
between epigenetic agents and other treatment modali-
ties. This shift is underpinned by meticulous preclini-
cal studies, often spearheaded by medicinal chemists, 
which delve into the complexities of tumour epigenetics 
and provide invaluable insights for the rational design of 
novel therapeutic agents [50].

Beyond conventional small-molecule inhibitors, inno-
vative approaches are emerging that hold immense 
promise for the future of epigenetic therapy. PROTACs 
(proteolysis-targeting chimaeras), for instance, represent 
a groundbreaking strategy that harnesses the cellular pro-
tein degradation machinery to eliminate disease-related 
epigenetic proteins selectively [51]. Another promising 
avenue involves the development of multi-targeted drugs 
that can simultaneously modulate multiple biochemical 
pathways, offering a compelling strategy for combination 
therapies [52].

The trajectory of epigenetic drug discovery appears 
poised to embrace a multifaceted approach, integrating 
conventional strategies with cutting-edge technologies 
like PROTACs and antibody–drug conjugates. While 
these novel modalities hold tremendous potential, it is 
essential to acknowledge that traditional approaches will 
continue to play a vital role in advancing our understand-
ing and therapeutic exploitation of the epigenome.

Epidrugs for CRC treatment
Nowadays, the scientific community accepts that epi-
genetics significantly impacts the diagnosis and treat-
ment of CRC, so the survival rate of CRC patients can be 
increased by focusing on the epigenetic system. The dis-
covery of novel treatment approaches and medications 
involves detecting cancer-related epigenetic mechanisms 
that lead to the reversal of histone acetylation and DNA 
methylation patterns, as well as changes in non-coding 
RNA (Fig.  1). The epidrugs can be implemented singly 
or combined with other therapies. Notably, synergistic 
effects have been observed through combination therapy 
of DNMT and histone deacetylase (HDAC) inhibitors 
with other treatment approaches on CRC cells in  vitro 
and in  vivo [53]. The reactivation of tumour suppres-
sor genes through the use of epigenetic drugs offers the 
potential to restore normal cellular functions. Observa-
tions suggest that combining conventional therapies with 
epigenetic treatments can yield significant benefits. A 

noteworthy study identified 45 drugs, primarily antican-
cer and antiarrhythmic agents, that synergise with DNA 
methylation inhibitors (DNMTi) or histone deacety-
lase inhibitors (HDACi) to promote the reactivation of 
tumour suppressor genes. For instance, the combination 
of the DNMTi decitabine with the antiarrhythmic drug 
proscillaridin A resulted in substantial changes in gene 
expression and downregulation of epigenetic regulators, 
including potential oncogenes. Conversely, 85 drugs were 
found to antagonise the effects of epigenetic therapy, 
highlighting the risk of detrimental drug interactions. 
These findings pave the way for innovative combination 
therapies and provide valuable insights for clinical prac-
tice regarding drug interactions with epigenetic treat-
ments [54].

DNA methyltransferase inhibitors (DNMTis)
DNA methylation-mediated silencing of genes also 
plays a key role in CRC aetiology. Therefore, DNM-
Tis have also been suggested for treating patients with 
CRC [55]. Transcriptional regulation by different epi-
genetic procedures such as DNA methylation/demeth-
ylation is another factor, except mutations which cause 
the alteration of tumour suppressor genes or oncogenes 
[56]. These are conserved families of cytosine methyl-
ases that can be considered promising therapeutic tar-
gets for the epigenetic treatment of cancer. DNMTis have 
attracted remarkable interest in modulating the improper 
DNA methylation pattern in a reversible route in recent 
years [57]. Genomic hypomethylation globally, charac-
terised by the gradual and genome-wide depletion of 
5-methyl-cytosine in cancer cells, is observed even in the 
early stages of CRC development and progression [58]. 
The process of genome hypomethylation is conducted 
through DNMTis, which is applied as an anticancer 
treatment and clarifies the role of DNA methylation in 
multiple procedures, such as X-chromosome inactivation 
or DNA imprinting [58].

DNMTis are potent anticancer therapeutics to reverse 
the DNA hypermethylation status of tumour suppres-
sor genes (TSGs) [51]. DNMT inhibitors are classified 
into nucleoside and non-nucleoside analogues, as out-
lined in Fig.  2. Nucleoside analogues include cytidine 
and S-adenosyl-L-homocysteine (SAH) derivatives, while 
non-nucleoside inhibitors include small molecules and 
natural product [58, 59] (Fig. 2).

Nucleotide analogue inhibitors
The cytidine analogues are the currently most advanced 
drugs for epigenetic cancer therapies, which can be 
incorporated into the DNA or RNA backbone to replace 
C-5 of cytosine with N-5 and disturb the methylation, 
as well as form covalent bonds with DNMTs that block 
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their enzymatic activities [60]. Decitabine (DEC) and 
azacytidine (AZA) are classified as DNMTi drugs, and 
various evaluations assess their efficiencies in the treat-
ment of multiple solid cancers, such as colorectal cancer 
(Fig.  2). Both are the most widely used as inhibitors of 
DNA methylation, which triggers demethylation, lead-
ing to consecutive reactivation of epigenetically silenced 
tumour suppressor genes in vitro and in vivo [61].

DEC is a deoxyribonucleoside, while AZA is a ribo-
nucleoside. Both have the depletion activity of DNA 
methyltransferases with different mechanisms of action. 
AZA (~ 90%) is leading to unusual ribosome assembly 
and inhibiting tumour-related protein synthesis by its 
integration into RNA; ribonucleotide reductase can also 

transform AZA (~ 20%) to 5-aza-2’-deoxycytidine to 
inhibit DNA methyltransferase and lead to the re-expres-
sion of TSGs. While DEC is incorporated into DNA, 
high-dose DEC inhibits DNA synthesis and cross-linking 
by cytotoxicity, and low-dose DEC inhibits DNA methyl-
transferase and reactive silent tumour suppressor genes 
[62].

DEC, with trade name Dacogen (DAC), engages the 
DNMTs by binding to it irreversibly through a cova-
lent bond and inhibiting the methylation of a daugh-
ter strand during the replication [63]. DAC remodels 
the tumour microenvironment to improve the effect 
of PD-L1 immunotherapy due to directly enhancing 
tumour programmed cell death-1 (PD-L1) expression 

Fig. 2 Chemical structure of DNA methyltransferase inhibitors, designed by chemsketch freeware
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and eliciting stronger anticancer immune responses, 
which can accomplish potential clinical benefits to 
CRC patients [64]. The main side effects of DEC are 
neutropenia, nausea, and fatigue in solid tumours [65]. 
In CRC, DEC has been used alone or in combination 
with other drugs. Low expression of NALP1 (NLRP1 
encodes NACHT, LRR, FIIND, CARD domain, and 
PYD domains-containing protein 1) is associated with 
survival and tumour metastasis in colon cancer. DEC 
treatment increases the expression of NALP1, sup-
pressing colon cancer growth [66]. It has also been 
used in combination with other drugs like gefitinib and 
oxaliplatin as the effective treatment approach for CRC 
[67, 68].

Azacitidine, a 5-azacitidine analogue marketed as Vid-
aza, has a structure similar to that of decitabine. It acts 
as a DNMT inhibitor by modifying the carbon 5 of the 
pyrimidine ring [69]. AZA works in a dose-dependent 
manner. Low doses, it causes DNA hypomethylation by 
inhibiting DNMT through covalent binding. Conversely, 
at high doses, it functions as a cytotoxic agent by incor-
porating into DNA and RNA of abnormal cells, leading to 
cell death [45, 69]. In dose-limiting toxicities, AZA’s gen-
eral side effects include thrombocytopenia, febrile neu-
tropenia, and fever in advanced malignancies [70].

Necdin (NDN) is a member of the melanoma-asso-
ciated antigen (MAGE) protein family; NDN affects 
tumour cell proliferation by inhibiting the expression of 
LRP6, which is a key factor in the activation of the Wnt 
signalling pathway in CRC [71]. Reduced expression of 
NDN is linked to poor differentiation, advanced TNM 
stage, and poor CRC prognosis. Administration of azacy-
tidine results in hypomethylation of the NDN promoter. 
Therefore, increased expression of NDN causes it to bind 
to the LRP6 promoter, leading to reduced transcription 
and inhibition of the Wnt signalling pathway in CRC 
[72]. Decitabine, a DNA demethylation agent, increased 
NDN expression in the CRC cell line and decreased the 
Wnt signalling pathway. Thus, the hypermethylation of 
the NDN promoter leads to NDN gene silencing [61].

Zebularine (ZEB), a 1-beta-D-ribofuranosyl-2(1H)-
pyrimidinone, is a cytosine analogue similar to AZA. It 
inhibits DNA methylation by being incorporated into 
DNA, making it an attractive option for suppressing 
rapidly dividing cancer cells [73]. ZEB forms a  cova-
lent bond with DNMTs when acting as a substrate DNA 
and becomes entrapped in the complex. In the case of 
CRC, ZEB has been shown to induce p53-dependent ER 
stress and autophagy while inhibiting tumorigenesis and 
stemness [74]. Zebularine also operates at the mRNA 
level, increasing the expression of let-7b, a tumour sup-
pressor microRNA that suppresses the invasion activity 
of CRC cells [75]. These findings suggest that ZEB may 

inhibit invasion activity by upregulating the intracellular 
expression of let-7b in highly invasive CRC cells [75].

Although nucleotide analogue inhibitors are effec-
tive in treating solid tumours, the formation of irrevers-
ible covalent adducts with DNA that is caused by DNA 
mutagenesis and conclusively a potential cause of tumour 
recurrence is from their long-term side effects [76]. On 
the other hand, the side effect caused by DNMT inhibi-
tors can limit their application in cancer treatment [77].

Non‑nucleotide analogue inhibitors
This class of DNMTis are small molecules that bind to 
the CpG-rich sequences or bind to the catalytic site of 
DNMTs, preventing the binding of DNMTs to the tar-
get sequences [78]. These epigenetic drugs, with a minor 
inhibitory effect on various aggressive tumour cells, pre-
sent weaker anticancer activity than cytosine analogue 
inhibitors. Non-nucleoside DNMTis do not incorpo-
rate into DNA and thus might exhibit less cytotoxicity 
than cytidine analogues. Among them can mention to 
hydralazine, epigallocatechin-3-gallate (EGCG), N-phth-
alyl-L-tryptophan (RG108), a 20-base pair antisense oli-
gonucleotide (MG98), and disulfiram (DSF) [79–81]. 
DSF, a bis-diethylthiocarbamoyl disulfide, is an irrevers-
ible inhibitor of aldehyde dehydrogenase (ALDH), which 
is responsible for ethanol metabolism and is applied as 
an  Antabuse. DSF/Cu exerts anti-colorectal cancer by 
enhancing the molecule expression of cell immunogenic 
cancer cell death (ICD). DSF can be considered a safe and 
effective candidate for CRC prevention and therapy [82].

Histone deacetylase inhibitors (HDACis)
HDACis are epigenetic compounds recently considered 
for their promising anti-tumour activity. Histone acety-
lation/deacetylation is another epigenetic process for 
transcriptional regulation that can lead to alterations in 
tumour suppressor genes or oncogene [83]. Typically, 
there is a proper balance of histone acetyl-transferases 
(HATs) and Histone deacetylases (HDACs) that mediate 
histone acetylation and deacetylation; however, this bal-
ance can be disrupted by various diseases such as cancer 
[84].

HDAC inhibitors are categorised clinically based on 
their chemical structure into hydroxamic acids, cyclic 
peptides, short-chain fatty acids, and benzamides [85]. 
Hydroxamic acids include vorinostat (VRS), resmi-
nostat (RES), belinostat (BEL), panobinostat (PAN), 
trichostatin A (TSA), givinostat (ITF2357), and quisi-
nostat (QST) [86]. Cyclic peptides are a group of potent 
HDAC inhibitors; romidepsin,  a cyclic tetrapeptide,  is 
known as this group’s most potent HDAC inhibitor 
[87]. Valproic acid, a branched  short-chain fatty acid, 
causes the specific degradation of HDAC2 [91, 92]. 
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Benzamides like mocetinostat and entinostat are gener-
ally effective against class I HDACs [88]. Some HDA-
Cis, which can indifferently inhibit all HDAC isoforms, 
are called pan-inhibitors, such as VRS and PAN. Others 
can specifically inhibit certain HDACs and are consid-
ered HDAC class- or isoform-selective inhibitors (for 
instance, entinostat and rocilinostat) [89] (Fig. 3).

Several clinical trials have demonstrated numerous 
side effects of HDACis, including diarrhoea, fatigue, 
taste disturbances, weight loss, hematologic toxic-
ity, disordered clotting, electrolyte changes, cardiac 
arrhythmias, and myelosuppression [90–92]. Before 
initiating treatment, the selectivity of HDAC inhibitors 
should be carefully deliberated to achieve the expected 
therapeutic effects with low toxicity on malignant 
tumours, including CRC.

Hydroxamic acids HDACis
VRS, also known as suberoylanilide hydroxamic acid 
(SAHA), is an orally bioavailable broad-spectrum HDAC 
inhibitor that commonly targets HDAC class I and II 
without inhibiting HDAC class III enzymes [93]. SAHA, 
a second-generation HDAC inhibitor, was approved by 
the US FDA for the treatment of cutaneous T cell lym-
phoma (CTCL) [94]. As mentioned above, the activity 
of HDAC is known to be involved in CRC progression, 
making it a potential target for CRC treatment. SAHA 
can disrupt the interaction between FLIP, an apoptosis 
inhibitor, by blocking caspase 8 activation and the DNA 
repair protein Ku70, which regulates FLIP protein stabil-
ity. SAHA induces apoptosis in CRC by enhancing the 
acetylation of Ku70, ultimately disrupting the FLIP/Ku70 
complex and triggering FLIP polyubiquitination and deg-
radation by the proteasome [95].

Fig. 3 Chemical structure of histone deacetylase inhibitors, designed by chemsketch freeware
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RES is a novel HDACi that inhibits classes I, IIb, and 
IV of HDACs. Resminostat reduces the levels of cyc-
lin cdk4, cdc25a, D1, and pRb and, by upregulating p21, 
also prevents cell proliferation and stops the cell cycle in 
G0/G1. RES can be effective in treating CRC by affecting 
the AKT signalling pathway and inhibiting proliferation, 
migration and apoptosis [45]. The anticancer activity of 
RES on advanced CRC is still being investigated in clini-
cal trials.

BEL is a pan-HDAC inhibitor comprising a sulphona-
mide-based hydroxamate structure that inhibits class I, II, 
and IV HDAC isoforms with nanomolar potency [96, 97]. 
Importantly, it has tolerable side effects with infrequent 
toxicity when compared to other HDACis. Combination 
therapy BEL with fluorouracil showed an inhibitory effect 
on the growth of colon cancer cells in vivo and in vitro 
[98]. Co-administration of 5-FU with HDACIs exerts 
a synergistic effect in various types of cancer, especially 
colorectal cancer [99]. BEL can increase the expression 
of the tumour suppressor gene TGFβRII in colon cancer 
and repress the expression of survivin, a cancer-associ-
ated gene, through the TGFβ/protein kinase A (PKA) 
pathway and leads to cancer cell death and reduced 
metastasis [100].

PAN, a nonselective HDACi, is another member of the 
hydroxamic acid class which is effective against all the 
classes of HDACs, including class I, II, and IV, and causes 
cell cycle arrest and apoptosis, leading to it being an 
antineoplastic drug [101]. PAN affects both histone (H3 
and H4) and non-histone proteins (HIF-1α, β-catenin, 
α-tubulin, chaperons (HSP90), estrogen receptor (ERα), 
androgen receptor (AR), DNA repair proteins (Ku70), 
and…) leading to transformations in some transcrip-
tion factors including NF-кB, E2F, p53, and c-Myc [102, 
103]. In CRC, the tumour suppressor gene death-associ-
ated protein kinase (DAPK) was activated by PAN [104]. 
DAPK plays a key role in the induction of autophagy and 
apoptosis.

TSA, a pan-HDAC inhibitor that inhibits HDACs in a 
non-competitive and reversible way and is  structurally 
related to SAHA,  could induce suppressors of cytokine 
signalling genes (SOCS1 and SOCS3) expression by 
inducing histone modifications and consequently inhibit 
JAK2/STAT3 signalling in CRC cells [105]. TSA could 
also induce G2/M cell cycle arrest and Bax-dependent 
apoptosis in wild-type and mutant p53 colorectal can-
cer cell lines by both p53-dependent and -independent 
mechanisms [106]. In addition, TSA induced cell death 
by arresting the cell cycle in the G2/M phase, which was 
dependent on the production of mitochondria-mediated 
ROS derived from reduced mitochondrial respiratory 
chain activity [106]. A study showed the potent inhibi-
tory activity of VRS and TSA against HDACs by their 

chelation with the zinc atom within the catalytic pocket 
of HDAC8 was related to the hydroxamic acid moiety of 
drugs with [107].

QST, an orally and potent pan-HDACi with a hydroxa-
mate structure, has broad activity in solid tumour mod-
els [108, 109]. This drug could reduce the migration rate 
of colon cancer cells (> 50%) and prevent metastasis and 
spread of cancer in the long term by chromatin compres-
sion and subsequent suppressed effective genes in the 
expression of essential proteins for cell migration. [108]. 
QST inhibits class I and II HDACs and also presents con-
tinuous H3 acetylation, and inhibits tumour progression 
in CRC in preclinical and clinical studies [109, 110].

Droxinostat (NS 41080, inhibitor of HDAC3, 6, and 
8) potently increased the acetylation of Ku70 by inhib-
iting a key enzyme of HDAC6 and caused rapid FLIP 
protein downregulation. The Ku70/FLIP interaction 
disruption subsequently led to FLIP degradation by the 
ubiquitin–proteasome system and induction of caspase 
8-dependant apoptosis in droxinostat-induced apoptosis 
[111]. Based on these results, NS 41080 could be intro-
duced as an efficient post-transcriptional suppressor of 
FLIP expression in CRC. On the other hand, cancer cells 
are very sensitive to oxidative stress [112]. Anticancer 
activity of NS 41080 on CRC was also mediated by the 
induction of oxidative stress and contributed to cellular 
apoptosis [113].

Romidepsin (FK228), a selective inhibitor of HDACs 
1 and 2, inhibits proliferation, induces G0/G1 cell cycle 
arrest and increases apoptosis in various solid tumour 
cells [114–116]. FK228 upregulated costimulatory mol-
ecules (PD-L1) in colon cancer cells and suppressed cel-
lular immune functions, including the decreased ratio 
of Th1/Th2 cells and the percentage of IFN-γ + CD8 + T 
cells in the peripheral blood and the tumour microenvi-
ronment [116].

Givinostat is a hydroxamate HDAC class I and class II 
inhibitor. Its anti-tumour effect in colon cancer cells that 
are characterised by oncogenic BRAF mutations has been 
confirmed [117]. Furthermore, the combination of givi-
nostat with other epigenetic drugs, including DNMTis, 
indicated that this drug amplifies the effects of both gen-
eral and selective DNMTis on colon cancer cells [118].

Other HDACis
Sulforaphane (SFN), a phytochemical compound known 
in some green leafy vegetables, is found to be effective in 
preventing and treating various cancers, including colon 
cancer [119]. SFN (1-isothiocyanate-4-(methylsulfonyl)
butane) is known to act on the epigenetic regulation of 
gene expression by suppressing HDACs [120, 121]. Treat-
ment of colon cancer xenograft mice with SFN (10 μmol/
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mice) presented its activity in suppressing the cancer cell 
growth through increased histone acetylation [121].

SFN treatment showed decreasing cell density, signifi-
cantly inhibiting cell viability and inducing apoptosis in 
CRC cells. SFN significantly down-regulated oncogenic 
miR-21, HDAC and hTERT mRNA, protein and enzy-
matic levels in CRC cells. Indeed, HDACis may play a 
vital role in regulating microRNAs (miRs) and human 
telomerase reverse transcriptase (hTERT). SNF can delay 
and/or prevent CRC.

SFN treatment also decreased cell density, remarkably 
inhibited cell viability, and induced apoptosis in CRC 
cells [122].SFN also down-regulated oncogenic micro-
RNA (miRNA-21), HDAC, and telomerase reverse tran-
scriptase (hTERT) mRNA, proteins, and enzymatic levels 
in CRC cells [122]. In this way, SNF can delay and/or pre-
vent CRC. hTERT plays a vital role in cancer progression 
using to promote invasion and migration of CRC through 
hTERT-β-catenin/TCF-4-CCL2 signalling pathway [123]. 
Notably, miRNA-21 regulates hTERT expression and 
plays a key role in the  development  and  progression of 
CRC [124].

Domatinostat (DOM) is a selective inhibitor of HDACs, 
HDAC1, 2, and 3, which are applied for the treatment 
of various types of cancer and probably play important 
roles in regulating improper cancer signalling [125, 126]. 
DOM potently inhibits survival, proliferation, and cell 
cycle progression and also activates apoptosis in CRC 
cells [127, 128]. DOM is very effective against HDACs 
because colon epithelial cells with low HDAC1/2 expres-
sion were least affected by DOM treatment. Fortunately, 
monotherapy of HDAC inhibitors is broadly used against 
solid tumours despite their modest efficacy for sufficient 
tolerance and efficient clinical functions [129]. Multiple 
clinical trials are underway to evaluate their therapeutic 
potential in co-combination with other anticancer agents.

Other epigenetic drugs for CRC treatment
The best epigenetic drug classes in CRC therapy are 
HDACis and DNMTis. Although recently, some new 
epigenetic therapeutic targets have been applied for the 
treatment of CRC, such as antagomirs, bromodomain 
(BRD), and extra-terminal domain (BET) protein fam-
ily [130–133]. Antagomirs inhibit a specific miRNA and 
change its function. For instance, antagomirs can target 
miR-21, downregulating tumour suppressor genes in 
CRC. In 2014, song and coworkers designed an antago-
mir complementary to the miR-21 sequence. This antag-
omir was specifically engineered to inhibit angiogenesis 
and proliferation in CRC effectively [131]. On the other 
hand, Nedaeinia et al. confirmed the therapeutic poten-
tial of LNA-anti-miR-21 in CRC for targeting miR-21 
expression [134]. Locked nucleic acid (LNA), a modified 

RNA nucleotide, can also target miRNAs. These nucleic-
acid-based approaches for gene silencing are stable, safe, 
and non-toxic [120].

BET proteins, a protein family known to be overex-
pressed in multiple tumour types, can regulate various 
cellular functions and play a key role in oncogene expres-
sion. BET, the best-characterised class of acetylation 
readers, can promote the transcription of target genes 
by binding to acetylation motifs present in histones and 
accumulating on hyper-acetylated chromatin regions. 
The potential of BET proteins as targets for anticancer 
strategies among CRC, similar to HDAC proteins, is a 
source of inspiration and motivation in the fight against 
CRC. BET inhibitors can suppress the effect of these pro-
moters and affect their transcriptional activity. BRD4, 
one of the BET proteins, is extremely expressed in colo-
rectal cancer tissue samples, and BRD4 inhibitors led to 
reduced CRC proliferation [132].

Natural epigenetic products in CRC treatment
Natural products have yet to be important in treating 
various diseases worldwide. Epigallocatechin-3-gallate 
(EGCG), a major polyphenol component in green tea, 
reversibly inhibits DNMT, resulting in the reactivation 
of various key genes, including P16, hMLH1, and RA, in 
different cancer cell lines, including colon [135] (Fig. 4). 
EGCG is an epigenetic modulator for cancer chemopre-
vention and treatment effects on many kinds of tumours 
[136]. Previously, topoisomerase I (TOPI) inhibitory 
effect of EGCG had also been reported in CRC [137].

Psammaplin A (PSA) is a group of natural products iso-
lated from marine sponges and is capable of inhibiting 
both DNMTs and HDACs with minimum cytotoxicity 
[138, 139]. However, Godert and colleagues reported that 
PSA was not a potent DNMT inhibitor in vivo because it 
did not cause any changes in the level of genomic DNA 
methylation in treated human CRC cells [140].  Recent 
studies reported antiproliferative activities of PSA against 
several human cancer cell lines, especially colon cancer 
cell lines [141, 142]. Furthermore, the anticancer activ-
ity of PSA was related to other enzyme inhibition, such 
as aminopeptidase, topoisomerase II, farnesyl protein 
transferase, leucine aminopeptidase, and DNA polymer-
ase α-primase that are at least responsible in tumour cell 
proliferation, intracellular signal transduction, invasion, 
and angiogenesis [141].

Overview of co‑combination therapies 
and preclinical / clinical studies on epigenetic 
drugs in CRC and metastatic CRC 
To a certain extent, dynamic and reversible epigenetic 
abnormalities can lead to the continuous evolution of 
cancer cells. These reversible changes in epigenetic signs 
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on DNA, histone, and non-histone proteins, as well as the 
functional efficacies of these alterations, are  implicated 
in primary and acquired resistance to various antican-
cer medications by modulation of tumour cells or their 
microenvironment [143, 144]. As tumours progress, epi-
genetic changes and genetic mutations increase. For this 
reason, if epigenetic modifiers are used alone in the final 
stages of CRC, they will be inefficient. It is also likely to 
require long-term treatment because cell reprogramming 
takes time and is probably not sustainable after stopping 
treatment [90]. (Table 1).

The potential of combining epigenetic drugs and 
chemotherapeutic drugs or immunotherapy signifi-
cantly enhances therapeutic effects and reduces drug 
resistance (Tables 2 and 3). Mechanically, epidrugs like 
DNMTis and HDACis can increase chromatin accessi-
bility to chemotherapeutic agents through chromatin 

decomposition, amplifying their anticancer effects 
[145]. Among the benefits of such co-combinations, 
the results of specific combinations stand out, offer-
ing a ray of hope in the fight against solid tumours. 
Epigenetic drugs have shown promising synergistic 
effects with other anticancer therapies, increasing anti-
tumour effects, sensitivity to chemotherapy agents, 
and inducing apoptosis in solid tumours. These results 
inspire confidence in the potential of combined thera-
pies for cancer treatment [90]. Co-combination of 
vorinostat with panobinostat against cancerous cells 
in colon adenocarcinoma-induced immunogenic cell 
death (ICD) [146]. The combination of sodium butyrate 
(SB), an HDAC inhibitor, and 5-AZA-2’-deoxycytidine 
(5-AZA-DC), a demethylating agent, along with radia-
tion, showed lower survival in 5-aza-DC or SB than 
radiation alone in colon cancer cell line [147]. Indeed, a 

Fig. 4 Chemical structure of natural epigenetic products, designed by chemsketch freeware

Table 1 Epidrug classifications based on their mechanisms

HDACIs: Histone Deacetylases Inhibitors; DNMTis: DNA Methyltransferases Inhibitor

Targeting 
epigenetic 
modification

Drugs Signalling pathway in colorectal Ref

DNMTis Disulfiram Blocking the enzyme acetaldehyde dehydrogenase, targeting drug efflux pumps, induction of produc-
tion of ROSs, activating the JNK and p38 MAPK signalling pathways, inhibition of NFκB and the protea-
some activity

[193]

Zebularine Downregulation of GRP78 and p62 and upregulates a pro-apoptotic CHOP [74]

Decitabine PD-1 blockade [194]

Azacitidine At low doses, azacytidine targets CRC-initiating cells by inducing viral mimicry via the MDA5/MAVS/IRF7 
pathway

[72]

Zebularine Induces p53-dependent ER stress and autophagy. Increases the expression level of let-7b, which func-
tions as tumour suppressor microRNA

[195]

HDACIs Sulforaphane Blocks Wnt/β-catenin signalling [196]

Vorinostat Autophagy modulation [197]

Resminostat Amplification of AKT signalling [198]

Belinostat Induction of apoptosis [199]

Panobinostat Arresting the G1, G2/M cell cycle, activation of tumour suppressor gene death-associated protein kinase 
(DAPK), induction of autophagy, apoptosis and cell death

[200, 201]
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combination of 5-aza-DC and SB could enhance radio-
sensitivity in the RKO cell line.

DSF, in combination with 5-fluorouracil (5-FU), is 
used as the significant chemotherapeutic component for 
CRC [148]. It imparts chemosensitisation, significantly 
enhances the apoptotic effect, and synergistically potenti-
ates the toxic effect of 5-FU on CRC cell lines [45].

CRC cell lines treated with PAN confirmed the altera-
tion of genes responsible for the process of angiogen-
esis, mitosis, DNA replication, and apoptosis [149]. 
Co-administration of PAN with lapatinib (LAP, EGFR/
HER2 kinase inhibitor) showed synergistic effect and 
inhibited the proliferation and colony formation in all 
CRC cell lines tested with varying expression and KRAS/
BRAF/PIK3CA mutations [150]. Caspase-8 activation, 
increased DNA double-strand breaks, and PARP cleav-
age, combined with downregulation of transcriptional 
targets, including IRAK1, NF-κB1, and CCND1, led 
to rapid apoptosis induction by the combination drug 
PAN-LAP.

Combining FK228 with an anti-PD-L1 antibody can 
amplify the anti-tumour effects and provide a more 
potent treatment for colon cancer. This finding under-
scores the potential of our research to contribute to 
developing novel and more effective cancer treatments. 
[116].Reversing the influence of FK228 on immune cells 
affected the considerable anti-tumour effect of this co-
combination. Romidepsin also inhibited the catalytic 

activity of HDAC8 by perturbing its coordination with 
the zinc atom [151].

VRS was the first of the class of HDAC inhibitors to 
be FDA-approved and evaluated via phase clinical trials 
in advanced and chemotherapy-resistant CRC, espe-
cially in combination with 5-FU [152]. VRS showed a 
synergistic effect with 5-FU and oxaliplatin in induc-
ing apoptosis in CRC cells; however, this synergy was 
abolished in cells overexpressing FLIP(L) [141]. VRS, 
in combination with decitabine, could also increase 
the sensitivity of Fas ligand (FasL)-induced apoptosis 
and CTL immunotherapy by promoting CD8 + T cells 
in colon cancer cells [153, 154]. The combination of 
EGCG with irinotecan not only had a stronger inhibi-
tory effect on tumour cells than irinotecan or EGCG 
alone but also prevented tumour cell migration and 
invasion in CRC cells [155].

In the combination of the tolerated dose of 
5-AZA (75  mg/m2) with valproic acid, stable dis-
ease was observed in patients with colorectal cancer 
(median = 6  months) [147], a significant decrease in 
global DNA methylation was also observed. EGCG and 
irinotecan (anti-tumour agent with low solubility and 
high toxicity) synergistically inhibited the migration, 
invasion, and proliferation of colorectal cancer cells 
[156]. EGCG alone did not cause DNA damage, but in 
co-combination with irinotecan, it could induce S or G2 
phase arrest by inhibiting TOPI to cause more extensive 

Table 2 Epigenetic drugs in phases of clinical trials

Epigenetic 
class drug

Drug Phases of 
Clinical 
Trials

Outcome Toxicity Ref

HDACIs Vorinostat Phase I Once-daily MTD vorinostat 600 did not signifi-
cantly alter the PK of vorinostat

nausea, anaemia, fatigue, diarrhoea, weight loss, 
and elevated creatinine

[202]

Panobinostat phases I–II Co-administration of panobinostat with CYP3A 
inhibitors is feasible

Diarrhea, vomiting, nausea, hypophosphatemia, 
myalgia, fatigue, and anorexia

[203]

Carbamazepine phase II Administration of carbamazepine did 
not reduce oxaliplatin-induced neuropathy

Nausea, dizziness, memory disorders, problems, 
headaches, vision problems

[204]

Resveratrol Phase I It is worth investigating further clinical studies 
to replace non-steroidal anti-inflammatory 
agents and selective COX inhibitors

No side effects [205]

Bevacizumab Phase I Stability (more than 3 months) was seen in four 
patients

Grade 3 fatigue, grade 3 myalgia, and elevated 
ALT

[206]

Romidepsin Phase II Administration of 13 mg/m2 on days 1, 8 and 15 
in cycle 28 days was not successful

Thrombocytopenia,
changes in ECG, fatigue, weight loss, nausea, 
vomiting,
anorexia, fever, and weakness

[207]

Entinostat Phase I Half-life of 39 to 80 h. MTD was 10 mg/m2 Anorexia, fatigue, nausea, and vomiting [208]

Epsipeptide Phase II Epsipeptide 13 mg/m2 administration is inef-
fective in CRC patients with previous chemo-
therapy

Thrombocytopenia, electrocardiographic, 
fatigue, nausea and vomiting, weakness, ano-
rexia, fever, and weight loss

[209]

DNMTi 5-Azacitidine phase II An increase in the regulation of AZA immune 
gene set

– [210]
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DNA damage. EGCG also elevated apoptosis synergisti-
cally by promoting autophagy with irinotecan.

In a study conducted by Azad et al. for combined treat-
ment in CRC patients, they showed that the combined 
therapy of a demethylating agent such as [5] and an 
HDACi agent such as entinostat caused more DNA dem-
ethylation in people who had a higher than average (pro-
gression-free survival) PFS. In another study conducted 
by Garrido-Laguna et al. on mCRC cancer phase patients 
with KRAS mutations, they showed that the combina-
tion of decitabine and panitumumab is well tolerated. In 
this study, by prescribing decitabine 45  mg/m2 on days 
1 and 15 of the 28-day cycle along with the administra-
tion of panitumumab 6  mg/kg on days 8 and 22 of the 
28-day cycle for 20 patients, the results indicate (10% 
PR(Partial response), 55% SD (Stable disease) 3 patients 
had SD lasting > 16 weeks) [157]. A preclinical study con-
ducted by Yun-feng et  al. showed that the combination 
of gefitinib and decitabine was effective in inhibiting cell 
proliferation, migration, and induction of apoptosis by 
reducing the expression of p-AKT, p-mTOR, and p-S6 
and by inhibiting Bcl2. Indeed, it confers a pro-apoptotic 
phenotype to CRC cell lines.

The combination of lapatinib and Panobinostat can 
prevent proliferation and colony formation in all CRC 
cell lines. Panobinostat activates death-associated protein 
kinase (DAPK), which induces apoptosis and autophagy. 
By inhibiting EGFR/HER 2, lapatinib causes double-
strand breaks and increases apoptosis, which causes 
PARP cleavage and reduction of transcriptional targets, 
such as IRAK 1, NF-κB1, and CCND1. This happens 
under the influence of caspase eight activations, and 
ultimately, MAPK and PI3K/AKT pathway signalling is 
reduced [150]. Wheler et  al. showed that the combined 
treatment of valproic acid with a dose of 5.3 mg/kg and 
11  mg/kg of bevacizumab causes 6-month disease sta-
bility in patients with advanced malignancies, including 
CRC [158].

Epigenetic drugs and cancer stem cells (CSCs)
CSCs are the main causes of cancers that lead to conven-
tional treatment deficiency. They contain several path-
ways and molecular mechanisms that cause stemness and 
resistance against chemotherapy; however, they could 
be controlled through specific epigenetics-based agents. 
Table  1 provides a number of these agents applied in 
various therapeutic phases. It is found that transforma-
tions of particular miRNA expression can cause EMT, 
CSC phenotype, and resistance against chemotherapy. 
It is noteworthy that novel cancer treatment approaches 
are provided through the elimination of the resistance 
of CSC to chemotherapy. Due to the epigenetic nature 
of some tumour progressive aberrant signals, particular 

inhibitors promote the treatment efficacy. Finally, using 
epigenetic modifiers decreases CSC chemotherapy resist-
ance by targeting their stemness-like traits.

Epigenetic manipulation to improve endogenous 
anti‑tumour response
It has been found that epigenetic changes affecting 
tumour immunogenesis and immune cells, including 
lymphocytes and macrophages involved in anti-tumour 
responses, form the favourable tumour microenviron-
ment (TME) conducive to tumour growth. Cancer cells 
escape from the immune system using different mecha-
nisms; these mechanisms include loss of antigen process-
ing and presentation machinery (APM), downregulation 
of tumour-associated antigens (TAAs), and expression 
of a tumour-promoting balance in costimulatory and co-
inhibitory molecules. A new field of research has been 
formed in the field of cancer immunotherapy, which can 
affect the function of immune cells in the environment 
using molecules that inhibit epigenetic changes and thus 
play an important role in cancer treatment [159, 160].

Combination of epidrugs and vaccine for cancer treatment
Today, combination therapies emerging after epigenetic 
therapy include immune checkpoint blockade, vaccines, 
and other immunotherapeutic agents [161]. Immuno-
therapy encompasses diverse strategies, including mono-
clonal antibodies, checkpoint inhibitors, cancer vaccines, 
and cell-based therapies. Specific long non-coding RNAs 
(LncRNAs), such as Lnc-TIM-3 and LncSNHG1, play 
crucial roles in sustaining the expansion of exhausted 
T cells. Combining these LncRNAs with cell-mediated 
therapies like dendritic cell vaccines and adoptive T cell 
therapy aims to enhance treatment effectiveness.

Cancer immunotherapy can be divided into pas-
sive and active approaches. Passive immunotherapy 
involves administering monoclonal antibodies (mAbs), 
cytokines, and ex  vivo “educated” immune cells. Active 
immunotherapy includes anticancer vaccines (such as 
peptide, dendritic cell-based, and allogeneic whole cell 
vaccines), immune checkpoint inhibitors, and onco-
lytic viruses. Researchers continue to explore innovative 
methods to boost anticancer immune responses further 
[162, 163].

Peptide vaccines can elicit effective anti-tumour T cell 
responses. Anticancer vaccines typically contain immu-
nogenic epitopes derived from tumour-specific antigens 
(TSAs) or tumour-associated antigens (TAAs). However, 
initial clinical trials using TSA- or TAA-derived peptide 
vaccines as monotherapy demonstrated limited effec-
tiveness due to the narrow range of immune responses 
induced in vivo and the constraints of MHC restriction. 
Subsequent approaches included single and multiple 
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peptide vaccines tailored to patients expressing specific 
MHC alleles, but their efficacy remained modest. The 
latest generation of anticancer peptide vaccines involves 
multi-peptide cocktails, synthetic long peptides, or 
hybrid peptides that incorporate both cytotoxic T lym-
phocyte (CTL) and helper T (Th) cell epitopes.  These 
advanced vaccines are administered alongside other ther-
apies and are employed in treating various cancer types, 
including colorectal, breast and prostate cancers [164].

Specifically, vaccines containing targeted epitopes have 
undergone phase I-III clinical trials for breast cancer 
and phase II trials in patients with metastatic castrate-
resistant prostate cancer.  It is important to note that, 
based on current knowledge, these specific epitope-based 
vaccines have been evaluated in these clinical settings 
[164, 165]. Also, recent studies have proved a syner-
gistic anti-tumour activity in mouse MC38 and CT26 
colorectal tumour models with concurrent, but not 
sequential, CTLA-4 and PD-1 blockade (Ipilimumab and 
Nivolumab) [166].

Dendritic cells
Dendritic cells (DCs) are a type of professional antigen-
presenting cells (APCs) that release IL-12 by absorb-
ing antigens, so they play a major role in starting the 
immune response [167]. Special AT-rich sequence-
binding protein-1 (SATB1) is necessary for generating 
DCs. SATB1 uses chromatin remodelling complexes and 
binds these complexes to the AT-rich sequence, causing 
HAT or HDACs to be applied to gene promoter regions. 
Finally, changing the position of nucleosomes leads to 
histone modification, which affects the amount of gene 
transcription.

A large increase in SATB1 increases the secretion of 
cytokine IL-6. IL-6 is effective in converting anti-tumour 
DCs into pro-tumour DCs. SATB1 also increases the 
immunosuppressive factor Galectin 1. Because of this, 
SATB1 is overexpressed in a large number of tumours, 
including breast, lung, pancreatic, colorectal, liver, blad-
der, prostate, and ovarian cancer. Kruppel-like factor 4 
(KLF4) modulates IL-6 production at the post-transla-
tional level by histone acetylation. KLF4 reduction has 
been seen in many cancers, including the oesophagus, 
lung, colon, colon, and prostate. Finally, understanding 
the mechanism and the role of epigenetics on the activ-
ity of DCs makes it possible to create an effective anti-
tumour response with changes [159].

Empowering the potential of CAR‑T cell immunotherapies 
by epigenetic reprogramming
Cancer stem cells (CSCs), a small fraction of malignan-
cies, exhibit unique characteristics such as self-replica-
tion, tumourigenesis, and resistance to therapy. These 

CSCs manipulate immunological pathways to escape 
immune surveillance. Specifically, they express tumour-
associated antigens (TAAs), secrete cytokines and anti-
apoptotic molecules, and upregulate survival signalling 
pathways like STAT3 or PI3K/AKT. These immunomod-
ulatory features allow CSCs to evade immune detection, 
contributing to tumour growth and treatment challenges 
[168]. A crucial feature of CSCs is their ability to evade 
immune system responses. Consequently, selective tar-
geting of CSCs has become a critical focus in cancer 
research [169].

Abnormal epigenetic reprogramming contributes to 
the emergence and persistence of CSCs. Specific epige-
netic alterations, such as changes in DNA methylation, 
histone-modifying enzymes, chromatin remodelers, and 
long non-coding RNAs (LncRNAs), play a pivotal role 
in initiating and sustaining the CSC compartment, ulti-
mately driving tumourigenesis [170].

Chimeric antigen receptor (CAR)-T cell therapy, a 
highly promising treatment, has significant potential 
for addressing both haematological disorders and solid 
tumours. This approach involves modifying cancer 
patient T lymphocytes ex  vivo to express a CAR spe-
cifically targeting tumour-associated antigens (TAAs), 
followed by reinfusion into the patients [171]. Combin-
ing CAR-T (chimeric antigen receptor T cell) therapy 
with epigenetic compounds has emerged as a promis-
ing strategy for pursuing more effective cancer thera-
pies. This approach specifically targets a small subset 
of stem-like cells known as CSCs. These CSCs possess 
unique epitopes and epigenetic alterations distinguishing 
them from other cancer and normal cells. By harnessing 
CAR-T immunotherapy alongside epigenetic probes, we 
aim to overcome treatment barriers and achieve a more 
precise and personalised medicine approach for patients 
with specific CSC alterations [172].

Epidrugs targeting CSCs in combination with CAR-T 
therapy is more efficient. Several aberrant epigenetic 
alterations have been linked to the initiation and main-
tenance of CSCs in several cancers [173, 174]. Epigenetic 
reprogramming has been used to modulate the differ-
entiation state and to promote the memory phenotypes 
of CAR-T, to improve CAR-T infiltration and persis-
tence, and finally, as an alternative strategy to avoid their 
exhaustion [172].

Epigenetic reprogramming resulting from epidrug 
treatment can have multiple effects on both CSC sub-
populations and CAR-T cells. These effects include the 
Impairment of CSC self-renewal and stemness capa-
bilities, leading to inhibition of CSC initiation; upregu-
lation of tumour-associated antigens (TAAs) specific to 
CSCs, enabling CAR-T cells to target CSCs selectively; 
and enhancement of T cell-intrinsic properties through 
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modifications in histones, DNA, and miRNAs, promot-
ing a memory phenotype and reversing T cell exhaus-
tion [175]. Recent research has demonstrated that 
miR-153 and miR-448 effectively inhibit the expression of 
Indoleamine 2,3-dioxygenase 1 (IDO1) in colorectal xen-
ograft models. Additionally, miR-153 overexpression in 
cancer cells enhances CAR T cell killing capacity in vitro 
and suppresses tumour growth in a murine colorectal 
cancer xenograft model by downregulating IDO1 expres-
sion [177, 178].

Roadblocks in epigenetics treatments
Despite the benefits of epidrugs, their efficacy has vari-
ous limitations. DNMT inhibitors lead to slow remission 
but, in most cases, do not eradicate cancer [178]. Their 
cytotoxicity and side effects, such as fatigue, nausea, 
increased infection susceptibility, and bone marrow sup-
pression, are related to the lack of specificity of DNMT 
inhibitors and their indiscriminate demethylation [179]. 
One significant limitation of DNMT inhibitors is their 
cost, which may restrict access for many patients. The 
resistance mechanisms to these drugs are still a mystery, 
although possible re-methylation of DNA regions could 
be a crucial reason for resistance.

It is correct that precise targeting of histone deacety-
lases by HDACIs slow cancer growth, but these drugs 
have notable limitations. Off-target toxicity due to the 
influence of both histone and non-histone proteins is one 
of the most critical limitations [180]. Resistance to HDAC 
inhibitors in cancer cells may involve both “intrinsic” and 
“acquired” mechanisms. Intrinsic resistance to HDACIs 
in cancer cells is raised by abnormal expression and mod-
ifications of signalling molecules [181].

Furthermore, the complex molecular interactions with 
the targets of epidrugs, coupled with tumour heterogene-
ity and the wrapped nature of epigenetic regulation, have 
complicated their application [182]. In conclusion, not all 
cancers have equal responses to epidrugs therapies, and 
their delivery to target tissue has encountered challenges 
[183]. Therefore, future research must urgently focus on 
improving treatment with epidrugs through dose adjust-
ment, resistance management, and, most importantly, 
targeted delivery. This targeted delivery is crucial in 
ensuring the efficacy of epidrugs in cancer treatment.

Discussion
Epigenetic modifications significantly influence CRC 
drug resistance through changes like tumour suppressor 
gene hypermethylation (e.g., MLH1) and oncogene hypo-
methylation (e.g., KRAS), affecting gene expression and 
drug interactions. However, challenges exist in clinical 
applications.

A primary challenge is the need for further research 
into epigenetic compounds. For instance, MG98 effec-
tively downregulates DNMT1 and exhibits antiprolifera-
tive properties in  vitro but has not shown considerable 
clinical success. Similarly, entinostat had promising pre-
clinical results yet did not achieve its primary phase III 
trial endpoint for CRC. This ‘translational gap’ highlights 
the need for novel epidrugs with enhanced specificity 
and efficacy. Furthermore, the complexity of epigenetic 
regulation may lead to off-target effects, necessitat-
ing a deeper understanding of the epigenetic landscape 
for selective therapies. Common epidrugs like VPA risk 
causing adverse epigenetic changes and have a limited 
therapeutic window. Despite potential acquired resist-
ance, combination therapies appear promising, integrat-
ing epidrugs with immunotherapy, targeted therapy, 
or chemotherapy to enhance effects. Another strategy 
includes combining HDAC inhibitors with chemotherapy 
to resensitise resistant tumours.

Studying the tumour microenvironment’s impact on 
the cancer epigenome, such as immune and stromal 
cells, can shed light on heterogeneity and resistance. For 
instance, tumour hypoxia can modify epigenetics and 
exacerbate drug resistance, guiding the development of 
combination therapies targeting both tumour and micro-
environment, such as pairing epidrugs with immune 
modulators. Identifying biomarkers for predicting 
response to epidrugs and resistance likelihood is vital for 
personalising treatment, and analysing epigenetic modi-
fications, gene expression, or circulating tumour DNA to 
find suitable candidates for epidrug therapies.

Understanding the relationship between epigenetic 
modifications and CRC drug resistance is crucial for 
developing effective therapeutic strategies. By address-
ing these challenges, notably the limitations of preclinical 
models and robust patient stratification, and exploring 
innovative areas like next-generation epidrugs and com-
bination therapies, we can leverage the potential of epige-
netic therapies against CRC.

Conclusion and future perspectives
A wide range of genetic changes-independent dynamic 
alterations resulting from epigenetics lead to tumouri-
genesis formation and progression through TME 
reengineering. ‘TME’ refers to the tumour micro-
environment, which includes immune and stromal 
cells. These alterations also adjust the on/off statuses 
of oncogenes and TSGs. Hereditary and reversibil-
ity are the main traits of epigenetic modifications that 
make them appropriate targets in cancer treatment. 
Nowadays, epidrugs are efficiently implemented for 
patients with various types of cancers singly or com-
bined with other anticancer agents. However, there are 
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deficits associated with the mentioned drugs, including 
increased demands for appropriate personalised thera-
pies resulting from the heterogeneity and plasticity 
traits of human cancer. Based on personal variations, 
standard cancer treatments are associated with lim-
ited prognosis. Moreover, both genome and epigenome 
maps of a determined cell population of patients were 
investigated using high throughput epigenome mapping 
technologies to evaluate drug sensitivity and screening. 
Therefore, therapy optimization of CRC associated with 
increased efficacy and decreased off-target effects could 
be achieved for all patients.
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