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Abstract 

Background Methylation profiling of central nervous system (CNS) tumors, pioneered by the German Cancer 
Research Center, has significantly improved diagnostic accuracy. This study aimed to further enhance the perfor‑
mance of methylation classifiers by leveraging publicly available data and innovative machine‑learning techniques.

Results Seoul National University Hospital Methylation Classifier (SNUH‑MC) addressed data imbalance using 
the Synthetic Minority Over‑sampling Technique (SMOTE) algorithm and incorporated OpenMax within a Multi‑Layer 
Perceptron to prevent labeling errors in low‑confidence diagnoses. Compared to two published CNS tumor methyla‑
tion classification models (DKFZ‑MC: Deutsches Krebsforschungszentrum Methylation Classifier v11b4: RandomForest, 
767‑MC: Multi‑Layer Perceptron), our SNUH‑MC showed improved performance in F1‑score. For ‘Filtered Test Data 
Set 1,’ the SNUH‑MC achieved higher F1‑micro (0.932) and F1‑macro (0.919) scores compared to DKFZ‑MC v11b4 
(F1‑micro: 0.907, F1‑macro: 0.627). We evaluated the performance of three classifiers; SNUH‑MC, DKFZ‑MC v11b4, 
and DKFZ‑MC v12.5, using specific criteria. We set established ‘Decisions’ categories based on histopathology, clinical 
information, and next‑generation sequencing to assess the classification results. When applied to 193 unknown SNUH 
methylation data samples, SNUH‑MC notably improved diagnosis compared to DKFZ‑MC v11b4. Specifically, 17 cases 
were reclassified as ‘Match’ and 34 cases as ‘Likely Match’ when transitioning from DKFZ‑MC v11b4 to SNUH‑MC. Addi‑
tionally, SNUH‑MC demonstrated similar results to DKFZ‑MC v12.5 for 23 cases that were unclassified by v11b4.

Conclusions This study presents SNUH‑MC, an innovative methylation‑based classification tool that significantly 
advances the field of neuropathology and bioinformatics. Our classifier incorporates cutting‑edge techniques such 
as the SMOTE and OpenMax resulting in improved diagnostic accuracy and robustness, particularly when dealing 
with unknown or noisy data.
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Background
Accurate tumor classification, including subtyping 
and grading, is crucial for diagnosis and guiding clini-
cal treatment strategies. Neuropathologists have tradi-
tionally employed diverse tools, such as histopathology, 
immunohistochemistry, and molecular genetic tests like 
fluorescence in  situ hybridization (FISH), and Sanger 
sequencing, to classify central nervous system (CNS) 
tumors with genetics integrated diagnosis. While these 
methods have been invaluable, they sometimes face chal-
lenges due to ambiguous or heterogeneous morpholo-
gies, as well as shared immunohistochemical markers and 
molecular genetic abnormalities across CNS tumors [1]. 
The introduction of next-generation sequencing (NGS) 
marked a significant advancement in diagnostic preci-
sion, particularly for specific brain tumors, by integrating 
comprehensive molecular genetics into pathology assess-
ments [2–4]. As NGS was being established in diagnostic 
neuropathology, methylation profiling emerged as a com-
plementary approach, offering additional insights into 
CNS tumor classification [5].

The updated 2021 WHO Classification of Tumors of 
the  CNS (WHO 2021) identified  molecular genetic and 
epigenetic  study,  particularly  methylation profiling as 
a crucial tool for accurate diagnosis and classification 
[6]. These molecular approaches have proven particu-
larly valuable in enhancing the complex subclassifica-
tion of certain brain tumors, such as ependymomas and 
medulloblastomas.

Ependymomas, which arise from ependymal cells lin-
ing the cerebral ventricles and the spinal cord’s central 
canal. Neuropathologists have established that sub-
classification according to their anatomical locations: 
supratentorial (ST), posterior fossa (PF), and spinal 
(SP). This classification system was initially proposed 
based on distinct methylation profiles observed in 
each subtype [7, 8]. Upon further analysis, the differ-
ence was not limited to anatomical location but also 
includes distinct genetic profiles. This insight enabled 
the stratification of ependymoma based on both geno-
typic characteristics and histological grade. Notably, 
this refined classification system for ependymomas 
demonstrates a strong correlation with the biological 
behavior observed in patients, thus providing a more 
comprehensive and clinically relevant approach to 
tumor categorization. ST-ependymomas often exhibit 
specific genetic alterations, particularly ZFTA fusion 
and YAP1 fusion, while, PF-ependymomas typically 
lack gene-level changes [8]. Instead, PFA-ependymoma 
is marked by EZHIP overexpression and at the same 
time H3K27me3 loss. For SP-ependymomas, methyla-
tion studies have proven particularly beneficial. These 
tumors often harbor chromosome 22 copy loss, NF2 

gene copy loss, or NF2 mutations, which can be chal-
lenging to detect using conventional molecular tests 
such as Sanger sequencing. The methylation classi-
fier outperforms conventional FISH or NGS methods 
by identifying MYCN-amplified spinal ependymoma 
even when no gene-level amplification is detected. By 
integrating methylation profiling with established diag-
nostic methods, neuropathologists can now achieve 
a more comprehensive and accurate classification of 
CNS tumors, especially in cases where traditional 
approaches may be inconclusive or limited.

Medulloblastoma, the most common malignant pedi-
atric brain tumor, comprises four molecular subgroups: 
WNT, SHH, Group 3, and Group 4. These subgroups 
differ in genetic profiles and clinical outcomes, making 
molecular classification crucial for treatment planning. 
However, NGS methods using targeted gene panels often 
struggle to distinguish Group 3 and Group 4 medul-
loblastomas, which frequently lack specific gene-level 
alterations. Instead, these subtypes are characterized 
by epigenetic changes, including structural variations 
and enhancer hijacking. Consequently, comprehensive 
molecular profiling approaches, such as DNA methyla-
tion analysis, are essential for the accurate classification 
of medulloblastoma subgroups [3, 9–11].

Advances in machine learning have revolution-
ized brain tumor methylation classification, with the 
Deutsches Krebsforschungszentrum Methylation Classi-
fier (DKFZ-MC) emerging as a notable innovation. This 
classifier utilizes RandomForest methods to select 10,000 
probes for feature selection, creating a robust model 
for tumor classification [12]. The DKFZ-MC requires 
a methylation class score above 0.9 for confident tumor 
classification. A calibration model enhances the classifi-
er’s accuracy. Samples scoring below 0.9 undergo further 
histopathological analysis for tumor classification, ensur-
ing a comprehensive diagnosis. This innovative method 
combines RandomForest techniques for probe selection 
with a Multi-Layer Perceptron for extracting perfor-
mance metrics [13]. While the classifier’s code is not pub-
licly accessible, limiting accessibility, the DKFZ-MC has 
played a crucial role in advancing our understanding of 
brain tumor classification.

As research continues, such advanced classification 
tools are expected to further enhance personalized treat-
ment strategies and patient outcomes in brain tumor 
management.

Traditional brain tumor classification methods often 
operate under a closed-set recognition framework, 
assuming all possible tumor classes are known and rep-
resented in the training data. While effective for classi-
fying known tumor types, this approach falls short in 



Page 3 of 19Lee et al. Clinical Epigenetics           (2025) 17:47  

real-world scenarios where novel, previously unseen 
tumor types may emerge.

This study introduces open-set recognition to CNS 
tumor classification, addressing the evolving landscape 
of neuro-oncology. The innovative approach allows our 
classifiers to not only accurately identify and categorize 
known tumor types but also recognize samples that do 
not match any known class, assigning unmatched sam-
ples to an “unknown” category. This open-set recogni-
tion is particularly crucial in neuro-oncology, where new 
tumor subtypes are continually being discovered. By 
implementing this method, we significantly reduce the 
risk of misclassifying novel or atypical tumors as known 
types, a critical improvement that can prevent potential 
misdiagnoses and inappropriate treatment decisions. The 
ability to identify “unknown” cases not only enhances 
diagnostic accuracy but also flags samples that may rep-
resent new tumor entities, potentially contributing to the 
advancement of CNS tumor classification. This approach 
aligns closely with clinical realities, where atypical cases 
are not uncommon, and provides a more robust frame-
work for handling the complexities of brain tumor diag-
nostics in real-world settings.

This study introduces ‘Augmented Open Set Detection 
Methylation Classifier’ of our Seoul National University 
Hospital (referred to as SNUH-MC). Our research aims 
to elucidate the decision-making process of SNUH-MC, 
validate its efficacy using diverse methylation array data-
sets, including our institutional data, demonstrate the 
impact of methylation profiling on CNS tumor pathologi-
cal diagnosis, conduct a comparative analysis between 
DKFZ-MC versions v11b4 and v12.5.

Materials and methods
Data collection
We compiled 11 diverse datasets for our study sourced 
from multiple open databases. These datasets, contain-
ing raw methylation data specific to brain tumors, are 
detailed in Supplementary Table  1 [12, 13]. ‘Train Set’ 
was used for model training and establishing baseline 
performance. We used three test sets. ‘Test Set 1’ con-
tained identical methylation classes as the Train Set, 
ensuring consistency in initial comparisons. ‘Test Set 2’ 
introduced new and diverse brain tumor methylation 
data with varying noise levels, assessing model robust-
ness and predictive capabilities in challenging scenarios. 
‘Test Set 3 (Sarcoma Dataset)’ comprised non-brain 
tumor patient data, specifically designed to evaluate the 
model’s open-set recognition capabilities.

The Train Set, Test Set 1, and Test Set 2 share 91 meth-
ylation classes. The distribution of patient samples across 
these classes is visualized in Supplementary Fig.  1, pro-
viding a clear representation of sample distribution and 

supporting our comparative analysis. This structured 
approach allows us to establish baseline performance 
(Train Set and Test Set 1), assess robustness in diverse 
scenarios (‘Test Set 2’),’ and evaluate open-set recognition 
capabilities (Test Set 3). By utilizing these varied datasets, 
we ensure a thorough and multifaceted evaluation of our 
model’s performance across different conditions and data 
types.

Sample preparation and EPIC array data generation
In the selection of 193 cases of CNS tumors for meth-
ylation array analysis, two neuropathologists specifically 
targeted cases with diagnostic challenges based on his-
topathology and NGS results. Within the SNUH data-
set, neuropathologists ensured microdissection targeting 
tumor cells from formalin-fixed and paraffin-embedded 
(FFPE) blocks or fresh frozen (FF) tissues.

Subsequent DNA extraction was performed using 
 Maxwell® RSC kits (AS1880 for FF and AS1450 for FFPE) 
following the manufacturer’s specified instructions. All 
methylation data at SNUH were obtained through exper-
iments using the Infinium MethylationEPIC v1.0 kit by 
Illumina.

Data preprocessing, batch effect correction, and model 
development
The raw methylation data underwent rigorous pro-
cessing, including quality control, normalization, and 
batch effect correction (Fig.  1). Our batch effect cor-
rection methodology employed the linear model-based 
approach provided by the removeBatchEffect function 
from the limma package in R. This process involved 
three key steps: (1) Data Transformation: We applied 
a log2(methy + 1) transformation to stabilize variance 
across the dataset, which is crucial for high-throughput 
methylation array data. (2) Batch Effect Removal: The 
removeBatchEffect function was applied to the log-
transformed data, fitting a linear model to each CpG 
site with the batch variable as a covariate. The estimated 
batch effect was then subtracted from the data. 3) Inverse 
Transformation: We applied 2^ to the output, reversing 
the log transformation and restoring the data to its origi-
nal scale, now with batch effects removed.

To quantify the effectiveness of our batch correction, 
we conducted principal component analysis (PCA) 
before and after the correction. This analysis revealed 
a significant reduction in batch-related variation, with 
15% of batch-associated variance eliminated. Sup-
plementary Fig.  2 illustrates the PCA results, dem-
onstrating the reduction in batch-related clustering. 
Following batch correction, feature selection was per-
formed using a combination of statistical methods and 
domain knowledge, identifying the most informative 
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methylation probes for CNS tumor classification. This 
comprehensive preprocessing approach ensured that 
our subsequent analyses were based on high-quality 
data with minimized technical batch effects, allowing 
for more reliable biological interpretations and robust 
tumor classification.

SNUH-MC classifier was developed using a deep 
learning architecture, specifically a Multi-Layer 

Perceptron (MLP) with integrated OpenMax for open-
set recognition. The OpenMax component aimed to 
prevent labeling errors in low-confidence diagnoses by 
introducing an “unknown” class during training.

In our dataset, we observed an unequal distribution 
of labeled training data across different tumor types, a 
common challenge in medical datasets known as data 
imbalance. This imbalance is clearly illustrated in Sup-
plementary Fig. 1, which shows the varying sample sizes 
for each tumor class. To address the data imbalance in 
CNS tumor datasets, we implemented Synthetic Minor-
ity Over-sampling Technique (SMOTE), generating syn-
thetic samples for underrepresented tumor classes. This 
approach created a more balanced training dataset, miti-
gating potential biases toward common tumor types.

Our model training combined and semi-supervised 
learning techniques, leveraging both labeled and unla-
beled data. We conducted extensive hyperparameter 
tuning and cross-validation to optimize performance 
and generalizability. This comprehensive strategy aimed 
to develop a robust methylation classifier capable of 
accurate identification across diverse CNS tumor types, 
regardless of their prevalence in the original dataset.

We initially processed the methylation data using 
methods similar to those employed by the ‘DKFZ-MC14.’ 
To further refine our dataset and enhance the reliability 
of our analysis, we implemented additional probe filter-
ing steps. Specifically, we removed probes falling into the 
following four categories:

1. Probes situated on the sex chromosomes: Methyla-
tion patterns on X and Y chromosomes differ sig-
nificantly between males and females, which could 
introduce confounding effects in our analysis of auto-
somal methylation differences.

2. Probes lacking unique alignment to the hg19 refer-
ence genome: Non-uniquely aligned probes were 
removed to ensure specificity. Probes aligning to 
multiple genomic locations can lead to ambiguous 
methylation signals, potentially confounding the 
interpretation of site-specific methylation status.

3. Probes containing single nucleotide polymorphisms 
(SNPs): SNP-containing probes were excluded 
because genetic variations can affect probe bind-
ing efficiency. This can result in biased methylation 
measurements that do not accurately reflect the true 
methylation status of the target site, compromising 
data reliability.

4. Probes not incorporated in the EPIC chip: We 
removed probes absent from the EPIC chip to ensure 
compatibility and comparability across different 
methylation array platforms. This step facilitates the 
application of our classifier to data generated from 

Fig. 1 Workflows of SNUH‑MC. The SNUH‑MC’s workflow 
encompassed three primary stages: ‘Preprocessing,’ ‘Feature Selection,’ 
and ‘Sample Classification.’ Initially, preprocessing was executed 
using the ‘DKFZ‑MC’ methodologies. Post probe selection, 
the SMOTE algorithm was employed, resulting in an oversampling 
from the original 2801 samples to 13,013 samples. Feature selection 
was conducted using the RandomForest classifier to identify 
the top‑ranked probes. For the construction of the classification 
model, the MLP method was applied, based on the top 2000 probes. 
Additionally, to enhance open‑set recognition capabilities, SoftMax 
values were integrated with the OpenMax algorithm [14]. 
In the downstream analysis, the visualization step could be 
undergone. tSNE plot was used to locate where the unidentified 
sample was clustered. CNV plot can be generated using the red 
and green signal intensity of probes (SNUH‑MC: Seoul National 
University Hospital Methylation Classifier; DKFZ‑MC: Deutsches 
Krebsforschungszentrum Methylation Classifier; SMOTE: Synthetic 
Minority Over‑sampling Technique; MLP: Multi‑Layer Perceptron; CNV: 
Copy Number Variation)
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both older and newer methylation array technolo-
gies.

By implementing these filtering criteria, we aimed to 
create a robust and reliable set of methylation probes, 
minimizing potential sources of technical bias and 
focusing on high-quality, interpretable methylation sig-
nals for our CNS tumor classification model.

Subsequently, 428,230 probes were utilized across the 
‘Train set,’ ‘Test sets 1 and 2,’ and ‘SNUH data’ for fea-
ture selection and constructing the classification model. 
This approach ensured uniformity and practicality 
across various datasets, significantly contributing to the 
robustness of the model’s performance evaluation.

The initial feature selection step involved using 
the ‘Synthetic Minority Over-sampling Technique 
(SMOTE)’ algorithm [15]. This technique increased the 
original 2801 samples to 13,013 samples, equalizing 
the number of samples across classes (Supplementary 
Fig.  3). After oversampling, a RandomForest classifier 
was employed for feature selection with specific param-
eters: maximum features set to the square root of the 
total number of features (max_features = ‘sqrt’), and 
the number of trees in the forest set to 4000 (n_estima-
tors = 4000). This approach enabled obtaining feature 
importance values and selecting the top-ranked probes 
essential for the method’s functionality.

In constructing the classification model, a ‘Multi-
Layer Perceptron’ approach was adopted [13], focusing 
on the top 1000 probes selected based on their feature 
importance values. The model utilized a leaky Rectified 
Linear Unit activation function and Stochastic Gradient 
Descent as an optimization tool. The network architec-
ture implemented a significant hidden layer comprising 
80,000 units, and early stopping techniques were incor-
porated to mitigate overfitting.

SoftMax values were utilized in conjunction with the 
OpenMax algorithm to facilitate the open-set recog-
nition. When there are K  known classes with a given 
input data x , the network produces logits zk for each k . 
The SoftMax probability for class k is given by follow-
ing equation.

This integration allowed the model to make predic-
tions regarding new labels while maintaining classi-
fication accuracy for known classes. The OpenMAX 
algorithm works by recalibrating the output layer of a 
neural network, expanding the SoftMax  output with a 
label indicating “no known category.” This is achieved 
by estimating the probability that the input does not 

P(k|x) =
exp(zk)∑K
j=1 exp(zj)

belong to a known class. Let fk(x) represent the recali-
brated score for each class k after applying OpenMAX. 
The probability of the input belonging to each class k 
P′(k|x) and the “unknown” class u P′(u|x) is then given 
by following equation.

OpenMax computes the distance vector between the 
input features x and the average activation vector for each 
known class. These distances help us understand how far 
the input is from known class features. Specifically, for 
each class k , the distance between input features and the 
mean activation vector µk is considered. OpenMax then 
models the tails of these distance distributions for each 
class using a Weibull distribution to estimate the likeli-
hood that an input might belong to an unknown class.

The recalibrated score for each class k is computed 
with the following equation:

The Weibull-derived probability is calculated as 
follows:

Here, distinct function is the calculating distance 
between input features and mean activation vector for 
each class and σk is the scale parameter of the Weibull 
distribution for each class.

The “unknown” score fu(x) is then computed as the fol-
lowing equation:

Recalibration includes SoftMax probability correc-
tion. The OpenMax layer considers the possibility that 
the input comes from an unknown class and recalcu-
lates these probabilities by reducing the  SoftMax score 
of a known class proportional to its distance from the 
class mean and the modeled Weibull distribution, and 
then assigning the reduced probability mass to a new 
“unknown” class label. The final predicted class is deter-
mined by selecting the class with the highest recalibrated 
probability, including the possibility of the “unknown” 
class:

P′(k|x) =
fk(x)∑K

j=1 fj(x)+ fu(x)

P′(u|x) =
fu(x)∑K

j=1 fj(x)+ fu(x)

fk(x) = p(k|x) ∗ (1− wk(x))

wk(x) = exp

(
−

(
dis(x,µk)

σk

))

fu(x) =

K∑

k=1

P(k|x) ∗ wk(x)
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ŷ = argmax
k∈{1,...,K ,u

P′(k|x) This novel approach ensured 

robustness in classifying known categories while extend-
ing the model’s capability to recognize and classify previ-
ously unseen classes, greatly contributed to the 
adaptability and versatility of SNUH-MC.

Histopathological diagnosis
Many brain tumors lack consistent morphological pat-
terns and may exhibit varied or ambiguous morphologies 
within the same tumor type, depending on their grade or 
differentiation. For instance, ‘glioblastoma, IDH-wildtype 
(GBM, IDH-wt),’ ‘diffuse midline glioma, H3 K27-altered,’ 
‘diffuse hemispheric glioma, H3 G34-mutant,’ and ‘dif-
fuse pediatric-type high-grade glioma, H3-wt and IDH-
wt’ can display an overlapping or broad spectrum of 
morphological features, ranging from uniform mildly 
pleomorphic small cells to primitive small cells with a 
high nucleocytoplasmic ratio, or even extensively large 
multinucleated giant cells. In cases of ‘diffuse astrocyto-
mas, IDH-mutant,’ there might be a mixture or collision 
of cells resembling oligodendroglioma and astrocytoma 
[16]. Consequently, relying solely on histopathology for 
diagnosis might result in misinterpretation, necessitating 
the use of immunohistochemical or genetic markers spe-
cific to each CNS tumor for accurate diagnosis.

CNS tumors, especially those without distinct genetic 
markers, often require methylation classifiers for accu-
rate diagnosis. Relying solely on a specific genetic alter-
ation across different tumor types is less reliable and 
cannot specifically differentiate between clinically rele-
vant tumor classes, as such alterations lack the specificity 
needed for diagnosing distinct tumor types. For example, 
BRAF V600E-mutant gliomas encompass a spectrum of 
tumor types, including ‘diffuse low-grade gliomas, MAPK 
pathway-altered,’ pleomorphic xanthoastrocytoma, pilo-
cytic astrocytoma, ganglioglioma, and desmoplastic 
infantile astrocytoma/ganglioglioma, or epithelioid GBM 
[17–19].

Moreover, methylation classifiers play a significant role 
in achieving accurate diagnosis, subtyping of tumors, 
and assessing copy number aberrations and MGMT pro-
moter methylation simultaneously.

DNA extraction and next‑generation sequencing (NGS) 
study
In the process of isolating DNA from tumor samples, 
representative tumor areas with a minimum of 90% 
purity were identified within FFPE sections. These areas 
were delineated for macrodissection.

DNA extraction was performed using the  Maxwell® 
RSC DNA FFPE Kit (AS1450; Promega, USA), according 
to the manufacturer’s instructions. NGS was performed 

with a custom panel developed at Seoul National Univer-
sity Hospital (SNUH) for CNS tumor diagnosis, named 
the FiRST brain tumor panel. For sequencing, the Hi-
Output NextSeq550Dx sequencing platform was used. 
Panel version 2 encompassed 172 genes, while Panel ver-
sion 3 comprised 207 genes and Panel 3.1 had 228 genes 
in addition to including 20, 52, and 155 fusion genes, 
respectively [20].

The sequencing data underwent thorough analysis via 
the SNUH FiRST Brain Tumor Panel Analysis pipeline. 
Initially, quality control was conducted on the FASTQ 
file, ensuring that only data meeting specific criteria were 
included in subsequent analyses. The criteria are gen-
eral and typical quality controls for FASTQ files. These 
include:

• Base quality scores: Ensuring that the sequencing 
reads meet a minimum quality threshold.

• Read length: Checking that reads are of expected 
length.

• GC content: Verifying that the GC content is within 
an acceptable range.

• Sequence duplication levels: Assessing the level of 
PCR duplicates.

• Overrepresented sequences: Identifying any abnor-
mally frequent sequences that might indicate con-
tamination or bias.

Paired-end alignment to the hg19 reference genome 
was executed using BWA-mem and adhering to GATK 
Best Practice guidelines [21]. This alignment step resulted 
in an ‘analysis-ready BAM’ file, followed by a second 
quality control check to assess the suitability for fur-
ther variant calling. Variations such as single nucleotide 
variations (SNV), insertions and deletions (InDel), copy 
number variations (CNV), and translocations underwent 
analysis using at least two different tools, comprising 
both in-house and open-source software. Notably, open-
source tools like GATK UnifiedGenotyper, SNVer, and 
LoFreq were employed for SNV/InDel detection, while 
tools such as Delly and Manta were utilized for translo-
cation discovery. Purity estimation was conducted using 
THetA2, and CNV calling relied on CNVKit [8].

Categorization and visualization of methylation profiling 
results
To obtain methylation class results from each classifier, 
we applied our unknown samples to the SNUH-MC and 
submitted them to ‘https:// www. molec ularn europ athol 
ogy. org/ mnp/’. The results were then grouped based on 
calibrated score ranges (score ≥ 0.9, 0.9 > score ≥ 0.5, 

https://www.molecularneuropathology.org/mnp/
https://www.molecularneuropathology.org/mnp/
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score < 0.5) guided by insights from existing literature 
[22].

The 0.5 cutoff is used for distinguishing subclasses 
within methylation class families, particularly in cases 
like IDH-wt gliomas where subclass differentiation is 
crucial. The 0.9 cutoff, the higher threshold was chosen 
to indicate a very high confidence in classification.

These boundaries align with widely recognized stand-
ards, ensuring our results are comparable and compre-
hensible to both clinical and research audiences. While 
some cutoffs were initially chosen arbitrarily, their effec-
tiveness has been validated in clinical settings, such as in 
IDH-mutant and 1p/19q-codeleted oligodendroglioma 
cases.

The term “methylation classifier” in our study refers 
to the initial classification step that uses DNA methyla-
tion data. However, the final classification is the result 
of an integrated decision-making process that we  call 
“Decisions.” This process combines: the methylation-
based classification, histopathological findings, immu-
nohistochemical (IHC) findings, NGS data, and clinical 
information.

In cases where the methylation classifier yields a 
calibrated score below 0.9, we initially assign a “Likely 
match” status. However, this is not the final classifica-
tion. We then consider the integrated information from 
the other sources mentioned above to determine the reli-
ability and accuracy of the classification. If the additional 
data sources (histopathology, IHC, clinical informa-
tion, and NGS) support the methylation-based classifi-
cation, we maintain the classification even with a lower 
calibrated score. This integrated approach allows us to 
leverage multiple lines of evidence for more robust and 
accurate tumor classification. Therefore, our final clas-
sifier is indeed combined or integrated, rather than a 
purely methylation-based one. These assessments were 
denoted as ‘Decisions’ and are detailed in Table 1.

For visualization purposes, bar plots were generated 
using the R package ‘ggplot2 (v3.4.3)’, while alluvial plots 

were created using the ‘ggalluvial (v0.12.5)’. All plot gen-
eration processes were executed within the R system, ver-
sion 4.2.0. This visual representation allowed for a clear 
understanding and comparison of the methylation classi-
fier’s results with other diagnostic criteria, helping assess 
the reliability and consistency of the classification results.

Results
To evaluate SNUH-MC performance, we conducted a 
comprehensive comparative analysis across various data-
sets (Supplementary Table  1). Our evaluation strategy 
was thorough and structured, aiming to assess SNUH-
MC’s performance on diverse test datasets and its abil-
ity to differentiate among brain tumor data. Aligning our 
evaluation methodology with the established results pre-
sented by Capper et al. [12] ensured a standardized and 
comparable analysis.

Replicating the original code for ‘Test Data Set 2’ ena-
bled direct comparison and contributed to the reliabil-
ity and validity of the evaluation process. Additionally, 
when evaluating a methylation classifier’s ability to iden-
tify noisy data, sorting samples based on their calibrated 
scores represented a meticulous approach for detailed 
performance comparisons.

This rigorous evaluation, which included various classi-
fication scenarios and comparisons with existing bench-
marks, offered a holistic understanding of SNUH-MC’s 
robustness and efficiency in distinguishing distinct data-
sets and recognizing noise, adding significant credibility 
to our evaluation.

Performance evaluation
We compared the performance of our SNUH Methyla-
tion Classifier (SNUH-MC) with that of the DKFZ Meth-
ylation Classifier (DKFZ-MC) using Test Data Set 1. This 
comparison was conducted statistically by analyzing the 
calibrated scores from both classifiers on the same data-
set. Our intention was to assess how SNUH-MC per-
forms relative to DKFZ-MC, providing insights into the 

Table 1 Detailed descriptions of ‘decisions’

Decisions Description

Match When the calibrated score reaches 0.9 or above, it aligns with the results derived from histopathology, clinical information, CNS 
tumor‑targeted NGS panel results, and the initial pathological diagnosis

Likely match When the calibrated score falls below 0.9, histopathology, clinical information, CNS tumor‑targeted NGS panel results, 
and the initial pathological diagnosis can be integrated to decide whether the methylation class is reliable. But keep in mind 
that the diagnosis can be changed

Uncertain The methylation classifier’s result remains uncertain, irrespective of the calibrated score

No match The methylation classifier’s result is incorrect

Control (No match) It is categorized as normal control, which can occur when DNA is extracted from regions with very low tumor purity or normal 
brains
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strengths and potential areas for improvement of our 
classifier.

We assessed the alignment between histopathological 
and methylation-based classifications of brain tumors. 
Using 2021 updated WHO classification definitions as 
the histopathological standard, we compared the results 
of methylation-based classification to the histopathologi-
cal classification for each tumor sample.

Both classifiers categorized the sample into 92 classes, 
comprising the original 91 classes plus an additional 
‘unknown’ label. We employed the F1 score as our pri-
mary metric, given its balanced representation of pre-
cision and recall, particularly valuable for imbalanced 
datasets.

For DKFZ-MC classification were made only when 
predictions exceeded a 0.9 confidence threshold. Below 
this threshold, clinical experts determined the class using 
histological images and methylation data, sometimes 
concluding ‘not applicable.’ SNUH-MC, with its internal 
mechanism for identifying ‘unknown’ classes, assigned 
and ‘unknown’ label under similar circumstances. We 
treated the SNUH-MC’s ‘unknown’ label and DKFZ-
MC’s ‘not applicable’ designation as equivalent resulting 
in both models evaluating 92 classes, including this addi-
tional category. This approach allowed for a fair and com-
prehensive comparison of the two classifiers, accounting 
for their handling of uncertain cases and providing 
insights into their performance across individual classes 
and overall accuracy.

Given the importance of reducing misclassification in 
medical diagnoses, the models’ ability to confidently pre-
dict specific diseases and minimize ‘unknown’ classifica-
tions for patients with a particular condition is critical. 
To assess this aspect, we created a ‘Filtered Test Data Set 
1,’ which excluded samples labeled as ‘unknown’ or ‘not 
applicable,’ thereby focusing on the 91 known classes 
for performance comparison. We also compared perfor-
mance across the full Test Data Set 1, using all 92 labels. 
For ‘Filtered Test Data Set 2’, which lacked pathologically 
determined results, we modified model to include an 
unknown class by assigning the lowest probability to the 
unknown class.

To provide a comprehensive assessment, we calculated 
both macro and micro F1 scores. The macro F1 score, an 

average of F1 scores computed independently for each 
class, ensures equal treatment of all classes regardless 
of size. Conversely, the micro F1 score aggregates con-
tributions from all classes before calculating precision 
and recall, thus giving more weight to larger classes and 
reflecting overall performance more accurately in imbal-
anced datasets.

Consequently, our comparisons focused solely on the 
results for the closed set data. This analysis enabled us 
to derive a macro F1 score, ensuring equal assessment 
across all methylation classes. This rigorous evaluation 
highlights SNUH-MC’s ability to navigate complex clas-
sification environments, demonstrating its ability to rec-
ognize unknown labels and perform effectively across a 
variety of methylation classes (Table 2).

We selected 767 probes for our analysis to ensure a fair 
comparison with the existing model, which specifically 
used 767 probes. This number was determined through 
optimization within the model’s training dataset, dem-
onstrating that high performance could be achieved with 
fewer probes. Although we initially considered using 
1000 probes, we opted for 767 to maintain consistency 
and isolate the impact of our feature selection process 
and the SMOTE algorithm. This decision allows us to 
accurately assess the effectiveness of our methodology 
while acknowledging that it may slightly reduce the per-
formance of the SNUH-MC model. Future studies may 
investigate the effects of varying the number of probes on 
model performance.

To assess the impact of the SMOTE algorithm on the 
feature selection, we compared the performance of a 
model that used 767 probes selected through feature 
selection and was used for prediction with a Multi-Layer 
Perceptron (MLP) model 767-MC [13]. This comparison 
allowed us to evaluate how the feature selection process 
with 767 probes, followed by prediction using the MLP 
model, performed against a model where feature selec-
tion was optimized using the SMOTE algorithm. This 
detailed analysis provided valuable insights into how 
effectively the SMOTE algorithm could enhance feature 
selection and improve the overall classification model’s 
performance (Table  3). To compare with the 767-MLP 
models, which originally predicted only 91 classes, we 
modified these models to include an unknown class by 

Table 2 Performance comparison between SNUH‑MC and DKFZ‑MC

SNUH-MC, Seoul National University Hospital-Methylation Classifier; DKFZ-MC, Deutsches Krebsforschungszentrum-Methylation Classifier

Filtered test data set 1 Test data 1 Filtered test data set 2

F1‑micro F1‑macro F1‑micro F1‑macro F1‑micro F1‑macro

SNUH‑MC 0.932 0.919 0.611 0.528 0.9 0.531

DKFZ‑MC 0.907 0.627 0.616 0.284 0.9 0.501
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assigning the lowest probability to the unknown class, 
effectively making them predict 92 classes.

Noise data detection
To explore open-set recognition capabilities, 485 sar-
coma samples with unknown labels were introduced, and 
a comparative analysis was performed. In this evaluation, 
we merged Test Data Set 2 with additional unknown label 
data, allowing us to observe the impact on the F1 score 
as the number of noise samples gradually increased (Sup-
plementary Fig. 4).

The macro F1 score decreases, while the micro F1 
score increases with additional noise samples, revealing 
important nuances in our classifier’s performance. Micro 
F1 score was more heavily influenced by performance in 
major classes, as it considered all samples equally. The 
increasing trend suggests that SNUH-MC maintains 
good performance on well-represented classes even when 
noise increases, indicating a certain degree of robustness 
for these classes.

Macro F1 score gives equal weight to all classes. Its 
decreasing trend indicates that performance in minority 
classes is more sensitive to noise, suggesting less robust-
ness for these rarer tumor types.

This divergence in trends provides valuable insights. 
SNUH-MC demonstrates resilience in identifying and 
managing common tumor types, even in increasing 
noise. However, its performance on rarer tumor types is 
more susceptible to noise, highlighting an area for poten-
tial improvement.

Comparison of SNUH‑methylation classifier and DKFZ 
methylation classifiers through ‘decisions’
The classification models constructed by SNUH and 
DKFZ each provided two sets of results: DKFZ-MC gen-
erated the results for v11b4 and v12.5, while SNUH-MC 
yielded results using SoftMax and OpenMax. SoftMax 
generated results based on the 91 methylation classes 
of DKFZ-MC v11b4, whereas OpenMax produced 92 
classes, including the ‘unknown’ cluster. The detailed 
information on SNUH cases is summarized in Supple-
mentary Table 2.

First, we compared and analyzed the results calcu-
lated from ‘SNUH-MC-SoftMax (referred to as SNUH-
MC-91)’ and the results obtained from two versions of 
the DKFZ-MC. Initially, the evaluation involved quan-
tifying the ‘Decisions’ made by each methylation classi-
fier, as depicted in Fig. 2.

Across all score ranges, DKFZ-MC v12.5 exhib-
ited the highest frequency of the ‘Match’ class for our 
cohort, followed by SNUH-MC-91 and DKFZ-MC 
v11b4. Regarding ‘Likely match’ probability, SNUH-
MC-91 displayed the highest value, followed by DKFZ-
MC v12.5 and v11b4. In cases classified as ‘No match,’ 
DKFZ-MC v11b4 had the highest incidence, followed 
by SNUH-MC-91 and DKFZ-MC v12.5. This compara-
tive analysis provides insights into the distribution and 
frequency of the different classifications made by each 
methylation classifier across varying score ranges.

We compared the ‘Decisions’ results between DKFZ-
MC v11b4 and v12.5 for 193 cases. Our multidiscipli-
nary team, comprising neuropathologists, molecular 
biologists, and bioinformaticians, assessed each case 
using a consensus-based approach. This assessment 
involved comparing methylation-based classifications 
with histopathology, molecular markers, imaging fea-
tures, and clinical presentations. Of the 193 cases: 
98 (50.8%) were reclassified based on our integrated 
assessment criteria (Supplementary Fig.  5A). Among 
these, 47 (24.4%) were classified as ‘Match’, indicat-
ing high concordance between methylation results 
and other diagnostic methods. 38 (19.7%) were ‘Likely 
match’, 6 (3.1%) ‘Uncertain’, and 5 (2.6%) ‘No match’. 2 
cases (1.0%) switched from v11b4 to v12.5, resulting in 
‘No match (control)’. Notably, 56 cases initially classi-
fied as ‘No match’ in v11b4 were reclassified in v12.5:20 
(10.4%) as ‘Match’, 20 (10.4%) as ‘Likely match’, 4 (2.1%) 
as ‘Uncertain’, and 2 (1.0%) as ‘No match (Control)’.

Of the 47 ‘Match’ cases, 17 (36.17%) were identified as 
novel subtypes by v12.5, including germ cell tumor_ger-
minoma_KIT mutation (GCT_GERM_KIT), germ cell 
tumor_teratoma (GCT_TERA), neuroepithelial tumor_
PATZ1 fusion-positive (NET_PATZ1), neuroepithelial 
tumor_PLAGL1 fusion-positive (NET_PLAGL1_FUS), 
and diffuse pediatric-type high-grade glioma_recep-
tor tyrosine kinase 1A-type (pedHGG_RTK1A). This 
indicated the emergence of new subtypes recognized by 
the updated methylation classifier. These classification 
changes highlighted the evolving nature of classifications 
between DKFZ-MC v11b4 and v12.5, introducing novel 
subtypes and reassigning cases across different matching 
categories.

Comparing the SNUH-MC-91 classification model 
and DKFZ-MC v11b4, 69 out of 193 cases (35.8%) were 
reclassified with SNUH-MC-91. Due to these changes, 

Table 3 Performance comparison between SNUH‑MC and MLP 
model

SNUH-MC, Seoul National University Hospital-Methylation Classifier; 767-MC, A 
deep learning model utilizing 767 selected probes

Filtered test data 
set 1

Test data set 1

F1‑micro F1‑macro F1‑micro F1‑macro

SNUH‑MC (767 probes) 0.921 0.908 0.608 0.521

767‑MC (767 probes) 0.901 0.892 0.587 0.387
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17 cases changed to ‘Match’ (8.8%), 34 cases to ‘Likely 
match’ (17.6%), 4 cases to ‘Uncertain’ (2.1%), 5 cases to 
‘No match’ (2.6%) and 9 ‘No match’ cases were control 
(4.7%).

When comparing SNUH-MC-91 to DKFZ-MC v12.5, 
89 out of the 193 cases (46.1%) exhibited new assign-
ments in DKFZ-MC v12.5. Among these, 45 cases were 
reclassified into ‘Match’ (23.3%), 30 cases into ‘Likely 
match’ (15.5%), 6 cases into ‘Uncertain’ (3.1%), and 
7 into ‘No match’ (3.4%), and 1 case into ‘No match 

Fig. 2 Comparison of SNUH‑MC‑91 and DKFZ‑MC Decisions: This figure compares the decision results of SNUH‑MC‑91 and DKFZ‑MC 
across different calibrated score ranges. The decisions are categorized as follows: A All ranges: Distribution of all decisions regardless of calibrated 
score B Score ≥ 0.9: High‑confidence decisions, C 0.9 > Score ≥ 0.5: Medium‑confidence decisions, D Score < 0.5: Low‑confidence decisions “Match” 
indicates cases where the methylation classifier result (with score ≥ 0.9) is consistent with histopathology, clinical information, and NGS findings. 
This comparison illustrates the performance and agreement of both classifiers with other diagnostic methods across various confidence levels, 
providing insights into their reliability in neuropathological diagnosis. (SNUH‑MC: Seoul National University Hospital Methylation Classifier; 
DKFZ‑MC: Deutsches Krebsforschungszentrum Methylation Classifier; NGS: Next Generation Sequencing)
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(control)’ (0.5%). Supplementary Fig.  5B and Sup-
plementary Table  3–5 provide detailed information 
regarding each reclassification. Additionally, Figs. 3 and 
4 depict the changes in diagnoses comparing the initial 
pathological diagnosis from SNUH with each classifier.

This comparison highlighted the differences in reclas-
sifications between SNUH-MC-91 and the DKFZ-MCs 
versions (v11b4 and v12.5) under different classification 
models for the same set of cases.

Unlike SNUH-MC-91, SNUH-MC-OpenMax (hereaf-
ter SNUH-MC-92) results include the ‘unknown’ cluster. 
When DKFZ-MC v11b4 was used as a reference, a sig-
nificant number of cases (105 cases, 54.4%) were catego-
rized as ‘unknown.’

The categorization into ‘unknown’ was due to six main 
causes:

• Low scores in both v11b4 and v12.5 (31/105, 29.5%)
• Low scores in v11b4 & Novel class in v12.5 (v12.5 

scores > 0.87, 27/105, 25.7%)
• Low scores in both v11b4 and v12.5 & Novel class in 

v12.5 (v12.5 scores < 0.72, 13/105, 12.4%)
• Low score in v11b4 (11/105, 10.5%)
• Novel subtype in v12.5 (8/105, 7.6%)
• Inexplicable (15/105, 14.3%)

In the classification results derived from SNUH-
MC-92, most of the ‘unknown’ cases found clarity based 
on their calibrated scores. However, explaining the 15 
‘inexplicable’ cases was challenging. To gain insight, these 
15 cases were visualized using t-distributed stochas-
tic neighbor embedding (t-SNE) plots (Supplementary 
Fig.  6, Supplementary Table  6). Upon closer inspection, 
their locations were noticeably outside the cluster bound-
aries. SNUH-MC-92 classified these cases as ‘unknown’ 
because they were outside the central cluster of training 
samples.

Further analysis revealed that 88 out of 193 cases 
(45.6%) were classified based on the existing 91 classes 
(Supplementary Table  7). Within this subset, 72 cases 
(81.8%) were classified consistently or similarly across 
v11b4, v12.5, SNUH-MC-91, and SNUH-MC-92 classi-
fiers (shown in blue). 12 cases (13.6%) were cases where 
v11b4 could not classify correctly, but the results from 
v12.5 and SNUH-MC were in good agreement (shown 
in orange). 4 cases (4.6%) were cases where only the 
v12.5 classifier gave reasonable results (shown in pink); 
The integrated histopathological diagnoses of these 
cases were ‘GBM, IDH-wt or HGAP’, ‘pilocytic astrocy-
toma with BRAF fusion’, ‘diffuse low-grade glioma with 
LHFPL3::BRAF fusion’, and ‘no available information’.

Fig. 3 Comparison of methylation‑based classification results for gliomas, glioneuronal, and neuronal tumors against initial SNUH pathological 
diagnoses. A DKFZ‑MC v11b4 results, B SNUH‑MC‑91 results, and C DKFZ‑MC v12.5 results. Each plot displays methylation‑based classifications 
(right) compared to initial SNUH pathological diagnoses (left). Colors are consistent across plots and correspond to SNUH pathological diagnoses. 
DKFZ‑MC v11b4 and SNUH‑MC‑91 use the same 91 methylation class labels, while DKFZ‑MC v12.5 introduces new labels from its expanded 170 
methylation classes. Novel tumor types in v12.5 (e.g., pedHGG, NET_PATZ1) reflect recent advances in molecular tumor classification. Detailed 
results are available in Supplementary Table 2 (SNUH‑MC: Seoul National University Hospital‑Methylation Classifier; DKFZ‑MC: Deutsches Krebsforsch
ungszentrum‑Methylation Classifier)
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These findings demonstrated that SNUH-MC-91 is 
consistent with DKFZ-MC v12.5 despite its configuration 
based on DKFZ-MC v11b4 reference data. Moreover, the 
‘unknown’ categorization in SNUH-MC-92 originates 
from various reasons, shedding light on the complexities 
and reasons behind specific certain classifications. The 
subset analysis detailed the consistency and discrepancy 
among classifications across different methylation classi-
fiers and versions.

Can methylation profiling aid pathological diagnosis 
or not?
Methylation profiling can serve as a powerful tool, espe-
cially in scenarios where tumors exhibit similar mor-
phology but differ at a molecular level. Among the cases 
challenging to diagnose using conventional pathology 
methods and the DKFZ-MC v11b4, 23 cases yielded 
similar or identical results between SNUH-MC-91 and 
DKFZ-MC v12.5, which were deemed reasonable (Sup-
plementary Table 8). This exemplifies SNUH-MC’s strong 
performance, considering its basis on DKFZ-MC v11b4 
reference data.

Figure  5 illustrated some cases, including histopatho-
logical images: The ‘Decisions’ changed from ‘No match’ 
to ‘Match’ (category 1), ‘Uncertain’ to ‘Likely match’ 

(category 2), and ‘No match’ to ‘Likely match’ (category 
3). However, there were also four cases where all classi-
fier versions, including the most recent versions, could 
not properly differentiate the tumor subtypes (‘No 
match’ to ‘No match’, category 4). Our firsthand experi-
ences illustrated scenarios where methylation classifiers, 
particularly SNUH-MC, play a crucial role in improv-
ing diagnostic accuracy (categories 1–3), as well as cases 
where their current limitations are evident (category 4).

In summary, methylation profiling can significantly 
enhance pathological diagnosis, particularly in cases 
with ambiguous morphology or molecular heterogeneity. 
However, there are instances where methylation classi-
fiers may not provide a definitive diagnosis, highlighting 
the importance of integrating multiple diagnostic modal-
ities for accurate tumor classification (Fig. 6).

Discussion
We developed a methylation classification tool named 
SNUH-MC, employing the SMOTE algorithm to address 
data imbalance and integrating OpenMax with an MLP, 
making it distinct from previous algorithms. Our find-
ings show SNUH-MC’s strong ability to accurately 
classify unknown data compared to existing methods. 
SNUH-MC utilized the SMOTE algorithm to address 

Fig. 4 Comparison of methylation‑based classification results for embryonal, pineal, meningiomas, and other CNS tumors against SNUH 
pathological diagnoses. A DKFZ‑MC v11b4 results, B SNUH‑MC‑91 results, and C DKFZ‑MC v12.5 results. Each plot displays methylation‑based 
classifications (right) compared to initial SNUH pathological diagnoses (left). DKFZ‑MC v11b4 and SNUH‑MC‑91 use the same 91 methylation class 
labels, while DKFZ‑MC v12.5 introduces new labels from its expanded 170 methylation classes. Novel tumor types in v12.5 reflect recent advances 
in molecular tumor classification as per the 2021 WHO Classification of Tumors of the Central Nervous System. Detailed results are available 
in Supplementary Table 2 (SNUH‑MC: Seoul National University Hospital‑Methylation Classifier; DKFZ‑MC: Deutsches Krebsforschungszentrum‑Meth
ylation Classifier)
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data imbalance and integrated OpenMax within a Multi-
Layer Perceptron to prevent labeling errors in low-con-
fidence diagnoses. This strengthens its reliability as a 
disease classifier, prioritizing both data balance and pre-
cise diagnosis. Additionally, we introduced calibrated 
score ranges and established criteria called ‘Decisions,’ 
providing a strategic framework for researchers to assess 
methylation profiling outcomes.

Among the 23 samples that the DKFZ-MC v11b4 
did not classify correctly, cases initially labeled as ‘cho-
roid plexus tumor, subclass pediatric B (PLEX, PED B)’ 
were later classified in v12.5 as ‘Diffuse pediatric-type 
high-grade glioma (pedHGG).’ However, SNUH-MC-91 
results labeled these cases as ‘GBM, IDH-wt.’ SNUH-
MC-91 refers to labels from v11b4 and does not include 
representation for the ‘pedHGG’ cluster, thus support-
ing the validity of the ‘GBM’ classification. Moreover, in 
our cases, 14 out of 193 (7.3%) cases initially identified 
as GBM in v11b4 were later reclassified as pedHGG in 
v12.5. Because pedHGG and GBM share molecular and 
morphological features this result was thought reason-
able. Moreover, this change in methylation class was 
aligned with the other literatures [23]. Neither DKFZ-
MC v11b4 nor SNUH-MC-91 includes the pedHGG clas-
sification. Both of these classifiers are based on the same 
dataset and do not incorporate the newer classifications 
found in later versions. SNUH-MC-91 was developed 
based on DKFZ v11b4, so it has the same set of tumor 
classifications. As we mentioned in method section, we 
could not have access to the dataset used for DKFZ v12.5 
or v12.8, which limits our ability to include these newer 
classifications in our SNUH-MC-91. Similarly, cases ini-
tially classified as ‘choroid plexus papilloma_pediatric 
type B (PLEX, PED B)’ in v11b4 were later recategorized 
as ‘ependymoma_posterior fossa group B (EPN_PFB)’ 
in v12.5. These cases were consistently classified as 
‘EPN, PFB,’ in the SNUH-MC-91 classification. In sum-
mary, the observed enhancement in reclassification for 

our methylation classifier mirrors the performance of 
DKFZ-MC v12.5, benefiting from an extensive database 
with over 90  k CNS tumor reference data compared to 
the previous version, DKFZ-MC v11b4. However, to sub-
stantiate these reclassifications, we propose the follow-
ing approach: Conduct comprehensive histopathological 
re-evaluation and supplementary molecular analyses to 
corroborate tumor identities. Incorporate longitudinal 
clinical data to assess tumor behavior in concordance 
with the revised classification. Perform a systematic 
review of contemporary literature to identify analogous 
reclassification patterns and their clinical implications. 
While the expanded dataset in v12.5 may potentially 
enhance diagnostic precision, it does not inherently guar-
antee improved accuracy across all cases.

We explored the classification results of SNUH-MC-92, 
achieving clarity for most ‘unknown’ cases through cali-
brated scores. However, 15 cases labeled as ‘inexplicable’ 
underwent visual analysis using t-SNE plots, revealing 
subtle deviation from the central cluster of training sam-
ples despite being classified as ‘unknown’ by SNUH-
MC-92 (Supplementary Fig. 5).

Our work with SNUH data highlights its advantages for 
researchers, particularly in uncovering diverse molecu-
lar features through methylation profiling. For example, 
distinct clusters have emerged in tumors with fusion 
genes like PATZ1, BCOR/BCORL1, ZFTA, and PLAGL1 
[4, 24–26]. Methylation data have also provided insight 
into critical elements such as CNVs and SNPs, which 
play a crucial role in tumor classification. Classes char-
acterized by specific genetic alterations, which are often 
associated with distinct methylation patterns, include 
MYCN amplification & isochromosome 17q in medullo-
blastoma groups 3 and 4, loss of chromosome 22 in atypi-
cal teratoid/rhabdoid tumor, MYB/MYBL1 alterations 
in angiocentric glioma, and C19MC::TTYH1 fusion in 
embryonal tumor with multilayered rosettes [27–31].

Fig. 5 Changes in ‘Decisions’ from DKFZ‑MC v11b4 to SNUH‑MC‑91. This figure illustrates the reclassification of 69 cases from DKFZ‑MC v11b4 
to SNUH‑MC‑91. Each case is labeled as “Uncertain → Match,” “No match → Match,” “No match → Likely match (LM),” or “No match → No match.” 
Each case is presented with MRI (T2‑weighted FLAIR) and histopathological (H&E) images. Final diagnoses are provided as subheadings for each 
image set. Tables show detailed information including main genetic alterations obtained from NGS studies with brain tumor‑targeted gene panel 
(SNUH FiRST brain tumor panel). The final diagnosis of each case is DNET A, B, EPN_PFB C, D & G, H), PedHGG E, F & K, L, and HGAP I, J. In Figure 
I, Rosenthal fibers (blue arrows) are evident. The last four cases were not matched by all methylation classifiers, including our version, which are 
PGNT with SLC44A1::PRKCA fusion M, N, pilocytic astrocytoma with KIAA1549::BRAF fusion O, P, GBM, IDH‑wt Q, R and pineal anlage tumor S, T. 
Cases that remained unchanged in the ‘Decisions’ were also included in this plot (DKFZ‑MC: Deutsches Krebsforschungszentrum‑Methylation 
Classifier; SNUH‑MC: Seoul National University Hospital‑Methylation Classifier, DNT: low‑grade glioma, dysembryoplastic neuroepithelial tumor, 
EPN: Ependymoma, PNET: primitive neuroectodermal tumor, HGG: high‑grade glioma, G3, G4: grade 3, grade 4, IDH‑wt, PLEX, PED B: choroid 
plexus tumor, pediatric type B, pedHGG_RTK1A: Diffuse pediatric‑type high‑grade glioma, receptor tyrosine kinase type 1A, HGAP: high‑grade 
astrocytoma with piloid feature, ANA PA: anaplastic pilocytic astrocytoma, LGG, PGNT: papillary glioneuronal tumor, Pil. A: pilocytic astrocytoma, 
ampl: amplification; mut.: mutation, Underbar size of the HE figures: B: 25 μm, D, F, K, N‑T: 50 μm, G: 100 μm, I: 20 μm)

(See figure on next page.)
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These genetic changes, detectable through various 
molecular methods, are frequently correlated with spe-
cific methylation signatures, allowing methylation pro-
filing to serve as a surrogate marker for these molecular 
features.

Although we did not specifically measure or analyze 
MGMT promoter methylation status from our methyla-
tion array data, the methylation data also allowed us to 
predict the MGMT promoter methylation status [32]. 
These unique properties highlight how epigenetics has 

Fig. 5 (See legend on previous page.)
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emerged as a powerful tool for CNS tumor researchers, 
providing rich insights into tumor biology.

While methylation profiling is a powerful tool for 
tumor classification, there are limitations to its applica-
tion. Accurate methylation profiling requires high-qual-
ity and quantity DNA samples, typically at least 0.5ug. 
Obtaining precise methylation data becomes challeng-
ing when dealing with small tumor tissue sizes, espe-
cially in biopsy samples, or subpar DNA quality. It is 
crucial to check the quality and integrity of DNA samples 
before starting the experiment. FFPE DNA samples often 

undergo degradation due to chemical fixation and treat-
ment. Over-fixation is a recognized factor contributing 
to reduced quality and quantity during DNA extraction 
[33]. Storage conditions, including temperature, humid-
ity, and duration, significantly impact DNA integrity and 
quantity [34, 35]. Therefore, researchers should thor-
oughly consider these factors before performing experi-
ments and may need to conduct additional FFPE DNA 
restoration assays to address subpar DNA quality issues 
[36].

Fig. 6 Integrated diagnostic approach for CNS tumors. This figure illustrates a comprehensive diagnostic process for CNS tumors, combining 
traditional histopathology with advanced molecular techniques. The diagnostic workflow begins with the initial diagnosis based on histopathology, 
NGS results, and clinical information. If this aligns with the methylation class (MC score > 0.9), or if there is general agreement despite an MC 
score < 0.9, final report is issued. In cases of discordance, (classified as Uncertain or No match), further validation is required, including reevaluation 
of histopathology, immunohistochemistry (IHC), NGS results, and clinical data. Uncertain cases may include tumors previously labeled as NOS (Not 
Otherwise Specified) or NEC (Not Elsewhere Classified). This approach enhances diagnostic accuracy
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After generating methylation data, researchers closely 
examine several factors: 1) ensuring gender consistency 
with the patient, 2) ensuring that CNV plots derived 
from methylation data are noise-free, and 3) verifying 
that expected results match the data [22]. For exam-
ple, if neuropathologists expected MC of GBM with 
FGFR3-TACC3 fusion, but the MC often matched with 
ganglioglioma with v12.5 [37], careful validation and 
investigation are essential. While valuable, methylation 
classifiers have limitations: They cannot classify all types 
of brain tumors. They may produce erroneous matches 
even with high scores.

Methylation profiling poses a significant challenge due 
to the potential for uncertain or indeterminate results, 
especially in molecularly diverse CNS tumors like glio-
mas. Inadequate representation of rare tumor types in 
classifier training datasets may lead to inconclusive or 
conflicting results. Therefore, interpreting methylation 
data requires integration with clinical and pathological 
findings for accurate diagnosis. Continuous updating of 
training datasets is crucial to improve classifier perfor-
mance across diverse tumor types,

In methylation studies, the emergence of unknown 
clusters not matching existing methylation classes 
requires thorough investigation. For ‘No match’ cases, a 
comprehensive approach should include repeating meth-
ylation profiling, conducting thorough histopathological 
reviews with additional stains, performing supplemen-
tary molecular tests, reviewing clinical data and imaging 
features, consulting experts for challenging cases, and 
considering the possibility of novel tumor entities.

For all tumor samples, reevaluation is essential if the 
calibrated score is less than 0.9 or noticeably low, even 
when using regions with high tumor cell content (typi-
cally > 70%). This is because tumor cell purity can vary 
within samples, particularly in infiltrative tumors like 
diffuse gliomas. In such cases, reassessing DNA quality, 
re-examining histology to confirm tumor content, and 
considering repeat methylation profiling may be neces-
sary to ensure accurate classification results.

A ‘No match’ result may stem from tissue heterogene-
ity or low tumor purity, particularly in low-grade tumors. 
Addressing this requires a comprehensive process involv-
ing expert pathological evaluation, clinical observations, 
bioinformatic data, and literature reviews. A literature 
review can help resolve “no match” results by identify-
ing recently described tumor entities, finding reports of 
similar ambiguous cases, and discovering new molecular 
markers relevant to the case. This process can provide 
context for interpreting challenging results and suggest 

alternative approaches for classification. However, con-
ducting thorough literature reviews adds to the work-
load of the experts involved, requiring a balance between 
comprehensive analysis and practical considerations.

Methylation profiling precision depends on meth-
odology and reference databases, impacting accuracy 
[12, 13]. Limited access to methylation tests in certain 
healthcare settings due to cost and resource constraints 
is an issue. Profiling CNS tumors effectively requires 
comprehensive reference databases, posing challenges 
for unique methylation patterns. The challenge with 
reference databases for CNS tumor methylation pro-
filing is primarily related to incomplete coverage, not 
conflicting data. Continuous updating of reference 
databases is crucial to capture the full spectrum of CNS 
tumor heterogeneity and improve classification accu-
racy, especially for uncommon or newly discovered 
tumor entities.

Limitations in methylation data can complicate sub-
type differentiation, necessitating advanced analytics for 
accurate distinctions. The main limitations in CNS tumor 
methylation profiling include data imbalance: Underrep-
resentation of rare tumor types in reference databases, 
lack of reference data for newly discovered or reclassi-
fied tumor entities, potential misclassification of similar 
tumor subtypes, and evolving tumor classifications that 
may outpace database updates.

Staying updated on profiling advances is crucial, as it 
may improve the identification of previously unmatch-
able samples. Acknowledging and addressing these 
limitations is essential when using methylation data for 
pathological diagnoses.

Ongoing research in AI and machine learning is 
expanding into various aspects of neuropathology, 
including methylation-based diagnostics. While our 
focus is on DNA methylation profiling, it’s worth noting 
that complementary AI approaches are being developed 
for whole slide image analysis and gene mutation pre-
diction [38–40]. Additionally, machine learning models 
could help identify correlations between methylation pat-
terns and visual features in pathology slides, potentially 
uncovering new biomarkers or diagnostic criteria. Chal-
lenges in developing these integrated approaches include 
data heterogeneity across institutions and the need for 
large, well-annotated datasets. However, as both meth-
ylation profiling and AI-based image analysis continue 
to advance, their combination may lead to more accurate 
and efficient CNS tumor diagnostics, potentially reduc-
ing pathologists’ workload and improving diagnostic pre-
cision [41].
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While possible, the focus should be on identifying the 
most variable sites between tumor subtypes rather than 
simply increasing the number of sites analyzed. This can 
be achieved through methods like methylation sequenc-
ing, single-cell analysis, and GWAS studies. Combin-
ing methylation data with traditional pathology, SNP, 
CNV, and fusion data could create more comprehen-
sive and robust classification models. Such multi-modal 
approaches could leverage the strengths of each data 
type, potentially improving accuracy in challenging cases.

The integration of methylation profiling with tradi-
tional histopathology and NGS in pathology institutions 
significantly enhances the final pathological diagnosis, 
influencing clinical treatment decisions [22, 42, 43].

Conclusions
This study represents a novel methylation classification 
tool called SNUH-MC that addressed several key chal-
lenges in accurate brain tumor classifications. By employ-
ing advanced techniques like the SMOTE algorithm for 
data imbalance and OpenMax integration for open-set 
recognition, SNUH-MC demonstrates improved per-
formance compared to existing methods, particularly 
in handling unknown or noisy data samples. To dem-
onstrate the robustness and improvement of our clas-
sification method, we should correlate MC with patient 
outcomes (survival rates, progression-free intervals, 
treatment responses), assess the impact of reclassifica-
tions on patient management and outcomes, perform 
external validation using independent datasets, conduct 
longitudinal studies to evaluate long-term predictive 
accuracy and integrate methylation-based classification 
with established molecular markers. However, we could 
not perform these analyses due to limitations in our study 
design and available data. This represents a limitation of 
our current work and highlights important directions for 
future research to fully validate the clinical utility of our 
approach.

Furthermore, the introduction of calibrated score 
ranges and the ‘Decisions’ criteria offer a strategic frame-
work for researchers to assess methylation profiling 
outcomes, facilitating a deeper understanding of the clas-
sifier’s performance and the underlying reasons behind 
specific classifications.

This paper contributes to an advanced methyla-
tion classification algorithm, providing comprehensive 
insights based on data experience, spanning sample prep-
aration to the interpretation of results obtained from the 
methylation classifiers.
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