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DNA methylation profiling at base-pair 
resolution reveals unique epigenetic 
features of early-onset colorectal cancer 
in underrepresented populations
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Abstract 

Background The incidence of early‑onset colorectal cancer (EOCRC) has been rising at an alarming rate in the USA, 
and EOCRC disproportionately affects racial/ethnic minorities. Here, we construct comprehensive profiles of EOCRC 
DNA methylomes at base‑pair resolution for a cohort of Hispanic and African American patients.

Results We show the epigenetic landscape of these EOCRC patients differs from that of late‑onset colorectal cancer 
patients, and methylation canyons in EOCRC tumor tissue preferentially overlapped genes in cancer‑related pathways. 
Furthermore, we identify epigenetic alterations in metabolic genes that are specific to our racial/ethnic minority 
EOCRC cohort but not Caucasian patients from TCGA. Top genes differentially methylated between these cohorts 
included the obesity‑protective MFAP2 gene as well as cancer risk susceptibility genes APOL3 and RNASEL.

Conclusions In this study, we provide to the scientific community high‑resolution DNA methylomes for a cohort 
of EOCRC patients from underrepresented populations. Our exploratory findings in this cohort highlight epigenetic 
mechanisms underlying the pathogenesis of EOCRC and nominate novel biomarkers for EOCRC in underrepresented 
populations.
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Background
While colorectal cancer (CRC) typically presents after 
the age of 50 (late-onset colorectal cancer [LOCRC]), 
epidemiologic data have shown a disturbing rise in the 
incidence of colorectal cancer among individuals younger 
than 50 (early-onset colorectal cancer [EOCRC]) [1]. 
In fact, current trends indicate that, over the next dec-
ade, EOCRC will account for 25% of rectal cancers and 
10–12% of colon cancers, making it the leading cause of 
cancer-related mortality in persons aged 20–49 years [2]. 
Despite the rising incidence of EOCRC, clear clinico-
histopathological differences, and the recognition that 
EOCRC likely represents a distinct disease with a unique 
molecular landscape and oncogenic mechanisms, no 
clear etiology of this emerging disease has been identified 
[3].

Approximately 80% of EOCRCs are sporadic, with no 
underlying hereditary conditions such as Lynch syn-
drome [4]. Compared to LOCRC, EOCRC arises pre-
dominantly on the left side of the colon and is associated 
with more aggressive histology and advanced stage at 
diagnosis [5]. At the molecular level, EOCRC patients 
are more likely to have somatic mutations in TP53 and 
CTNNB1, whereas APC and BRAF are less frequently 
mutated [6]. In addition, recent transcriptomic and 
metabolomic profiling has implicated glutathione metab-
olism and NRF2-mediated oxidative stress in the patho-
genesis of microsatellite-stable EOCRC, underscoring 
the need for unbiased methods to characterize molecular 
signatures differentiating EOCRC from LOCRC [7].

In the USA, racial and ethnic minorities are dispropor-
tionately affected by EOCRC [8]. For example, compared 
to Caucasians, the incidence of EOCRC has increased 
at a faster rate among Hispanics and African Americans 
with significantly lower 5-year survival [9]. The causes 
of these disparities are unclear, but environmental risk 
factors such as diet, stress, and gut microbiome likely 
contribute to the differences in incidence and mortal-
ity among races [10, 11]. One potential mechanism is 
through environmental influences on epigenetic modifi-
cations that affect gene expression without changing the 
underlying DNA sequence. Unfortunately, this remains 
understudied in translational research.

DNA methylation, which results from the addition 
of methyl groups to cytosine-guanine dinucleotides 
(CpGs), is a key epigenetic mediator of expression. Dys-
regulation of DNA methylation plays an important role 
in the pathogenesis of CRC [12, 13]. Indeed, whole-
genome DNA methylation profiling reveals that cancer 
cells acquire widespread changes in DNA methylation 
to upregulate oncogenic programs and repress tumor-
protective programs [14]. Recently, the existence of 

methylation canyons, large (> 3.5  kb) undermethylated 
regions flanked by sharp peaks of high methylation, has 
been described [15]. Canyons are enriched in home-
obox and Polycomb genes and are involved in tran-
scriptional regulation in cancer, especially in oncogene 
activation [16, 17]. While DNA methylation microar-
rays, such as the Illumina Infinium BeadChips, have 
become increasingly popular because of their low cost 
and rapid profiling, they cover only a small fraction of 
all CpGs in the human genome and are unable to pro-
file larger regions, including methylation canyons. On 
the other hand, whole-genome bisulfite sequencing 
(WGBS), which utilizes bisulfite conversion of methyl-
ated cytosines, offers unparalleled base-pair resolution 
of the entire methylome at a higher cost. A comprehen-
sive WGBS analysis of EOCRC, however, has not yet 
been reported.

In addition to the relatively high cost of generating 
whole genome datasets, racial/ethnic minority patients 
are also severely underrepresented in research studies, 
resulting in a dearth of high-quality datasets from these 
populations. For example, over 80% of patients included 
in The Cancer Genome Atlas (TCGA) are of European 
descent, whereas only ~ 9% are African American [18]. 
Studies seeking a reason for the low representation of 
racial/ethnic minorities in biorepositories and research 
studies point to patient distrust, language barriers, or 
researcher bias [19–21]. Irrespective of the reason, the 
result is a distinct lack of tumor biospecimens from 
underrepresented populations, presenting a major bar-
rier to our understanding of diseases with disparities 
between racial and ethnic groups, such as EOCRC.

To address both the lack of high-quality sequenc-
ing datasets and the pressing unmet need for molecu-
lar characterization of EOCRC, as well as to explore 
the molecular basis of EOCRC racial disparities, we 
identified a cohort of Hispanic and African Ameri-
can patients with sporadic left-sided EOCRC and per-
formed WGBS for 9 tumors with 7 matched normal 
adjacent tissue (NAT) samples. We compared genome-
wide differential methylation in this cohort to both a 
Caucasian EOCRC cohort and a LOCRC cohort from 
TCGA. By leveraging the power of WGBS, combined 
with our unique cohort, we contribute the first high-
quality complete EOCRC methylomes from racial/eth-
nic minority patients as a resource to researchers. We 
further provide an unbiased description of epigenetic 
changes during EOCRC oncogenesis, define unique 
regulatory methylation canyons, characterize the epige-
netic landscape of epithelial-to-mesenchymal transition 
(EMT) in this EOCRC cohort, and identify biologically 
relevant risk genes in racial/ethnic minority patients.
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Results
Global DNA methylation patterns in EOCRC 
To first understand global methylation changes in 
EOCRC oncogenesis, we compared methylation 
between EOCRC tumors and matched NATs (Supple-
mentary Table  S1) across the entire genome by binning 
the genome into 2-kb sliding windows. EOCRC patients 
were selected using these inclusion criteria to exclude 
those arising from Lynch Syndrome or inflammatory 
bowel diseases (i.e., Crohn’s, ulcerative colitis): age of 
diagnosis < 50  years; mismatch repair (MMR)-proficient 
tumors; and nonhypermutated tumors (Supplementary 
Fig. S1). Based on the mean methylation of each sample 
at all 2-kb windows, we performed principal component 
analysis (PCA) and found that NAT clustered closely 
together, while EOCRC tumors were heterogeneous and 
distributed far away in PCA space from NAT, except for 
T8 (Fig. 1a). The clustering of sample T8 with NAT may 
reflect clinical confounders such as body mass index and 
comorbidities (e.g., type 2 diabetes), sample quality, and 
tumor heterogeneity. T8 was retained in subsequent 
analyses of the EOCRC cohort to more comprehen-
sively reflect clinically relevant disease heterogeneity. 
Globally, tumor tissues were extensively hypomethyl-
ated (Fig. 1b), which is consistent with previous reports 
using a repetitive element LINE1 as a surrogate marker 
of global methylation in EOCRC [22–24]. In addition, 
the EOCRC tumors were highly hypermethylated at CpG 
islands compared to NAT (Fig.  1c), whereas repetitive 
elements (Alu, SINEs, LINEs) were overall hypomethyl-
ated (Fig. 1d). Similar trends were generally observed at 
a per-sample level, but with substantial heterogeneity in 
tumors (Fig. 1e and f ).

Differential methylation between EOCRC and normal 
adjacent tissue
We continued our unbiased comparison of EOCRC and 
NAT by performing differential methylation analysis 
using a circular binary segmentation algorithm from the 
tool Metilene [25]. To provide an overview of differential 
methylation, we performed both differentially methylated 
region (DMR) and differentially methylated CpG position 
(DMP) analysis in de novo mode. Regions differentially 
methylated between EOCRC and NAT groups were de 
novo annotated by circular binary segmentation and then 
filtered to keep only regions with ≥ 10 CpGs in the region 
and absolute methylation differences ≥ 0.1.

Filtered regions were evaluated using 2-dimensional 
Kolmogorov–Smirnov and Mann–Whitney U tests to 
yield a final DMR set with adjusted p value < 0.05. Most 
DMRs occurred in noncoding regions, including introns 
(47.9%) and intergenic regions (31.5%), but DMRs were 
also discovered in exons (12.1%) and promoters (6.8%) 

(Fig.  2a). Most noncoding region DMRs were hypo-
methylated, whereas promoters were more evenly split 
between hypomethylated and hypermethylated, favoring 
reduced methylation (Fig. 2c). These promoter methyla-
tion proportions resemble those previously observed in 
EOCRC using HM450K microarrays [26].

To study DMPs, we used the Mann–Whitney U test 
with Bonferroni correction to evaluate significant dif-
ferences between EOCRC and NAT groups for individ-
ual CpGs with an absolute methylation difference ≥ 0.1. 
DMPs occurred predominately in open seas (96.65%), 
while the remaining DMPs occurred in CpG shores 
(1.83%), shelves (1.45%), and islands (0.07%) (Fig.  2b). 
The majority of intergenic DMPs were hypomethylated 
(95.3%), which in combination with the high propor-
tion of DMPs in intergenic regions (including repetitive 
elements) likely accounted for most of the global DNA 
hypomethylation found in EOCRC (Fig. 2d).

Despite the canonical view of transcriptional repres-
sion by DNA methylation, the relationship between 
methylation and gene expression is complex and posi-
tion dependent. DNA hypermethylation correlates with 
reduced gene expression mainly at promoters. This corre-
lation is tenuous or even reversed in other gene regions, 
obfuscating biological interpretation from methylome 
data alone [27]. Thus, we focused primarily on promot-
ers in subsequent DMR analyses, performing another dif-
ferential methylation study between EOCRC and NAT 
restricted to promoter regions. To ensure equal compari-
son between samples, we defined promoter regions as a 
window from 1000  bp upstream to 500  bp downstream 
of the transcription start site (TSS). In total, 1,073 statis-
tically significant promoter DMRs (pDMRs) were identi-
fied, 694 (64.7%) of which were hypermethylated while 
379 (35.3%) were hypomethylated in EOCRC, compared 
to NAT (Fig.  2e). Unsupervised hierarchical clustering 
of samples by the top 1% most variable pDMRs generally 
separated tumors from NAT, although the previous PCA 
outlier T8 clustered with the NAT group (Fig. 2f ).

Methylation canyons overlap oncogenic pathway genes 
and are altered in colorectal cancer
Next, because methylation canyons are linked to tran-
scriptional dysregulation and oncogene expression in 
cancer, we performed de novo discovery of undermeth-
ylated regions (UMRs) using a previously developed 
Python script [28]. Adjacent UMRs within 500  bp were 
merged if the resulting region had a mean methylation 
value ≤ 0.1. We defined methylation canyons as UMRs 
with a methylation value < 0.1 and length ≥ 3.5  kb. To 
compare differences in methylation canyons between 
EOCRC and LOCRC, we included all currently available 
WGBS datasets of LOCRC tumors from TCGA (n = 5). 
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Canyons were characterized by long valleys of low meth-
ylation, bordered by sharp plateaus of high methylation. 
As an example, one methylation canyon overlapped the 
promoter and body of the transforming growth factor 
beta receptor type 2 (TGFBR2) gene (Fig. 3a). Compared 
to NATs, we found that EOCRCs and, to a lesser degree, 

LOCRCs exhibited severe erosion of the downstream 
canyon border, suggesting increased transcriptional 
accessibility of TGFBR2.

273 EOCRC-unique and 277 LOCRC-unique can-
yons were identified (Fig. 3b). To identify key pathways, 
we performed gene set overrepresentation analysis 
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using three databases: KEGG (Fig. 3c), MSigDB Onco-
genic Signatures (Fig.  3d), and MsigDB Cancer Hall-
marks (Fig.  3e). As a control for non-canyon regions, 
we compared canyons to undermethylated promoters 
(UMPs, methylation < 0.1) unique to EOCRC (n = 1361) 
or LOCRC (n = 206) and to promoter DMRs detected 
in the EOCRC vs. NAT analysis (n = 1073). EOCRC-
unique canyons exhibited strong enrichment in can-
cer-related pathways, notably the Wnt and TGF-β 
signaling pathways. Comparatively, LOCRC-unique 
canyons were significantly enriched only in TGF-β-
related pathways. Although the biological and regula-
tory roles of these canyons require further exploration, 
these findings mirror previous reports that canyons 
are involved in oncogene regulation in solid tumors 

[17]. Interestingly, enrichment was mostly specific 
to EOCRC, despite approximately equal numbers of 
EOCRC-unique and LOCRC-unique canyons (Fig. 3b), 
suggesting that aberrant canyon methylation may be 
more associated with EOCRC rather than LOCRC tum-
origenesis in these cohorts. Weak enrichment in the 
KEGG gene set occurred with EOCRC-unique UMPs, 
reflecting some overlap of promoters with canyons 
(Fig. 3c). However, promoter DMRs were not enriched 
in any of the cancer-related pathways enriched for in 
methylation canyons. Although case–control promoter 
DMR analysis is commonly used in DNA methylation 
cancer research, our findings show that DMR analy-
sis alone is insufficient to capture gene set enrichment 
in biologically relevant pathways. This highlights the 
power of WGBS, which revealed biological insights 
undetected via traditional promoter DMR analysis.
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Molecular basis of racial disparities between two cohorts 
of EOCRC patients
We investigated differences between EOCRC patients 
of different racial/ethnic backgrounds by comparing 
two cohorts: Texas cohort, Hispanic (n = 8) or Afri-
can American (n = 1); and TCGA cohort, Caucasian 
(n = 18). The TCGA cohort was selected based on the 
same inclusion criteria as the Texas cohort. To compare 
WGBS data (Texas cohort) to HM450K microarray data 
(TCGA cohort), we first reduced the whole-genome 
data by subsampling to only CpGs covered in the 
microarray. Although WGBS and HM450K data are 
well correlated in comparisons from the same sample 
[29], we addressed potential batch effects by perform-
ing quantile normalization. Contrast score distribution 
after normalization (measured by the false discovery 
rate-control tool Clipper [30]) was nearly symmet-
ric around 0.0, suggesting removal of the batch effect 

(Supplementary Fig. S2). For both cohorts, we then 
assigned CpGs/probes to a gene promoter based on its 
location within the 1500-bp promoter window around 
the TSS. Normalized methylation values for each pro-
moter were calculated by averaging all CpGs assigned 
to that promoter. pDMRs were defined as those with an 
absolute methylation difference ≥ 0.1 between cohorts. 
We then filtered for pDMRs with methylation values in 
tumors from racial and ethnic minority patients outside 
the 1st or 3rd quartiles of methylation values in Cau-
casian tissues (Methods) and used the nonparametric 
Wilcoxon ranked sum test to detect significant differ-
ences between cohorts (p < 0.05). We discovered 1168 
remaining significant pDMRs between minority and 
Caucasian patients (Fig. 4a). Unsupervised hierarchical 
clustering of pDMRs showed race-specific patterns of 
DNA methylation, clustering cohorts separately from 
each other (Fig. 4b).
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Because diet and metabolism are implicated in dys-
regulation of DNA methylation and are risk factors for 
CRC, we then performed gene set overrepresentation 
analysis to assess enrichment of race-associated pDMRs 
in metabolism-related pathways. Genes differentially 
methylated in minority EOCRC patients were signifi-
cantly enriched in several metabolic pathways, including 
macroautophagy, a mechanism of metabolic homeostasis 
modulated by nutrient bioavailability (Fig.  4c). Macro-
autophagy is reprogrammed by tumor cells in response 
to increased metabolic demands and is also epigeneti-
cally dysregulated by diet [31, 32]. Enrichment in familial 
high-density lipoprotein deficiency (FHD) and type 1 dia-
betes pathways suggests a potential genetic component 
of aberrant methylation in metabolic pathways. Indeed, 
FHD is caused by apolipoprotein deficiency [33], and 
the apolipoprotein-encoding gene APOL3 was one of the 
top hypermethylated genes in minority, but not Cauca-
sian, EOCRC patients (Fig. 4d). Other enriched pathways 

included amino acid and nucleotide metabolism gene 
sets, further supporting a nutrition-related epigenetic 
component in our minority cohort.

To further assess whether race/ethnicity-associated 
genes included canonical genes involved in CRC onco-
genesis, we overlapped our pDMRs with the Human 
KEGG 2021 “Colorectal Cancer” pathway database and 
plotted the top CRC-related genes with racial/ethnic dif-
ferences (Fig. 4e). Only four CRC-related genes (BIRC5, 
PIK3CD, RALGDS, and TGFB1) showed statistically sig-
nificant methylation differences between racial groups, 
and the differences were substantially less than the dif-
ferences noted for the previously identified top six genes 
(APOL3, MFAP2, etc.), except for TGFB1. This may sug-
gest that in our racial/ethnic minority cohort, EOCRC 
disparities may be related more to auxiliary risk factors, 
such as metabolism, diet, and immune function, than to 
canonical CRC pathways. Together, our findings provide 
early insights for understanding the epigenetic basis for 
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EOCRC racial disparities and characterize race/ethnic-
ity-specific DNA methylation in our cohort.

Discussion
This paper describes the first whole-genome methyla-
tion study at base-pair resolution of EOCRC in patients 
from underrepresented populations. We provide to the 
scientific community high quality, complete methylomes 
for 9 EOCRC tumors from Hispanic and African Ameri-
can patients. We found that our EOCRC methylomes 
are distinct from a LOCRC cohort, as methylation can-
yons in EOCRC but not LOCRC preferentially occurred 
over genes in cancer-related pathways. Our comparative 
studies revealed enrichment of metabolism- and can-
cer-related genes differentially methylated in minority 
EOCRC patients, and our findings add complementary 
epigenetic information to a recent report by Holowatyj 
et al. profiling somatic mutation frequency differences in 
EOCRC patients from different racial groups [34].

We employed several measures to optimize sample 
purity and proper representation of sporadic EOCRC in 
our cohort. Patients with high-microsatellite instability 
tumors and genetic predispositions to CRC (e.g., Lynch 
Syndrome, inflammatory bowel disease) were excluded. 
Because EOCRC tends to arise from the left-sided colon, 
we also restricted our analysis to left-sided tumors. Tis-
sue blocks were microdissected for tumor tissue and 
NAT and independently verified by a pathologist. We 
also assessed whether the tumors were hypermethyl-
ated at six traditional CpG island methylator phenotype 
(CIMP) markers (RUNX3, IGF2, SOCS1, CACNA1G, 
MLH1, and NEUROG1) because previous reports indi-
cated that EOCRC tumors are less likely to be CIMP-
high [22, 24, 35]. We found that methylation differences 
between NAT and EOCRC were not significant for any 
CIMP markers (Supplementary Fig. S3). Therefore, our 
dataset is widely useful, as existing datasets suffer from a 
lack of clear markers (except chronological age) differen-
tiating EOCRC from LOCRC.

Our study also adds to growing evidence that methyla-
tion canyons likely play a regulatory role in solid tumors, 
in addition to their known existence in hematopoietic 
cells. Of note, these methylation canyons differ in size 
and function from previously described large hypometh-
ylated blocks discovered in solid tumors, which were 
orders of magnitude larger than canyons (5 kb − 10 Mb; 
median, ~ 40  kb) and speculated to be involved in het-
erochromatin structure disruption [36, 37]. While some 
EOCRC canyons spanned larger regions up to 30  kb, 
most were < 8 kb (Supplementary Fig. S4) and overlapped 
genes involved in coherent biological processes.

Importantly, methylation canyons in EOCRC over-
lapped with genes overrepresented in cancer-related 

pathways, including the TGF-β and Wnt signaling 
networks, and aberrant canyon methylation was more 
prevalent in the EOCRC cohort than in the LOCRC 
cohort. Previous reports have implicated overac-
tive Wnt signaling and enrichment of differentially 
expressed genes in focal adhesion and EMT pathways 
in EOCRC [35, 38]. More active EMT in EOCRC may 
contribute to its rapid progression and poor prognosis. 
We discovered that both tumor types also shared an 
eroded downstream canyon border at TGFBR2, which 
in EOCRC was more pronounced. TGFBR2 is the cog-
nate receptor for TGF-β, a well-established inducer of 
EMT in cancers, in the canonical TGF-β/SMAD signal-
ing pathway [39]. Further studies, however, are needed 
to establish the regulatory role of these EOCRC-related 
canyons. We provide early characterization of the land-
scape of oncogene-associated methylation canyons in 
our cohort of 9 EOCRC tumors and highlight similari-
ties and differences between EOCRC and LOCRC.

Most notably, we identified several cancer-related 
metabolic genes with differential methylation between 
races in patients with EOCRC (Fig.  4d). As men-
tioned earlier, APOL3 is functionally connected to 
lipid cholesterol metabolism. Recently, APOL3 was 
identified as the top protein in a screening assay for fer-
roptosis-related CD8 + T cell infiltration in mismatch 
repair-proficient CRC, implicating it as an antitumor 
immunity-promoting tumor suppressor [40]. Other 
genes include GALNT12 which encodes for an enzyme 
involved in O-linked glycosylation, and RNASEL, a rib-
onuclease involved in interferon signaling, which have 
both been implicated as cancer risk genes in popula-
tion studies [41, 42]. Of particular interest, MFAP2 was 
the top-ranked gene by methylation differences; it was 
highly methylated in minority patients but unmethyl-
ated in most Caucasian patients. MFAP2 is a protein 
component of extracellular matrix microfibrils and crit-
ically controls growth factor signal transduction [43]. 
In humans, genome-wide association studies (GWAS) 
have linked the MFAP2 locus to obesity and type 2 dia-
betes [44]. In mice, Mfap2 deficiency is a well-known 
model of metabolic disease with consistent effects on 
increased adiposity, insulin resistance, hyperglycemia, 
and predisposition to diabetes [45, 46]. Considering 
the strong association between metabolic dysregula-
tion and CRC risk, and the higher rates of obesity and 
metabolic syndrome in Hispanics and African Ameri-
cans, we postulate that aberrant DNA hypermeth-
ylation at the MFAP2 promoter may suppress MFAP2 
expression and predispose these minorities to EOCRC 
or EOCRC risk factors. Clearly, future studies will be 
needed to elucidate the precise roles of the identified 
genes in human EOCRC. If confirmed, they could serve 
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as valuable biomarkers for EOCRC risk in racial/ethnic 
minorities.

We acknowledge several limitations of this study. At 
the time of our manuscript submission, we had thor-
oughly searched all publicly available WGBS data on 
CRC and were able to find only five WGBS-sequenced 
LOCRC samples. In the future, we hope to obtain 
additional WGBS datasets to expand the scope of this 
report and confirm our results. Furthermore, although 
promoter DNA methylation and gene expression are 
strongly correlated, we did not verify transcription by 
RT-PCR or RNA-seq. In the absence of expression data 
for WGBS samples, we instead evaluated correlations 
between DNA methylation β-values by 450  K array at 
gene promoters and mRNA expression of those genes 
in TCGA-EOCRC (n = 59) and LOCRC (n = 320) sam-
ples for which RNA-seq data was also available (Sup-
plementary Figure S5). Although this is a limited 
analysis, we confirmed that a majority (65.2%) of genes 
from the differential methylation study showed a nega-
tive association between methylation and mRNA, as 
expected. This proportion agrees approximately with a 
previous study evaluating the methylation–expression 
correlation in TCGA samples across 33 cancer types 
[47] and reflects the complex relationship between 
increased DNA methylation and gene repression. For 
MFAP2, a top gene related to EOCRC in underrepre-
sented populations, a weak negative correlation was 
confirmed (Supplementary Figure S5b). Nonetheless, 
multi-omic analyses, larger sample sizes, and pro-
spectively collected tumor samples are warranted in 
future studies. In the analysis of methylation between 
patients from different racial/ethnic backgrounds, there 
is only a single EOCRC tumor from a patient of Afri-
can American descent, severely limiting the ability to 
draw conclusions regarding the role of DNA methyla-
tion in African American EOCRC. We show that this 
sample shows a high degree of similarity to Hispanic 
samples in PCA space (Supplementary Figure S6) and 
are more correlated with Hispanic than Caucasian 
tumors (Supplementary Figure S7), supporting inclu-
sion into the minority population cohort. However, it 
is important to recognize the restriction of this lim-
ited sample size; ultimately, we include this sample as 
an important resource for an ethnic background tradi-
tionally underrepresented in omic studies. Additionally, 
lack of sufficient clinical annotation (e.g., treatment 
response) precluded the ability to correlate methyla-
tion phenotypes to clinical outcomes. Nevertheless, we 
believe our study represents an important first step in 
characterizing a poorly understood cancer subtype and 
provides an important resource for basic and clinical 
investigations.

Materials and methods
Study approval and exclusion criteria
This study was approved by the Institutional Review 
Board (IRB) at Baylor College of Medicine (H-21543). 
After obtaining informed consent under the IRB 
approved protocols (H-18245 and H-14435), archived 
tissue samples were obtained from the Human Tissue 
Acquisition and Pathology Core of the Dan L. Duncan 
Cancer Center. All research was performed in accord-
ance with relevant guidelines and regulations.

Public data sourcing
Caucasian EOCRC TCGA Cohort (HM450K data): 
For the integrative analysis of EOCRC racial dispari-
ties in methylation patterns, we used TCGA-COAD 
datasets from the public repository (https:// gdc. cancer. 
gov/). Complete clinical information was available for 60 
TCGA-EOCRC patients, including age, sex, TNM stage, 
microsatellite instability (MSI) status, and somatic muta-
tions in selected genes (APC, KRAS, BRAF, and TP53). 
Eighteen of these patients met the same criteria as the 
Texas WGBS Cohort. The DNA methylation level of 
individual CpG sites was quantified by Illumina Infinium 
HumanMethylation450 BeadChip arrays, as previously 
described [48].

LOCRC TCGA Cohort (WGBS data): LOCRC patients 
with WGBS data (n = 5) were selected from the TCGA-
COAD and TCGA-READ cohorts. Data were accessed 
from the Legacy Genomic Data Commons Portal from 
the National Cancer Institute.

Whole‑genome bisulfite sequencing (WGBS)
We used formalin-fixed, paraffin-embedded (FFPE) 
samples for WGBS analysis. One hematoxylin and 
eosin (H&E)-stained slide along with 7 − 10 unstained 
(7-µm-thick) slides was cut. Areas of tumor and NAT 
were circled on the H&E slides by pathologists (NZK, 
WA), and corresponding areas from unstained slides 
were manually microdissected using a razor blade. 
Genomic DNA (gDNA) was extracted from microdis-
sected FFPE sections using QIAamp DNA FFPE Tissue 
kit. We used 500  ng gDNA for library preparation and 
next-generation sequencing (NGS), as described previ-
ously [49]. Paired-end 150-bp NGS was performed with 
planned 25 × coverage on an Illumina Novaseq 6000 
platform.

Quality control and read alignment
FastQC v0.11.9 (https:// www. bioin forma tics. babra ham. 
ac. uk/ proje cts/ fastqc/) was used for general quality 
checks of sequencing reads in FASTQ files. TrimGalore 
v0.6.6 (https:// github. com/ Felix Krueg er/ TrimG alore) 

https://gdc.cancer.gov/
https://gdc.cancer.gov/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://github.com/FelixKrueger/TrimGalore
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was used in the “paired-end” mode to trim 5’ and 3’ 
read ends and remove adapter sequences. BSMAP v2.90 
(https:// code. google. com/ archi ve/p/ bsmap/) was used in 
the “paired-end” mode to align raw FASTQ reads to the 
hg38 reference genome, which was downloaded from the 
UCSC Genome Browser (https:// hgdow nload. soe. ucsc. 
edu/ downl oads. html). Samtools v1.11 (https:// samto ols. 
sourc eforge. net/) was used to remove unmapped reads 
and sort aligned reads.

Methylation quantification
Methylation was quantified at the single-CpG level using 
a Python script adapted from BSMAP, with a minimum 
of 4 reads covering each CpG (-m 4) in the -x CG mode 
for CpG methylation (with the -p, -u, -r, and -g options 
for quality control of reads). For promoter-level methyla-
tion analysis, gene promoter regions were defined as 1 kb 
upstream of the transcription start site (TSS) to 500  bp 
downstream of the TSS, constituting a 1.5-kb window 
around the TSS. A promoter browser extensible data file 
was obtained from the UCSC Genome Browser Table 
Browser (http:// genome. ucsc. edu/ cgi- bin/ hgTab les) and 
used to average methylation across pre-defined regions 
using the BedRatio command of CAMDA.py (https:// 
github. com/ Jieju nShi/ CAMDA).

Global methylation and methylation canyon analyses
To compare global methylation, the genome was split 
into 2-kb nonoverlapping sliding windows using the 
“makewindows” function of Bedtools v2.29.2. Genomic 
regions on the X chromosome were removed from all 
subsequent analyses to account for DNA methylation-
mediated X chromosome inactivation in female patients. 
Methylation values were then averaged over each sliding 
window using the Bedtools “map” function. To discover 
methylation canyons, undermethylated regions (UMRs) 
were first identified for individual samples using a Python 
script, which solves a beta-binomial on raw sequencing 
counts using a Hidden Markov Model [28]. Adjacent 
UMRs were merged using the MergeUMR.py script of 
the PopCanyon tool (https:// github. com/ Jieju nShi/ PopCa 
nyon) if they occurred within 500  bp of each other and 
the resulting merged UMR retained an average methyla-
tion value < 0.1. UMRs > 3.5  kb were designated as can-
yons. Canyons were annotated to a gene if the canyon 
overlapped any part of a gene using the “intersect” tool 
of Bedtools v2.29.2. Canyons discovered in each sample 
were then merged, and canyons found in < 50% of sam-
ples within each group (NAT, EOCRC, LOCRC) were 
removed. Methylation canyons were visualized with 
the smooth function of the ggplot2 R package using the 
locally estimated scatterplot smoothing method and a 
span of 0.2. Smoothed line plots of methylation canyons 

were annotated with gene diagrams exported from the 
UCSC Genome Browser (https:// genome. ucsc. edu/ cgi- 
bin/ hgTra cks).

Differential methylation analysis
Metilene v0.2–8 (https:// www. bioinf. uni- leipz ig. de/ 
Softw are/ metil ene/) was used for all differential meth-
ylation analyses. First, single-CpG methylation quantified 
files were converted to bedGraph format using a custom 
R script. Bedtools v2.29.2 (https:// bedto ols. readt hedocs. 
io/) was then used to merge samples, and the result-
ing merged file was used as input for Metilene. For the 
unbiased differentially methylated CpG position (DMP) 
analysis, individual CpGs were statistically tested for dif-
ferential methylation using Metilene in the de novo DMP 
mode (-f 3). For the unbiased differentially methylated 
region (DMR) analysis, Metilene was used in the de novo 
DMR identification mode (-f 1) with default parameters. 
For differential methylation at pre-defined promoter 
regions, Metilene was used in the pre-defined regions 
mode (-f 2) with default parameters and the previously 
described promoter region bedfile. Individual CpGs and 
DMRs were annotated according to their genomic or 
CpG features using the annotatr R package. All differen-
tially methylated promoter regions are provided in Sup-
plementary File 1 as a tab-separated file.

Gene set overrepresentation analysis
Metabolism-related gene sets: Race-associated pDMRs 
were used as the input gene list for enrichment analysis 
using the EnrichR R package. Metabolism-related terms 
were selected from the KEGG 2021 Human, Gene Ontol-
ogy Biological Process, DisGeNet (https:// www. disge 
net. org/), Human Metabolome Database Metabolites 
(https:// hmdb. ca/), and GEO perturbation databases. 
Enrichment was performed on these metabolism-related 
terms and plotted using ggplot2.

Methylation canyon gene set overrepresentation: Enri-
chR was used to perform gene set overrepresentation 
analysis with all genes annotated to unique canyons 
discovered in the EOCRC or LOCRC cohorts as input. 
KEGG 2021 Human, MSigDB Oncogenic Signatures, 
and MSigDB Cancer Hallmarks databases were queried 
and enrichment p-values were plotted using ggplot2 
for EOCRC-unique canyons, LOCRC-unique canyons, 
EOCRC-unique undermethylated promoters (UMPs), 
LOCRC-unique UMPs, and promoter DMRs discovered 
in the EOCRC vs. NAT differential methylation analysis. 
A unique UMP was defined as a promoter with a meth-
ylation value < 0.1 in one type of CRC but not in the other 
type of CRC.

https://code.google.com/archive/p/bsmap/
https://hgdownload.soe.ucsc.edu/downloads.html
https://hgdownload.soe.ucsc.edu/downloads.html
https://samtools.sourceforge.net/
https://samtools.sourceforge.net/
http://genome.ucsc.edu/cgi-bin/hgTables
https://github.com/JiejunShi/CAMDA
https://github.com/JiejunShi/CAMDA
https://github.com/JiejunShi/PopCanyon
https://github.com/JiejunShi/PopCanyon
https://genome.ucsc.edu/cgi-bin/hgTracks
https://genome.ucsc.edu/cgi-bin/hgTracks
https://www.bioinf.uni-leipzig.de/Software/metilene/
https://www.bioinf.uni-leipzig.de/Software/metilene/
https://bedtools.readthedocs.io/
https://bedtools.readthedocs.io/
https://www.disgenet.org/
https://www.disgenet.org/
https://hmdb.ca/
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Identification of race‑associated differentially methylated 
promoter regions
The Caucasian EOCRC cohort included 18 patients 
from the TCGA-COAD dataset who were diagnosed 
at < 50  years of age, had tumors annotated as MMR-
proficient and nonhypermutator, and with their race 
annotated as Caucasian. WGBS methylation values from 
the Texas cohort were overlapped using a custom R 
script to keep only CpGs covered by probes in the Illu-
mina HumanMethylation 450 K microarray. WGBS and 
HM450K methylation values were then quantile normal-
ized, and their contrast score distributions were assessed 
for batch effect using Clipper [30]. Normalized methyla-
tion values were then assigned to genes based on their 
location within each 1.5-kb promoter region using the 
“intersect” function of Bedtools v2.29.2, and all methyla-
tion values for each promoter were averaged. Promoters 
were designated as differentially methylated (promoter 
DMRs [pDMRs]) if the absolute methylation difference 
between Hispanics/African American (Texas cohort) 
and Caucasians (TCGA cohort) was > 0.1. pDMRs were 
further filtered by interquartile range (IQR). The 1st 
quartile (Q1) and 3rd quartile (Q3) of pDMR values in 
the Caucasian cohort were calculated using the “quan-
tile” function of base R for each promoter. pDMRs were 
retained if their average promoter methylation value 
across Hispanic/African American tumors was < Q1 (to 
– 1.5 × IQR) or > Q3 (to + 1.5 × IQR) of the Caucasian 
promoter values. Wilcoxon ranked sum test was used to 
test for significance, with a false discovery rate-adjusted 
threshold of p < 0.05. Significant pDMRs were visualized 
using the “smoothScatter” base R function, and heatmaps 
were drawn using the “aheatmap” function of the NMF 
v0.17.6 R package (https:// nmf.r- forge.r- proje ct. org/ 
index. html). Density plots showing the distribution of 
promoter methylation values in each cohort were plotted 
using the ggplot2 R package.

Conclusions
Sporadic colorectal cancers in patients under the age of 
50 are rapidly increasing in incidence globally, presenting 
an important health crisis. Despite this trend, EOCRC 
remains understudied. Its molecular mechanisms, both 
unique and shared with LOCRC, are unsolved and poorly 
characterized. Our contribution of base-pair resolution 
whole-methylome profiles represents a crucial step for-
ward in EOCRC research. While larger-scale EOCRC 
datasets remain limited by cost and cohort recruitment, 
our findings provide preliminary evidence that the epige-
nome of EOCRC is distinct from that of LOCRC. We also 
find that biologically coherent metabolic and EMT path-
ways are epigenetically dysregulated in EOCRC patients 

from underrepresented minority ancestries, suggesting a 
role for DNA methylation in the disparity in cancer inci-
dence and mortality among these patients.
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