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Roles and mechanisms of histone 
methylation in vascular aging and related 
diseases
Yufei Ji1, Zhenzhen Chen2* and Jun Cai1,2* 

Abstract 

The global aging trend has posed significant challenges, rendering healthcare for older adults a crucial focus in medi-
cal research. Among the numerous health concerns related to aging, vascular aging and dysfunction are impor-
tant risk factors and underlying causes of age-related diseases. Histone methylation and demethylation, which are 
involved in gene expression and cellular senescence, are closely associated with the occurrence and development 
of vascular aging. Consequently, this review aimed to identify the role of histone methylation in the pathogenesis 
of vascular aging and its potential for treating age-related vascular diseases and provided new insights into therapeu-
tic strategies targeting the vascular system.
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Introduction
Aging represents a major risk factor for fatal chronic dis-
eases, including cardiovascular disease, cancer, and neu-
rodegenerative disease [1]. Cardiovascular disease ranks 
among the leading global causes of mortality [2]. With 
aging, arteries experience wall thickening, lumen nar-
rowing, and pathological remodeling, which give rise to 
age-related vascular diseases, such as hypertension, ath-
erosclerosis, arterial aneurysms, and cerebrovascular dis-
ease [3–6]. Improving vascular health by counteracting 
age-related signals promotes healthy aging and extends 
lifespans [7].

Epigenetic alteration is a hallmark of cardiovascular 
aging, and histone modifications play a critical role in 
regulating cellular processes, such as proliferation, dif-
ferentiation, and apoptosis [8]. Changes in histone acety-
lation and their contribution to cellular senescence have 
been investigated; however, the role of methylation has 
not been comprehensively reviewed [9].

Histone methylation is a reversible epigenetic modifi-
cation catalyzed by histone methyltransferases (HMTs). 
It mainly occurs on lysine and arginine residues of H3 
and H4 histones and is removed by histone demethylases 
(HDMs) [10]. Unlike other modifications, histone meth-
ylation is recognized by distinct domain types and occurs 
slowly, which indicates its importance and epigenetic sta-
bility [11, 12]. Accumulating evidence suggests that his-
tone methylation is pivotal to vascular aging and related 
diseases [13–16]. Consequently, this review aimed to 
elucidate the roles of various HMTs and HDMs in these 
processes. Our focus was primarily on hypertension, ath-
erosclerosis, neointimal hyperplasia, pulmonary hyper-
tension (PH), aortic diseases, diabetic vascular diseases 
and ischemic stroke. A comprehensive literature search 
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was conducted to examine the relationship between his-
tone methylation sites or enzymes and these diseases. We 
also explored the potential therapeutic applications of 
inhibitors targeting these sites and enzymes in the man-
agement of age-related vascular diseases.

Histone modification and methylation
Epigenetic modifications are heritable modifications that 
cause changes in gene expression independent of DNA 
sequence alterations and regulate gene transcriptional 
activity [17]. In eukaryotic cells, chromosomes are tightly 
packaged into the chromatin, with nucleosomes as the 
basic units. Each nucleosome consists of 146 bp of DNA 
wrapped around an octamer composed of core histones 
H3, H4, H2A, and H2B [18]. Therefore, modifications 
of these histones are crucial for activating or repressing 
gene transcription by precisely regulating the activities of 
gene promoters and enhancers [19]. Moreover, a growing 
body of evidence suggests that the dysregulation of epige-
netic regulators of histone modifications is a predispos-
ing factor for vascular aging and related diseases [9, 20].

Methylation is an important histone modification 
during individual development and stem cell differ-
entiation [21]. By adding a methyl group to lysine or 
arginine residues in histone tails, histone methylation 
alters the chromatin structure to activate or silence 
gene expression [22, 23]. Lysine methylation is cata-
lyzed by HMTs, resulting in monomethylation (me1), 

dimethylation (me2), or trimethylation (me3) [24]. At 
promoter sites, active methylated H3K4, H3K36, and 
H3K79 are enriched, creating an open chromatin struc-
ture that activates transcription. In contrast, methyla-
tion of H3K9, H3K27, and H4K20 leads to a compact 
chromatin structure that represses transcription. Dif-
ferently, arginine methylation is catalyzed by protein 
arginine methyltransferases (PRMTs) [25]. (Fig. 1).

From vascular development and maturation to senes-
cence, histone methylation is consistently involved 
throughout the process. Vasculogenesis and angiogen-
esis are importantly controlled by histone methylation 
regulators. Knockout of Setd2 (a H3K36-specific meth-
yltransferase) in mice results in embryonic lethality 
with severe defects in blood vessel development [26]. 
Likewise, the disruptor of telomeric silencing 1-like 
(DOT1L), a H3K79-specific methyltransferase, main-
tains vascular integrity and function during embryonic 
development and postnatal life [27, 28]. Other HMTs 
and HDMs also have an effect on vascular development 
[29, 30].

The amount of research on histone methylation con-
tributing to vascular aging and related diseases far 
exceeds that contributing to vascular development 
[31]. Table 1 comprehensively lists HMTs, HDMs, and 
PRMTs family members involved in the regulation of 
vascular aging and related conditions.

Fig. 1 Activators or inhibitors of histone methylation in this review
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Histone methylation‑mediated hallmarks 
in vascular aging
Cellular senescence is characterized by irreversible 
growth arrest, which directly contributes to endothe-
lial cell (EC) dysfunction, phenotypic transition of vas-
cular smooth muscle cell (VSMC), and macrophage 
activation[32]. Ultimately, these changes lead to vas-
cular dysfunction and age-related diseases[5]. Dur-
ing this process, telomere attrition occurs along with 
the increased expression of senescence markers, such 
as p53, p21, p16, reactive oxygen species (ROS), and 
genes associated with the senescence-associated secre-
tory phenotype (SASP) [33]. (Fig. 2).

Endothelial dysfunction and vascular remodeling
Vascular cell senescence, which is associated with vascu-
lar cell phenotypic transformation and dysfunction, can 
be localized in almost all age-related vascular diseases. 
In particular, histone methylation of genes related to car-
diovascular diseases is often altered in ECs and VSMCs. 
Here, the major role of arginine methylation and its mod-
ifying enzymes is described, while common lysine meth-
ylation modifications are detailed elsewhere.

Type I PRMTs are responsible for the formation of 
asymmetric dimethylarginine (ADMA). When proteins 
containing methylarginine are hydrolyzed, ADMA is 
released into the cytoplasm, inhibiting NOS activity, 

Table 1 Histone methylases, demethylases, and their synonyms mentioned in this paper

Subclass Residue HMTs and HDMs 
involved in vascular 
diseases

Synonym Type of vascular diseases Reference

Lysine methyltransferases (KMTs)

KMT1 H3K9 SUV39H1 KMT1A Diabetic vascular diseases [16, 95, 103, 111, 112, 137]

G9a KMT1C Pulmonary arterial hypertension

SETDB2 KMT1F Abdominal aortic aneurysm

KMT2 H3K4 MLL2 KMT2B Atherosclerosis [60, 62, 69, 100, 101, 136]

MLL3 KMT2C Diabetic vascular diseases

SET1A KMT2F Abdominal aortic aneurysm

ASH2 ASH2L Atherosclerosis

KMT3 H3K4
H3K36

SMYD2 KMT3C Neointimal hyperplasia; Hypertension [13, 14, 26, 77–79, 96, 122]

SMYD3 KMT3E Neointimal hyperplasia; Hypertension

NSD2 KMT3G Pulmonary arterial hypertension

KMT4 H3K79 DOT1L KMT4 Atherosclerosis [74, 75, 90, 91, 121, 138]

KMT5 H4K20 SET8 KMT5A Diabetic vascular diseases [52, 53, 57, 110, 139]

SUV420H KMT5B-C Pulmonary arterial hypertension; Cardiac aging

KMT6 H3K27 EZH2 KMT6A Atherosclerosis; Hypertension; Aortic diseases; 
Stroke

[63, 72, 86, 87, 104–106, 128, 140–143]

KMT7 H3K4 SET7 SETD7 Diabetic vascular diseases [64–66, 136]

Lysine demethylases (KDMs)

KDM1 H3K4 LSD1 KDM1A Atherosclerosis; Diabetic vascular diseases [64, 70, 136]

KDM2 H3K36 – KDM2A Atherosclerosis 36,552,592

KDM3 H3K9 JMJD1A KDM3A Abdominal aortic aneurysm; Diabetic vascular 
diseases

[55, 97, 101, 102, 113, 144]

JMJD1C KDM3C Pulmonary arterial hypertension

KDM4 H3K9 JMJD2A KDM4A Abdominal aortic aneurysm [100]

KDM5 H3K4 KDM5A JARID1A Hypertension [71, 85]

KDM6 H3K27 UTX KDM6A Hypertension [43–46, 81, 82, 145]

JMJD3 KDM6B Atherosclerosis; Hypertension

Protein arginine methyltransferases (PRMTs)

PRMT I H3R17 PRMT4 CARM1 Atherosclerosis; Diabetic vascular diseases [146]

PRMT II H3R8 H4R3 PRMT5 – Neointimal hyperplasia [37]
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which affects vascular EC function and increases the risk 
of cardiovascular diseases [34]. Plasma ADMA concen-
trations are elevated in patients with renal failure, coro-
nary artery disease, hypertension, and diabetes mellitus. 
Notably, acute ADMA injections induce significant vas-
cular dysfunction in humans, whereas chronic ADMA 
injections promote the development of atherosclerosis in 
mice [35].

The key Type II PRMT, PRMT5, catalyzes the for-
mation of monomethylation (MMA) and symmetric 
dimethylarginine (SDMA) and plays diverse biological 
roles [36]. It is abundantly expressed in human athero-
sclerotic lesions and in mouse carotid arteries after bal-
loon injury [37]. Overexpression of PRMT5 results in 
H3R8me2 and H4R3me2, which in turn attenuates acety-
lation of H3K9 and H4, limits the enrichment of myocar-
din and serum response factor (SRF) to CArG boxes, and 
subsequently inhibits VSMC differentiation. PRMT5 also 
affects VSMC phenotypic transformation by modifying 
non-histone methylation [38].

Renin–angiotensin–aldosterone system dysfunction
Angiotensin II is widely involved in the pathogenesis of 
vascular diseases by mediating DNA damage and accel-
erating cellular senescence in vascular cells [39, 40]. If 
not promptly repaired, damaged DNA accumulates in 
senescent cells. Tumor suppressors such as p53, p21, and 
p16 play crucial roles in this process by regulating the cell 
cycle and promoting apoptosis [41, 42].

In ECs, angiotensin II mediates the upregulation of SET 
and MYND domain-containing protein (SMYD) 2 and 
SMYD3. This upregulation enhances the methylation of 
H3K4 and activates p21 genes, leading to vascular aging 
[13, 14]. Besides, angiotensin II perfusion induces the 
upregulation of Jumonji  domain-containing-3  (JMJD3) 
and the deletion of H3K27me3 in the aorta, thereby pro-
moting the expression of  Na+-K+-2Cl− cotransporter 
(NKCC) [43, 44]. Paradoxically, in the kidney, aging 
downregulates JMJD3 expression and conditional knock-
out of ubiquitously transcribed tetratricopeptide repeat 
X chromosome (UTX) increases the levels of H3K27me3, 
which upregulates blood pressure and NKCC through 
diminished ERK signaling and increased WNK signaling 
[45, 46].

Mitochondrial dysfunction and oxidative stress
Mitochondrial dysfunction is characterized by mito-
chondrial membrane permeability alteration, ROS over-
production and development of oxidative stress [47]. 
Interestingly, studies have found that slight mitochon-
drial dysfunction during early developmental stages can 
delay senescence by plant homeodomain finger protein 
8 (PHF8) and JMJD3 [48]. However, more severe mito-
chondrial dysfunction, or dysfunction occurring later in 
life, tends to have detrimental effects on lifespan. Fur-
thermore, the relationship between the opening of the 
mitochondrial permeability transition pore and PHF8-
mediated histone methylation may offer valuable insights 
into how mitochondrial pathways influence stress-
induced longevity and disease development [49].

ROS affects cell survival leading to apoptosis and oxi-
dative stress, inducing cellular senescence and contribut-
ing to vascular aging [50]. The nuclear factor erythroid 
2-related factor 2 (Nrf2) signaling pathway is crucial for 
fighting oxidative stress by binding to kelch-like ech-
associated protein 1 (Keap1) in the cytoplasm [51]. When 
oxidative stress occurs, Nrf2 dissociates from Keap1 and 
accumulates in the nucleus. Subsequently, Nrf2 interacts 
with antioxidant response elements, which helps protect 
mitochondrial function and reduce ROS production. 
Overexpressing SET8 can attenuate Keap1 promoter 
activity to inhibit hyperglycemia-mediated ROS accumu-
lation [52, 53].

Hypoxia-inducible transcription factor-1α (HIF-1α) 
modulates histone methylation markers, including acti-
vating marks such as H3K4me2/3 and repressing marks 
like H3K9me2/3 and H3K27me3 [54]. High glucose 
combined with HIF-1α expression enhances EC inflam-
matory injury independent of the nuclear factor kappa B 
(NFκB) pathway. Therefore, reducing HIF-1α expression 
suppresses the expression of IL-6 and monocyte chem-
oattractant protein 1 (MCP-1) through JMJD1A [55]. 

Fig. 2 Histone methylation modulates vascular aging hallmarks. 
The scheme compiles the four hallmarks of cardiovascular 
aging proposed in this work: hormonal signaling dysregulation, 
mitochondrial dysfunction, cellular senescence, and inflammation
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Moreover, inhibiting the expression of PRMT5 attenuates 
the protein stability of HIF-1α and the VEGF signaling 
pathway [56]. Some other signaling pathways, like TGF-β 
signaling, are also involved in the senescence caused by 
oxidative stress in vascular diseases [57].

Nuclear factor kappa B‑p65 pathway 
and senescent‑associated secretory phenotype
The NFκB-p65 pathway is a critical signaling mecha-
nism that regulates various cellular processes, includ-
ing inflammation, immune response, and proliferation 
[58]. Vascular senescence also activates the NFκB-p65 
pathway, resulting in numerous upregulated SASP com-
ponents, including cytokines such as IL-6 and IL-8, 
chemokines, and MMPs. Furthermore, SASP factors can 
activate NFκB-p65, creating positive feedback loops that 
amplify the inflammatory response [59]. This interactive 
relationship is vital for the progression of vascular aging 
and related diseases.

In vascular endothelium, H3K4me2/3 interacts with 
myocardin-related transcription factor A (MRTF-A) 
and ASH2 (a crucial component of histone H3K4 meth-
yltransferase complexes) through the NFκB pathway, 
leading to atherosclerosis [60, 61]. Lin et  al. have dem-
onstrated that MRTF-A amplifies inducible nitric oxide 
synthase (iNOS) activity in macrophages by recruiting 
ASH2 [62]. Furthermore, in VSMCs exposed to TNF-
α, downregulating smooth muscle 22α enhances NFκB 
activity and the expression of proinflammatory molecules 

through EZH2-mediated H3K27me3 at its promoter 
region [63].

Additionally, hyperglycemia can persistently activate 
NFκB-p65 gene expression by influencing some common 
methylation modification sites, such as H3K4, H3K9, and 
their modifying enzymes [64]. SET7 recruitment and 
H3K4me1 cause NFκB to be overactive, leading to the 
subsequent transcription of Cyclooxygenase-2, iNOS, 
and proinflammatory genes that affect vascular inflam-
mation [65, 66].

Advances in histone methylation in aging‑related 
vascular diseases
Vascular aging and dysfunction are common features in 
almost all vascular risk factors and related diseases, such 
as atherosclerosis, neointimal hyperplasia, hypertension, 
PH, aortic diseases, diabetic vascular diseases, and cer-
ebrovascular disease (Fig. 3).

Atherosclerosis
Atherosclerosis is a chronic and progressive inflamma-
tory disease characterized by pathological changes in 
the walls of large and medium-sized arteries [67]. The 
exact cause of atherosclerosis remains unclear; how-
ever, several factors are closely related to the occurrence 
and progression of atherosclerosis, including obesity, 
hypertension, diabetes, elevated low-density lipopro-
tein levels and decreased high-density lipoprotein levels, 

Fig. 3 Regulation of the histone methylation of associated genes during vascular aging and related disease development. Vascular aging 
and related vascular diseases, particularly hypertension, atherosclerosis, and diabetic vascular diseases, occur simultaneously and create a vicious 
cycle. Due to their similarities and simultaneous occurrence, they may share the same histone methylation patterns
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respectively. Moreover, vascular aging significantly con-
tributes to atherosclerotic cardiovascular diseases [68].

Histone methylation is pivotal to the pathological pro-
gression of atherosclerosis. Specifically, the H3K4 meth-
ylation is increased in atherosclerotic plaques, while the 
methylation of H3K9 and H3K27 is reduced in VSMCs 
and inflammatory cells [69]. This might be associated 
with enhanced gene expression that promotes inflamma-
tion and lipid deposition.

In macrophages within carotid atherosclerotic lesions, 
lnc_000048 promotes MAP2K2 transcription by attenu-
ating LSD1 activity, which leads to the  accumulation of 
H3K4me2, and ultimately induces downstream inflam-
matory factors [70]. Due to variations in the cells and 
molecules of interest in research, the increase in H3K4 
methylation leads to different phenotypes. Inhibiting 
KDM5 activity increases H3K4me3 and significantly 
reduces EC proliferation, migration, and tube formation 
in the vascular tissues of patients with cardiovascular dis-
ease [71].

The histone methyltransferase EZH2 is elevated in ath-
erosclerotic plaque tissues and silences gene expression 
by mediating H3K27me3. Knockdown of growth arrest-
specific 5 potentially promotes the reverse transport of 
cholesterol and ultimately prevents the progression of 
atherosclerosis by reducing EZH2-mediated transcrip-
tional inhibition of ATP-binding cassette transporter A1 
(ABCA1), a protein capable of regulating lipid efflux [72]. 
Additionally, EZH2 also regulates the expression of DNA 
methyltransferase 1 and subsequently promotes DNA 
methylation of the Abca1 promoter, resulting in silencing 
of the Abca1 gene [73].

During the development of atherosclerosis, DOT1L 
expression is upregulated. It-induced H3K79me2 can 
increase expression of cytosolic C–C motif chemokine 
ligand 5 and C-X-C motif chemokine 10, which pro-
motes phenotypic transition of VSMCs [74]. DOT1L also 
directly regulates macrophage function by controlling the 
expression of lipid biosynthesis genes, such as sterol reg-
ulatory element binding protein (SREBP) 1/2. Inhibition 
of DOT1L results in macrophage hyperactivation and 
reduced atherosclerotic plaque stability associated with 
disrupted SREBP pathways [75].

Neointimal hyperplasia
In patients with atherosclerosis, VSMCs contribute to 
vessel-wall inflammation, lipoprotein retention, and the 
formation of a fibrous cap that stabilizes plaque. These 
responses increase upon injury and lead to in-stent reste-
nosis, bypass-graft occlusion, and transplant vasculopa-
thy [76]. Although VSMCs in the arterial intima-media 
do not proliferate, injury or other stimuli can cause mid-
membrane VSMCs to migrate to the intima, proliferate, 

and secrete extracellular matrix, resulting in neointimal 
hyperplasia [76].

Methylation of H3K4 in the CArG box region of VSMC 
contractile genes is crucial for maintaining the VSMC 
contractile phenotype and function [14, 68]. Recent evi-
dence suggests that the inhibition of the VSMCs phe-
notypic switch, proliferation, and migration by SMYD2 
is myocardin-dependent. Mechanistically, SMYD2 
increases the levels of H3K4me1/3 in the CArG regions 
of the VSMCs marker gene promoters, enhancing the 
enrichment of SRF/myocardin complexes, preventing the 
VSMC phenotypic switch, and inhibiting neointima for-
mation after vascular injury [77]. Another member of the 
SMYD family, SMYD3, also promotes VSMC prolifera-
tion and migration [78]. Poly(ADP-Ribose) Polymerase 
Family Member 16 is a potential target gene of SMYD3 
[79].

The expression of KLF4, a member of the KLF fam-
ily of zinc-finger transcription factors, decreases during 
VSMC senescence induced by Angiotensin II [80]. When 
recruited by KLF4, JMJD3 reduces H3K27me3 in the 
enhancers and promoters of epithelial and pluripotency 
genes [81]. Furthermore, JMJD3 also mediates VSMC 
proliferation and migration by altering NOX4 expres-
sion [82]. Therefore, downregulating JMJD3 enhances 
endothelial neovascularization.

Hypertension
Hypertension, influenced by genetic factors, aging, and 
lifestyle habits, is a major risk factor for cardiovascular 
disease [83]. Aging and pathology-induced declines in 
arterial compliance significantly affect the systolic com-
ponents of hypertension [84].

The renin–angiotensin–aldosterone system has been 
associated the development of hypertension and multi-
organ damage. In the two-kidney and one-clip hyperten-
sion mouse model, SMYD2 and SMYD3 were involved in 
the upregulation of senescence markers [13, 14]. Addi-
tionally, angiotensin-converting enzyme 1 (ACE1) is 
upregulated in the hearts and kidneys of spontaneously 
hypersensitive rats. Valsartan treatment significantly 
promotes the binding of KDM5A to the Ace1 promoter 
region and downregulates H3K4me3 and ACE1 expres-
sion [85].

Although EZH2 expression is elevated in atheroscle-
rotic plaques, it decreases with age and is associated with 
increased vascular sclerosis in mice and humans [86]. In 
response to angiotensin II stimulation in the aorta, aging 
enhances the activity of aldosterone and its mineralocor-
ticoid receptor (MR) [87]. The MR increase in human 
aortic VSMCs inhibits EZH2 expression, thereby reduc-
ing H3K27 methylation. This results in MR recruitment 
and H3K27ac deposition at the promoter of stiffness 
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genes, such as connective tissue growth factor, MMP2, 
and Integrin α5, thus promoting vascular aging [86, 87].

Long-term blood pressure management requires the 
maintenance of sodium homeostasis, a process affected 
by aging, and renal sodium processing [88]. Blood pres-
sure sensitivity to salt is characterized by blood pressure 
changes corresponding to salt intake [89]. The interaction 
between DOT1a and Af9 induces H3K79 hypermeth-
ylation and inhibits the renal epithelial sodium channel 
(ENaC) gene, thereby maintaining normal blood pres-
sure. The disruption of interaction between DOT1a and 
Af9 induces H3K79 hypomethylation, leading to the 
activation of the renal epithelial sodium channel (ENaC) 
gene, and consequent hypertension [90]. Conversely, 
Af17 directly inhibits DOT1a-mediated H3K79 methyla-
tion at the ENaC promoter, activating ENaC [91].

Pulmonary arterial hypertension
PH is a fatal disease characterized by pathological 
remodeling of the pulmonary arteries due to the exces-
sive growth of pulmonary arterial smooth muscle cells 
(PASMCs) [92]. In patients with idiopathic PH, there are 
increased cellular senescence and DNA damage markers 
in the lungs. Chronic exposure to hypoxia also increases 
cell senescence [93].

Euchromatic histone–lysine N-methyltransferase 2 
(G9a) and its partner G9a-like protein (GLP), which 
belong to the KMT1 family, methylate H3K9 and contrib-
ute to the pro-survival and pro-proliferative phenotypes 
of PH-PASMCs [94, 95]. Additionally, silencing NSD2 
significantly reduces H3K36me2 in the pulmonary arter-
ies, and  inhibits autophagy, thus alleviating pulmonary 
artery wall and right ventricular thickening [96]. Inhibit-
ing G9a/GLP and NSD2 protects against elevated pulmo-
nary artery pressure and right ventricular dysfunction by 
inhibiting autophagy.

Another important aspect of PH is increased glycolysis 
caused by hypoxia. JMJD1C promotes glycolysis through 
activating STAT3 signaling, which in turn promotes 
PASMC proliferation and pulmonary vascular remod-
eling. Silencing JMJD1C reduces the glycolytic enzymes, 
Hexokinase  2, Phosphoglycerate kinase  1, and Lactate 
dehydrogenase A, as well as excessive lactate accumula-
tion in the lungs of mice exposed to hypoxia [97].

Aortic diseases
Abdominal aortic aneurysm (AAA) is a degenerative dis-
ease associated with aging, predominantly affecting men 
aged > 55 and women aged > 70 years, respectively [98]. 
In patients with AAA, ECs, VSMCs, and macrophages 
develop signs of cellular senescence, such as shortened 
telomeres and oxidative DNA damage [99].

The core component of the mammalian chromatin-
remodeling complex, Brahma-Related Gene 1 (BRG1), 
has been shown to interact with and regulate transcrip-
tion through its crosstalk with SET1A, JMJD1A, and 
JMJD2A [100, 101]. These interactions create an active 
chromatin conformation that promotes colony-stimulat-
ing factor 1 transcription and macrophage recruitment 
and sustains vascular inflammation [101, 102]. Notably, 
the AAA phenotype in Brg1-knockout mice is reduced 
[102]. Furthermore, recent single-cell RNA sequencing 
analyses of human AAA tissues have revealed upregu-
lated SETDB2 in macrophages compared with controls. 
Targeting JAK/STAT3 signaling pathway with Tofacitinib 
reduces SETDB2 expression in aortic macrophages, and 
decreases MMP activity [103].

Beyond AAA, thoracic aortic aneurysm (TAA) and 
acute aortic dissection involve medial degeneration with 
the loss of VSMCs, altered elastic fibers, and inflamma-
tion. Aortic stress triggers the transition of VSMCs from 
a contractile to a proliferative, extracellular matrix-pro-
ducing, inflammatory phenotype [104]. In VSMCs, the 
double-stranded DNA stimulator of interferon genes-
interferon regulatory factor 3 (IRF3) signaling path-
way induces inflammatory gene expression. Here, IRF3 
recruits EZH2 to contractile genes, thus inducing repres-
sive H3K27me3 modification and gene suppression [104]. 
However, EZH2 modulates integrin β3 for downstream 
molecules and promotes VSMC invasion and calcifica-
tion, which leads to TAA and aortic coarctation [105]. 
Furthermore, EZH2 regulates autophagy by control-
ling autophagosome formation, contributing to its role 
in aortic diseases [106]. These results provide important 
insights into the relationship between EZH2 and aortic 
diseases.

Diabetic vascular diseases
Diabetes mellitus is a risk factor for vascular diseases. 
The main pathological manifestations of several vascu-
lar comorbidities are atherosclerosis in large vessels and 
impaired endothelial function in microvessels, which 
seriously affect patient prognosis and treatment [107]. 
Even when normal blood glucose levels are restored, 
patients with diabetes often experience ongoing inflam-
matory and vascular complications due to a hyperglyce-
mia-induced methylation epigenetic markers memory 
[108, 109] (Fig. 4).

Notably, in patients or rats with diabetes, SET8 is 
decreased and Forkhead box protein O1 (FOXO1) 
expression is increased. Enriching H4K20me1 and 
FOXO1 in the phosphatase and tensin homolog (PTEN) 
promoter region upregulates PTEN expression, induces 
p65 phosphorylation and adhesion molecule expression, 
and triggers endothelial inflammation [110]. Thus, SET8 
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seems to protect against endothelial damage induced by 
elevated glucose and hyperglycemic memory.

The histone–lysine N-methyltransferase SUV39H1, 
which belongs to KMT1 and methylates H3K9 [94]. 
Reduced SUV39H1 and H3K9me3 levels in VSMCs of 
mice with diabetes induce the activity of IL-6 and MCP-1 
genes. Similar patterns have been found in human 
VSMCs, indicating that H3K9me3 and SUV39H1 gener-
ally protect against inflammation [111]. Likewise, lower 
SUV39H1 levels in ECs under oxidative stress pro-
mote cell migration, tube formation, and MMP activity, 
thereby contributing to vascular complications [112]. 
Additionally, reduced levels of JMJD1A protein are asso-
ciated with increased H3K9me2 levels on the Rho-asso-
ciated protein kinase 2 and angiotensin II receptor type 
1 promoter, which is accompanied by the development 
of vascular remodeling and neointimal hyperplasia under 
diabetic conditions [113].

Ischemic stroke
Cerebral small vessel disease (CSVD) refers to a range of 
clinical, imaging, and pathological syndromes caused by 
various factors affecting small blood vessels in the brain, 
including arteries, arterioles, capillaries, venules, and 
small veins. Older adults constitute a high-risk group 
for CSVD, being more prone to lesions such as cerebral 
microvessel stenosis, occlusion, or hemorrhage, which 
subsequently impair brain function. Recently, Su et  al. 
have reviewed the role of histone methylation and related 
HMT inhibitors in the pathogenesis of ischemic stroke 
[6]. The methylations of H3K4, H3K9, and H3K27 are 
primarily involved in the development and prognosis of 

ischemic stroke. Apart from what is mentioned in the 
article, the latest finding suggests that EZH2-mediated 
H3K27me3 instigated the regulation of apoptosis, brain 
infarction and delayed ischemic changes of neurons  via 
epigenetic upregulation of PI3K/AKT/mTOR signaling 
pathway in ischemic stroke[114].

Combined modulation of histone methylation 
and acetylation in vascular aging
Compared to methylation, histone acetylation has gar-
nered more clinical attention in the fields of cardiovas-
cular diseases and aging. Reviews have systematically 
elaborated on the impact of acetyltransferases and dea-
cetylases on cardiovascular diseases [9]. Particularly, the 
Sirtuin (SIRT) family of acetylases plays a pivotal role in 
this context. Several anti-aging drugs targeting this fam-
ily, including Resveratrol, Quercetin SRT2104, and MDL-
800/811 are currently under clinical trial [115–118].

There is a crosstalk between SIRT family and meth-
ylation in vascular aging and related diseases. The 
regulation of  EZH2  protein level by  SIRT1  affects the 
repressive effects of EZH2 on the target gene expression 
[119]. For instance, Shu et al. have found that upregula-
tion of EZH2 inhibits the anti-inflammatory function 
of SIRT1, whereas SIRT1 can remove the H3K27me3 of 
SM-22α by deacetylating EZH2, thereby increasing the 
expression of SM-22α and exerting an anti-inflammatory 
effect [63]. Alternatively, although inhibition of EZH2 
or activation of SIRT1 elicits individual atheroprotec-
tive effects, target  genes  for  EZH2  and  SIRT1  overlap 
[120]. According to Karnewar et al., the longevity effects 
mediated by SIRT1 are partially achieved through the 

Fig. 4 Relationship between histone methylation and hyperglycemia
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DOT1L-mediated enhancement of H3K79me3. Further-
more, H3K79 methylation significantly regulates age-
related vascular dysfunction through interaction with 
SIRT3 [121].

Besides the SIRT family, additional acetylation enzymes 
are associated with methylation in vascular biology [122]. 
Considering an interconnection between the effects these 
epigenetic enzymes evoke during  vascular aging and 
related diseases; it might suggest therapeutic synergy 
when interventions at the level of methylation and acety-
lation are combined.

Emerging therapeutic approaches targeting 
histone methylation in patients with vascular 
aging
Histone methylation is crucial for regulating gene expres-
sion and cellular functions. Obviously, the interven-
tion of HMT and HDM can reduce the activation signal 
of related pathways, reduce inflammatory cytokines, 
lower oxidative stress levels, and improve vascular aging. 
Therefore, targeting these enzymes with methylase and 
demethylase inhibitors could be an effective strategy for 
treating vascular aging and related diseases.

Several inhibitors of HMTs or HDMs such as LSD1, 
EZH2, and JMJD3 have been approved or in clinical tri-
als in the field of oncology. A few preclinical studies have 
shown that  several inhibitors against tumors are also 
effective on vascular diseases (Table 2). For instance, the 
use of the JMJD3 inhibitor GSKJ4 ameliorates AAA and 
neointima formation after vascular injury [44, 82].

Blockers of LSD1 are presently under evaluation in 
clinical trials for the treatment of diseases [123]. Inhibi-
tors of LSD1 expression significantly alleviate atheroscle-
rosis and neointimal formation [124, 125]. In particular, 
tranylcypromine has been shown to increase the risk of 
hypertension with use, because of its off-target effects 
[126, 127].

The relationship between EZH2 expression and vas-
cular aging is complex. As previously mentioned, EZH2 
expression in vascular vessels decreases with age, which 
leads to vascular sclerosis, but it increases in athero-
sclerotic plaques and aortic aneurysm tissues. Inhibi-
tors of proprotein convertase subtilisin/kexin type 9 
(PCSK9) reduce the severity of atherosclerosis by mod-
ulating EZH2 actions and lowering lipid levels [128]. 
Tazemetostat, the first EZH2 inhibitor approved by the 
United States Food and Drug Administration for can-
cer treatment, has highlighted the therapeutic poten-
tial of targeting EZH2 [129]. In hyperlipidemic mice, 
Tazemetostat slows progression of atherosclerosis and 
drastically improves plaque phenotype [130]. Other 
inhibitors like EPZ005687, GSK126 and GSK343 also 
ameliorate age-related vascular diseases [131–134]. 
However, the reduced levels of H3K27me and EZH2 in 
aging blood vessels lead to stiffness, indicating that the 
EZH2 inhibitors used in cancer treatment have a nega-
tive impact on the vascular system [86, 87]. Therefore, 
it is crucial to monitor indicators such as pulse wave 
velocity when using these drugs. Collectively, more 
attention should be paid to the clinical application of 
these inhibitors.

Some frequently used drugs of cardiovascular dis-
eases target histone methylation. For instance, Valsartan 
significantly increases the binding of KDM5A protein 
to the Ace1 promoter region. This interaction reduces 
H3K4me3 levels in the heart and kidney, decreases blood 
pressure, and alleviates target organ damage [85]. Met-
formin, a 5′-adenosine  monophosphate-activated pro-
tein kinase activator, increases H3K79me3 levels through 
the SIRT1-DOT1L axis. This process enhances SIRT3 
expression and mitochondrial function, thereby delaying 
endothelial cellular senescence and vascular aging. Thus, 
long-term metformin administration is beneficial for 
retarding vascular aging [121].

Table 2 Overview of HMTs or HDMs inhibitors involved in vascular diseases

Target Drugs Phase Diseases Status Effects on vascular system References

LSD1 Tranylcypromine Phase I/II Acute myeloid leukemia Completed Causes high blood pressure [126, 127, 147]

ORY-1001 Phase I Acute myeloid leukemia Completed Alleviates neointimal hyperplasia [124, 148]

GSK2879552 Phase I Small cell lung cancer Completed Reduces the extent of atherosclerotic lesions [125, 149]

EZH2 Tazemetostat Phase II Lymphoma Completed Slows atherosclerotic plaque progression Protects 
against ischemic brain injury

[114, 129, 130, 150]

Astemizole Preclinical – – Aggravates atherosclerosis [151, 152]

EPZ005687 Preclinical – – Ameliorates pulmonary hypertension [131]

GSK126 Preclinical – – Alleviates atherosclerosis Causes vascular stiffening [86, 134]

GSK343 Preclinical – – Improves aortic performance Reduces neointimal 
formation

[132, 133]

JMJD3 GSKJ4 Preclinical – – Ameliorates AAA and neointima formation [44, 82]
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In addition to many pharmaceutical drugs, several 
natural agents can also alleviate vascular aging by influ-
encing histone methylation. Phenethyl isothiocyanate, 
a major component of watercress and other cruciferous 
vegetables, reduces H3K9 acetylation and H3K4me2 lev-
els, leading to decreased hepatic lipid accumulation and 
aortic atherosclerosis [135]. Another promising natural 
compound is puerarin, the main isoflavone glycoside in 
the roots of Pueraria lobata, which significantly inhibits 
the hyperglycemia-induced upregulation of H3K4me2/3 
on the MCP-1 promoter, thus alleviating diabetic vascu-
lar complications [136].

The study of histone methylation in aging and vascular 
diseases is still in its early stages, especially when com-
pared to the more established research on histone acety-
lation and DNA methylation. Most clinical trials aimed 
at modulating histone methylation for therapeutic pur-
poses focus on oncology, with limited research directed 
toward vascular diseases. A key challenge in this field is 
that the off-target effects of certain drugs may lead to 
cardiovascular side effects, such as hypertension and ath-
erosclerosis aggravation. Another challenge is the lack 
of understanding regarding how histone methylation 
interacts with other modifications in the context of vas-
cular aging and related diseases. Gaining deeper insights 
into these interactions is crucial for developing targeted 
therapies.

Vascular aging is a pivotal factor in the function of 
organs and systems in the body. However, the effects of 
histone methylation can vary significantly across differ-
ent vascular cell types, and some modifications may even 
have opposing effects within the same tissue. Addition-
ally, while animal and cell models offer valuable insights 
into the pathological processes underlying age-related 
vascular diseases, they do not fully replicate human con-
ditions, limiting the applicability of the results. For this 
reason, clinical applications still require more compre-
hensive studies to examine potential side effects, identify 
targeted selective inhibitors, and evaluate their safety and 
efficacy in human patients.

Despite these challenges, continued research into the 
mechanisms of HMT and HDM inhibitors, in conjunc-
tion with both in  vitro and in  vivo models, holds great 
promise. Further exploration in this area is essential to 
advancing the development of effective and safe histone 
modification-based treatments for vascular aging and 
related diseases.

Conclusion and future perspectives
Histone methylation is common and essential for the 
regulation of gene expression and is involved in vas-
cular aging and the development and prognosis of 

vascular diseases through epigenetics. Future inves-
tigations should focus on elucidating the direct and 
deeper association between specific histone methyla-
tion and age-related vascular diseases, the crosstalk 
between histone methylation and other histone mod-
ifications in vascular aging, and assessing the impact 
of therapeutic targets of HMTs and HDMs on human 
cardiovascular system in clinical trial. These insights 
are pivotal for the development of targeted therapies, 
which will lead to breakthroughs in the treatment and 
prevention of vascular aging and related diseases.
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