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Abstract 

Background To validate the clinical utility of a previously identified circulating tumor DNA methylation marker 
(meth-ctDNA) panel for disease detection and survival outcomes, meth-ctDNA markers were compared to PSA levels 
and PSMA PET/CT findings in men with different stages of prostate cancer (PCa).

Methods 122 PCa patients who underwent [⁶⁸Ga]Ga-PSMA-11 PET/CT and plasma sampling (03/2019–08/2021) 
were analyzed. cfDNA was extracted, and a panel of 8 individual meth-ctDNA markers was queried. PET scans were 
qualitatively and quantitatively assessed. PSA and meth-ctDNA markers were compared to PET findings, and their 
relative prognostic value was evaluated.

Results PSA discriminated best between negative and tumor-indicative PET scans in all (AUC 0.77) and hormone-
sensitive (hsPC) patients (0.737). In castration-resistant PCa (CRPC), the meth-ctDNA marker KLF8 performed best 
(AUC 0.824). CHST11 differentiated best between non- and metastatic scans (AUC 0.705) overall, KLF8 best in hsPC 
and CRPC (AUC 0.662, 0.85). Several meth-ctDNA markers correlated low to moderate with the tumor volume in all 
(5/8) and CRPC patients (6/8), while PSA levels correlated moderately to strongly with the tumor volume in all groups 
(all p < 0.001). CRPC overall survival was independently associated with LDAH and PSA (p = 0.0168, p < 0.001).

Conclusion The studied meth-ctDNA markers are promising for the minimally-invasive detection and prognostica-
tion of CRPC but do not allow for clinical characterization of hsPC. Prospective studies are warranted for their use 
in therapy response and outcome prediction in CRPC and potential incremental value for PCa monitoring in PSA-low 
settings.
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Introduction
Prostate cancer (PCa) ranks as the second most fre-
quent malignancy in men, causing approximately 400 000 
annual deaths worldwide [1].

Due to a high degree of tumor heterogeneity, PCa sur-
vival rates vary from near-perfect 5-year overall survival 
(OS) rates in localized, hormone-sensitive (hsPC) to 
months in metastatic, castration-resistant PCa (CRPC) 
[2]. Disease outcomes are influenced by the clinical 
stage, determining the feasibility of curative approaches 
[3], and by the tumor’s underlying molecular profiles 
[4], which continuously evolve in response to systemic 
interventions.

As these factors continually change throughout the 
disease progression [5], minimally-invasive means for 
reassessing tumor presence, advancement, and patient 
prognosis, are vital for adaptive and prompt clinical man-
agement [3] and rational trial design [6].

Well-known sensitivity and specificity limitations 
[7, 8] of prostate-specific antigen (PSA) testing for PCa 
detection, monitoring and prognosis [3], have prompted 
research into liquid biopsy assays as a source of PCa-spe-
cific biomarkers.

While most efforts have focused on genomic or tran-
scriptomic analysis of circulating tumor DNA (ctDNA) 
or cells [9], epigenetic tumor DNA methylation modifi-
cations occur early, are stable and frequent [10], making 
them an attractive alternative source for high-sensitiv-
ity, PCa-specific, diagnostic and prognostic biomarkers 
[11–15].

We have previously also investigated the suitability 
of such ctDNA methylation markers for PCa-specific 

diagnostics and identified a panel of eight novel, high-
potential ctDNA targets in the context of PCa [16]. As 
novel biomarkers are developed, their clinical charac-
terization through contextualization with established 
diagnostic and prognostic approaches is key to inform-
ing their best use cases. We, therefore, sought to com-
paratively benchmark the previously identified ctDNA 
methylation marker panel against PSA levels using pros-
tate-specific membrane antigen (PSMA) positron-emis-
sion-tomography/computed-tomography (PET/CT), the 
current imaging gold standard for PCa detection [17] and 
prognostic in itself [18, 19].

Our aim was to evaluate their relative predictive value 
for clinically actionable disease on PSMA imaging and 
their prognostic potential for OS outcomes.

We hypothesized that the meth-ctDNA markers are 
predictive of metastasis and survival outcomes in CRPC.

Methods
Study design
From March 2019 to August 2021, a total of 187 men 
with histologically confirmed PCa underwent [⁶⁸Ga]Ga-
PSMA-11 PET/CT imaging and provided blood samples 
[20] of which 122 patients were included in this analysis 
(Fig.  1). Recruitment followed an all-comers approach, 
with each participant providing written informed con-
sent (IRB-ID: 1649/2016).

Retrospective data collection of PSA levels, castration 
state, treatment history and survival data (via the national 
health statistical service, censorization 27.02.2024) was 
conducted.

Fig. 1 Consort diagram and unsupervised clustering analysis. A Illustrates the study’s inclusion and exclusion criteria. B Imaging determined 
disease extent clustering of PMR-values according to castration status
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The endpoints were (a) differences and associations of 
meth-ctDNA markers and PSA levels with PSMA PET 
findings per castration status groups, (b) the prognos-
tic association of meth-ctDNA markers levels, PSMA-
TV and PSA with OS in CRPC patients. (Supplemental 
Material—Methods).

Plasma sample collection, cfDNA extraction, quantification 
and methylation‑sensitive restriction enzyme qPCR 
(MSRE‑qPCR)
Sample collection and storage were previously described 
[20]. In brief, cell-free DNA (cfDNA) BCT tubes (Streck 
Inc., USA) were used for blood sampling prior to tracer 
injection. cfDNA was extracted from 4  ml of plasma 
employing QIAamp Circulating Nucleic Acid Kits (QIA-
GEN, the Netherlands) and quantified using a Qubit 3 
Fluorometer (Invitrogen, USA).

MSRE-qPCR primers (Table  S1) and workflow were 
previously described [16, 21]. Briefly, each cfDNA sam-
ple was split for methylation-sensitive enzymatic and 
mock digestion (75%:25%, respectively). Digestion reac-
tions contained a mixture of four different MSREs, while 
mock digestions contained DNAse-free  H2O instead of 
enzymes and served as DNA input normalization. Fully 
Methylated Human DNA (Zymo Research, USA) was 
used as methylation level reference control. All reac-
tions were incubated at 37 °C for digestion, followed by a 
thermal inactivation, volume-reduction and multiplexed 
preamplification. qPCRs were performed using the Luna 
Universal qPCR Master Mix (New England Biolabs, USA) 
on a Biorad CFX96 Touch Real-Time PCR Detection Sys-
tem (Biorad Laboratories, USA).

Sample quantities were calculated using standard 
curves of genomic DNA from Cq values. Percentage of 
Methylation Ratios (PMR) was calculated using fully 
methylated DNA as the reference control. (Supplemental 
Material—Methods).

Imaging protocol and image analysis
The imaging protocol and analysis was previously 
described [20]. In brief, imaging was performed on a 
Biograph TruePoint PET/CT scanner (Siemens Health-
ineers, Germany) an hour after i.v. [⁶⁸Ga]Ga-PSMA-11 
injection (First acquisition: CT, Second acquisition PET 
(3–4 bed positions)). Next, images were reconstructed, 
scatter and attenuation corrected. Two nuclear medi-
cine physicians used the Hybrid 3D software (v.4.0.0, 
Hermes Medical Solutions, Sweden) to qualitatively iden-
tify and semi-automatically delineate PSMA-expressing 
lesions by anatomical location to calculate the aggregated 
PSMA-positive tumor volume (PSMA-TV). PSMA-
positive lesions were identified by qualitative PET scan 
analysis informed by the liver uptake, with lesions equal 

to or above liver uptake assumed malignant. Metastatic 
and non-metastatic disease state definitions were PSMA 
PET-based [22]. (Supplemental Material—Methods).

Data analysis
Numeric variables are expressed as mean (± SD), discrete 
outcomes as absolute and relative (%) frequencies. Sha-
piro–Wilk and Levene’s tests assessed the normality and 
heteroskedasticity of continuous variables.

Data distribution informed, numeric variables were 
compared with the Mann–Whitney-U or Kruskal–Wal-
lis tests, discrete outcomes with Chi-squared or Fisher’s 
exact tests.

Area under the receiver-operating-characteristic 
(AUC) curves (ROC) with 95% confidence intervals (CI) 
assessed the ability to predict PSMA PET findings. Cor-
relations were evaluated using Spearman’s coefficient. 
Dunn–Bonferronis corrections were used to adjust for 
multiple testing.

For the survival analysis, PMR, PSA and PSMA-TV 
values were dichotomized using the medians of the over-
all and the CPRC cohorts. Differences in OS between the 
respective high and low groups were compared using the 
non-parametric Logrank test, with censoring applied at 
the time of the last follow-up. Only univariate significant 
features were included in the multivariate Cox regression 
after testing data for multicollinearity and proportional 
hazards using the Belsley–Kuh–Welsch technique and 
Schoenfeld residuals. The alpha risk was set to 5% for all 
analyses. Statistical analysis was performed with Easy-
MedStat (version 3.32; www. easym edstat. com). (Supple-
mental Material—Methods).

Results
Cohort
122 PCa patients (age 70.9 ± 7.6  years; hsPC (N = 58), 
CRPC (N = 64)) who underwent plasma sample col-
lection and [⁶⁸Ga]Ga-PSMA-11 PET/CT imaging were 
included in this study (Fig. 1). Patient characteristics are 
presented in Table 1.

ctDNA methylation marker and PSA level’s discriminatory 
value to distinguish between positive and negative PSMA 
PET
In the overall cohort, significant differences between 
patients with negative and tumor-indicative PSMA 
scans were found for 2/8 (25%) of the analyzed meth-
ctDNA markers (CHST11 (p = 0.007), KLF8 (p = 0.026)) 
and PSA (p < 0.001), with the highest AUC for PSA 
(AUC 0.77, CI = [0.683; 0.857]) (Figs. 2A, S2, Tables S2, 
S4, S17). In the hsPC cohort, no meth-ctDNA marker 
and merely PSA differed significantly (p = 0.006) 
between patients with positive and negative PSMA 

http://www.easymedstat.com
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Table 1 Demographic and clinical patient data

Variable Total
N = 122

hsPC
N = 58

CRPC
N = 64

p‑Value

Age [y] 70.9 (± 7.6)
Range: (49.0; 85.0)

70.0 (± 7.8)
Range: (50.0; 85.0)

71.8 (± 7.3)
Range: (49.0; 85.0)

0.201

Tracer dose [Mbq] 185.1 ± 19.5
Range: (134.0; 300.0)

186.1 (± 22.0)
Range: (134.0; 300.0)

184.1 (± 17.0)
Range: (149.0; 263.0)

0.802

PSA [ng/mL] 102.65 ± 448.03
Range: (0.01; 3689.0)

6.63 (± 12.29)
Range: (0.18; 51.2)

189.67 (± 607.63)
Range: (0.01; 3689.0)

 < 0.001

DNA methylation markers
 AKR1B1 [PMR] 2.82 (± 12.52)

Range: (1e-06; 80.66)
0.00039 (± 0.00198)
Range: (1e-06; 0.015)

5.38 (± 16.94)
Range: (1e-06; 80.66)

 < 0.001

 CHST11 [PMR] 1.75 (± 8.6)
Range: (0.0; 83.77)

0.00035 (± 0.0018)
Range: (0.0; 0.0113)

3.34 (± 11.69)
Range: (0.0; 83.77)

 < 0.001

 CRABP2 [PMR] 0.49 (± 2.36)
Range: (1.7e-05; 20.96)

0.0813 (± 0.102)
Range: (0.000117; 0.597)

0.865 (± 3.22)
Range: (1.7e-05; 20.96)

0.062

 CUGBP2 [PMR]* 0.13 (± 1.05)
Range: (0.0; 10.75)

0.00637 (± 0.0475)
Range: (0.0; 0.361)

0.247 (± 1.46)
Range: (0.0; 10.75)

0.086

 KLF8 [PMR] 3.3 (± 9.73)
Range: (0.00317; 45.07)

0.238 (± 0.827)
Range: (0.00317; 6.28)

6.08 (± 12.83)
Range: (0.00664; 45.07)

0.001

 LDAH [PMR] 3.41 (± 11.79)
Range: (4.1e-05; 71.99)

0.0104 (± 0.0596)
Range: (4.1e-05; 0.452)

6.5 (± 15.71)
Range: (4.4e-05; 71.99)

 < 0.001

 PCDHGC4 [PMR] 2.23 (± 7.88)
Range: (1e-06; 42.61)

0.0118 (± 0.0355)
Range: (1e-06; 0.254)

4.25 (± 10.52)
Range: (1e-06; 42.61)

 < 0.001

 TNFAIP8 [PMR] 1.06 (± 5.66)
Range: (0.0; 58.36)

0.397 (± 0.675)
Range: (5.5e-05; 3.69)

1.66 (± 7.77)
Range: (0.0; 58.36)

0.737

 PSMA‑TV [cm3] 116.5 ± 305.5
Range: (0.0; 1597.7)

16.2 (± 86.5)
Range: (0.0; 659.1)

207.4 (± 392.8)
Range: (0.0; 1597.7)

 < 0.001

Disease extent  < 0.001

 Non 25 (20.49%) 16 (27.59%) 9 (14.06%)

 Localized 21 (17.21%) 16 (27.59%) 5 (7.81%)

 Metastatic 76 (62.3%) 26 (44.83%) 50 (78.12%)

PSMA‑TV [cm3] per disease extent
 Localized 4.5 (± 4.4)

Range: (0.2; 15.4)
4.26 (± 4.1)
Range: (0.2; 14.83)

5.28 (± 5.8)
Range: (0.8; 15.38)

0.836

 Metastatic 185.7 (± 370.5)
Range: (0.2; 1597.7)

33.5 (± 128.4)
Range: (0.2; 659.1)

264.9 (± 427.7)
Range: (0.3; 1597.7)

 < 0.001

PSMA‑positive lesions
 Any lesion 97 (79.51%) 42 (72.41%) 55 (85.94%) 0.104

 Prostate 39 (31.97%) 23 (39.66%) 16 (25.0%) 0.124

 Lymph node 51 (41.8%) 19 (32.76%) 32 (50.0%) 0.081

 Bone 51 (41.8%) 10 (17.24%) 41 (64.06%)  < 0.001

 Organ 18 (14.75%) 4 (6.9%) 14 (21.88%) 0.023

Hormonal therapies while PET  < 0.001

 Yes 48 (39.34%) 4 (6.9%) 44 (68.75%)

 No 68 (55.7%) 51 (87.93%) 17 (26.56%)

Cytotoxic therapies while PET 0.403

 Yes 4 (3.3%) 1 (1.72%) 3 (4.69%)

 No 114 (93.4%) 54 (93.1%) 60 (93.75%)

Therapies after PET  < 0.001

 Local 29 (39.19%) 22 (57.89%) 7 (19.44%)

 Local + ADT 5 (6.76%) 5 (13.16%) 0 (0.0%)

 ADT 17 (22.97%) 8 (21.05%) 9 (25.0%)

 CHT 3 (4.05%) 0 (0.0%) 3 (8.33%)

 CHT + ADT 2 (2.7%) 1 (2.63%) 1 (2.78%)
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scans, which exhibited an AUC of 0.737 (CI = [0.609; 
0.866]) (Fig.  2A, S3, Tables  S2, S5, S17). While in 
CRPC patients 3/8 (32.5%) of the meth-ctDNA mark-
ers (CHST11 (p = 0.011), CRABP2 (p = 0.013), KLF8 
(p = 0.002)) and PSA (p = 0.006) differed signifi-
cantly with KLF8 exhibiting the highest AUC of 0.824 
(CI = [0.652; 0.92]) (Figs. 2A, S4, Tables S2, S6, S17).

ctDNA methylation marker and PSA level’s discriminatory 
value to identify metastatic disease on PSMA PET
In all patients, 5/8 (62.5%) of the analyzed meth-ctDNA 
markers (AKR1B1 (p < 0.001), CHST11 (p < 0.001), KLF8 
(p = 0.016), LDAH (p = 0.007), PCDHGC4 (p = 0.002)) 
and PSA levels (p < 0.001) differed significantly between 
patients with non-metastatic and metastatic disease on 

Qualitative data represented as numbers and percentages; Continuous data represented as mean, standard deviation and range; Group comparisons with respect to 
hsPC and CRPC. *Two CUGBP2 outlier values were excluded from the analysis

Table 1 (continued)

Variable Total
N = 122

hsPC
N = 58

CRPC
N = 64

p‑Value

 Lu177 17 (22.97%) 1 (2.63%) 16 (44.44%)

 Study 1 (1.35%) 1 (2.63%) 0 (0.0%)

Time since diagnosis [y] 5.44 ± 5.85
Range: (0.0; 21.0)
N = 111

3.58 (± 4.67)
Range: (0.0; 20.0)
N = 55

7.27 (± 6.39)
Range: (0.0; 21.0)
N = 56

 < 0.001

Mean Follow‑Up [m] 24.88 ± 16.56 21.0 ± 16.33 29.15 ± 15.88 0.011

Range: (0.0; 58.75) Range: (0.43; 58.75) Range: (0.0; 51.87)

Fig. 2 AUC (95% CI) values under the ROC depict the discriminatory value of the ctDNA PMR and PSA values to distinguish between A No and any 
tumor-indicative lesion and B No or Local and metastasis-indicative lesions on PSMA PET. Significant differing variables between globally positive 
and negative as well as non- and metastatic PSMA scans in dark red
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the PSMA scans, with the highest AUC under the ROC 
achieved by CHST11 (AUC—0.705, CI = [0.618; 0.793]) 
(Figs. 2B, S5, Tables S2, S7–9, S18).

In hsPC patients, only 1/8 (12.5%) of the meth-ctDNA 
markers, specifically KLF8 (p = 0.035), differed signifi-
cantly between patients with non-metastatic and meta-
static PSMA scans, while PSA levels did not, with an 
AUC of KLF8 (AUC—0.662, CI = [0.519; 0.806]) (Figs. 2B, 
S7, Tables S2, S10–12, S18).

In the CRPC group, 6/8 (75%) of meth-ctDNA mark-
ers (AKR1B1 (p = 0.007), CHST11 (p = 0.001), CRABP2 
(p = 0.004), KLF8 (p < 0.001), LDAH (p < 0.026), PCD-
HGC4 (p = 0.018)) and PSA levels (p < 0.001) differed sig-
nificantly between non-metastatic and metastatic PSMA 
scans, with the highest AUC achieved by KLF8 (AUC 
0.85, CI = [0.743; 0.957]) (Figs. 2B, S9, Tables S2, S13–15, 
S18).

Relationship of ctDNA methylation marker and PSA levels 
with the PET PSMA‑TV
Positive associations between meth-ctDNA markers and 
PSMA-TV were found in the overall cohort and CRPC 
group; however, not in the hsPC cohort. In the over-
all cohort, low positive correlations were observed for 
AKR1B1 (r = 0.4, p < 0.001), CHST11 (r = 0.44, p < 0.001), 
KLF8 (r = 0.37, p < 0.001), LDAH (r = 0.44, p < 0.001) 
and PCDHGC4 (r = 0.46, p < 0.001) and PSMA-TV. In 
the CRPC group, moderate positive correlations were 
observed for AKR1B1 (r = 0.56, p < 0.001), CHST11 
(r = 0.58, p < 0.001), CRABP2 (r = 0.44, p = 0.002), KLF8 
(r = 0.62, p < 0.001), LDAH (r = 0.57, p < 0.001) and PCD-
HGC4 (r = 0.51, p < 0.001) and PSMA-TV. No significant 
negative correlation was found between any meth-ctDNA 
marker and PSMA-TV in any group.

Moderate to strong positive correlations were observed 
between PSA levels with PSMA-TV in all groups (r = 0.71 
(overall), r = 0.58 (hsPC), r = 0.76 (CRPC), all p < 0.001). A 

visual overview of the results is shown in Fig. 3 and listed 
in Table S18.

Survival analysis
Of the 64 patients included in the OS analysis, 28 
patients (43.75%) events were observed, while 36 patients 
(56.25%) were censored at the last follow-up. The median 
duration of follow-up was 19.92 months (IQR 27.62). At 
12  months, the OS was 71.9% (CI = [59.1, 81.3]) and at 
24 months, the OS was 62.5% (CI = [49.5, 73.1]).

Patients with high and low LDAH values (stratified on 
the overall cohort) (hazard ratio (HR) = 7.91, CI = [1.28, 
49.05], p = 0.0263) (Fig.  4A, Table  2) and patients with 
high and low PSA levels (stratified on the CRPC cohort) 
(HR = 6.29, CI = [1.37, 28.86], p = 0.0181]) (Fig.  4B, 
Table  2) had significant hazard differences. Both LDAH 
and PSA levels remained independently associated with 
OS in CRPC patients when analyzed in a compara-
tive multivariate analysis (HR = 4.42, CI = [1.31, 14.94], 
p = 0.0168 and HR = 10.82, CI = [3.21, 36.45], p < 0.001, 
respectively) (Fig.  4C, Table  2). For the univariate log-
rank analysis results, please refer to Figs S11, S12 and 
Tables S19, 20.

Discussion
Liquid biopsy approaches hold the promise to advance 
PCa management through minimally-invasive, repeat-
able molecular cancer profiling to enable more accurate 
disease diagnosis, monitoring, and prognostication. 
Particularly, epigenetic ctDNA methylation modifica-
tions are an attractive source of PCa-specific biomark-
ers, as they occur early, are stable and more abundant 
than somatic gene alterations [9–11]. We previously 
investigated [16] the suitability of such ctDNA meth-
ylation markers for PCa-specific diagnosis and progno-
sis and identified a panel of eight high-potential targets. 
To validate their clinical utility, we compared these 

Fig. 3 Relationship of meth-ctDNA PMR and PSA values with the PSMA-TV according to castration statuses. Red bars indicate negative correlations, 
green bars positive correlations. Only significant p-values after Bonferroni multiple-testing adjustments are displayed
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markers against PSA levels and PSMA PET/CT findings 
to assess their relative predictive value for clinically 
actionable disease presence and survival outcomes.

In the setting of local or oligometastatic hsPC, dis-
ease-, risk- and extent-specific biomarkers could enable 
accurate primary screening practices [7], refine active 

surveillance strategies, and help inform clinical man-
agement in curative and salvage settings [23].

In our hsPC group, however, no meth-ctDNA marker 
accurately discriminated between patients with no or 
any disease on imaging, unlike PSA, while only KLF8 dif-
fered between hsPC patients with non- and metastatic 

Fig. 4 Forest plots depicting the HR of the explanatory DNA methylation markers, PSA and PSMA-TV values and age. High and low group 
stratification by median of the overall cohort A and of the CRPC group B. C depicts the HRs of significant covariates from analyses A and B, 
suggesting an independent association of LDAH and PSA levels with OS in CRPC patients
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PSMA scans (Fig.  2). Upon closer examination of the 
KLF8 value distribution between the non- and metastatic 
groups (Figure  S7), however, no definite differentiation 
for the majority of patients was apparent, suggesting that 
the observed difference would not broadly translate into 
future clinical applicability. Similarly, no meth-ctDNA 
marker exhibited any tangible relationship with PSMA-
TV in patients with hsPC, while PSA correlated with the 
overall tumor load (Fig. 3).

This is in line with our previous observations [16] and 
various reports [9, 24] of low ctDNA abundance using 
genomic [25] or epigenetic [12–14] modes of analysis 
in localized and low-volume metastatic hsPC disease. 
Bjerre et  al. [12] investigated the diagnostic and prog-
nostic potential of a three-gene methylation ctDNA sig-
nature consisting of DOCK2, HAPLN3, and FBXO30. 
This signature was able to differentiate de novo, primar-
ily high-volume metastatic PCa; however, was not able 

to differentiate between healthy controls, benign pros-
tatic hyperplasia and localized PCa. Similarly, large-scale 
efforts by the company GRAIL Inc., which developed a 
ctDNA methylation-based machine learning enabled 
multi-cancer screening test on more than 6000 plasma 
samples using 100 000 methylated DNA regions, did not 
yield favorable PCa screening test statistics in a valida-
tion cohort reported on by Klein et al. [14]. The authors 
concluded that this might be due to the inclusion of too 
many localized PCas, which corroborates the hypothesis 
that too little ctDNA is shed in early disease stages and 
therefore alternative analytic approaches, such as pro-
teomics [26], might yield more promising biomarkers 
in this setting in the future. However, a bias toward the 
investigated meth-ctDNA markers being more specific 
for CRPC disease cannot be fully excluded.

Advanced CRPC are heterogeneous cancers [27] char-
acterized by variable responses to systemic therapies and 

Table 2 Multivariate Cox regression of the binarily stratified explanatory DNA methylation markers, PSA and PSMA-TV values and age

Group stratification by median of the overall cohort ([overall]), and CRPC group ([CRPC]), except for age in years. Results for the comparative regression analysis 
incorporating significant findings of overall and CRPC group stratified covariates in the two rightmost columns

Covariate Hazard Ratio 
[95% CI]
[overall]

p‑Value Hazard Ratio 
[95% CI]
[CRPC]

p‑Value Hazard Ratio 
[95% CI]
[comparative]

p‑Value

Age
Risk for each 1-unit 
increase

0.978 [0.917; 1.04] 0.499 0.973 [0.912; 1.04] 0.398 − −

AKR1B1
high 0.347 [0.0611; 1.98] 0.233 0.96 [0.175; 5.25] 0.962 − −

low 2.88 [0.506; 16.37] 0.233 1.04 [0.19; 5.7] 0.962 − −

CHST11
high 2.16 [0.625; 7.45] 0.224 2.28 [0.444; 11.68] 0.324 − −

low 0.463 [0.134; 1.6] 0.224 0.439 [0.0856; 2.25] 0.324 − −

CRABP2
high 1.12 [0.446; 2.82] 0.807 1.53 [0.507; 4.63] 0.449 − −

low 0.891 [0.355; 2.24] 0.807 0.653 [0.216; 1.97] 0.449 − −

KLF8
high 4.06 [0.984; 16.72] 0.0527 2.22 [0.472; 10.48] 0.313 − −

low 0.247 [0.0598; 1.02] 0.0527 0.45 [0.0954; 2.12] 0.313 − −

LDAH
high 7.91 [1.28; 49.05] 0.0263 0.694 [0.125; 3.86] 0.676 4.42 [1.31; 14.94] 0.0168

low 0.126 [0.0204; 0.783] 0.0263 1.44 [0.259; 8.02] 0.676 0.226 [0.067; 0.765] 0.0168

PCDHGC4
high 2.08 [0.545; 7.92] 0.285 1.77 [0.401; 7.78] 0.452 − −

low 0.482 [0.126; 1.84] 0.285 0.566 [0.128; 2.5] 0.452 − −

PSA
high 1.28 [0.193; 8.44] 0.799 6.29 [1.37; 28.86] 0.0181 10.82 [3.21; 36.45] 0.000012

low 0.783 [0.119; 5.17] 0.799 0.159 [0.0346; 0.731] 0.0181 0.092 [0.027; 0.311] 0.000012

PSMA‑TV
high 5.46 [0.52; 57.27] 0.157 2.14 [0.396; 11.51] 0.377 − −

low 0.183 [0.0175; 1.92] 0.157 0.468 [0.0869; 2.52] 0.377 − −
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outcomes. Minimizing therapeutic downtime by identi-
fying progression early is key to maximizing outcomes. 
However, evidence suggests a frequent disconnection 
between PSA dynamics and radiographic responses [8] 
or survival outcomes [28–30], and reliable OS-surrogate 
intermediate clinical endpoints (ICEs) in mCRPC are 
missing [6].

In our CRPC group, both PSA and several meth-
ctDNA markers demonstrated similarly strong discrimi-
natory abilities to differentiate between patients with no 
or any lesion on imaging and non- and metastatic disease 
presence (Fig. 2). Particularly, KLF8, a transcription fac-
tor linked to cancer invasion and metastasis [31], dem-
onstrated strong discriminatory potential and followed 
response dynamics in patients undergoing various sys-
temic therapies [16]. Analogously, both meth-ctDNA 
marker PMR and PSA levels were robustly associated 
with the underlying tumor load in the CRPC group 
(Fig.  3), with PSA exhibiting a slightly stronger correla-
tion with PSMA-TV. Similarly, Büttner et al. [15] inves-
tigated the potential of the two ctDNA methylation 
markers SHOX2 and SEPT9 using a methylation-specific 
PCR approach in a pilot cohort of advanced PCa. They 
found that both methylation markers correlated with 
imaging-based tumor burden dynamics under therapy, 
however, PSA did not consistently follow suit. This cor-
roborates our previous finding that meth-ctDNA mark-
ers show potential for detecting and monitoring disease 
dynamics [16], potentially mitigating known challenges 
of outcome-discordant PSA-based monitoring [28–30]. 
However, as PSA levels were generally at least on par with 
the meth-ctDNA levels in our CRPC cohort, a possible 
incremental value of the studied meth-ctDNA markers 
should be investigated in prospectively collected cohorts 
with known advanced, low-PSA CRPC.

As CRPC is associated with high mortality [2] and 
OS surrogacy ICEs are needed [6], we sought to investi-
gate the comparative predictive value of the investigated 
meth-ctDNA markers, PSMA-TV and PSA for OS out-
comes. Therefore, following an evidence-based variable 
selection approach, we conducted a multivariate Cox 
regression analysis (Fig.  4), using the median variable 
values of the overall and CRPC as stratifying cutoffs. 
LDAH (overall cutoff), and expectedly [32], PSA levels 
(CRPC cutoff) were significantly associated with OS and 
remained independently associated with OS when tested 
in a comparative fashion, indicating that LDAH could be 
a novel potential ICE for OS surrogacy [6] and should be 
investigated in future trials in the CRPC setting.

Several limitations of our study merit discussion.
First, as a translational clinical study, no novel 

mechanistic insights into the biological role of the 
meth-ctDNA markers was generated, which limits 

mechanistic interpretation. However, several meth-
ctDNA markers have been implicated in different hall-
mark processes of cancer, supporting their biological 
validity bibliographically. For instance, AKR1B1, fre-
quently overexpressed in several cancers, plays diverse 
roles in cell cycle regulation and epithelial-mesenchy-
mal transition (EMT). Its promoter methylation has 
also been suggested as a diagnostic marker in breast 
cancer, and its inhibition has been shown to exhibit 
anti-neoplastic effects [33]. Similarly, KLF8 has inter 
alia been implicated in EMT and invasion [34] and 
DNA repair [35] in breast cancer. The loss of LDAH, 
a gene coding for a lipid hydrolase, has been linked to 
an increased risk of PCa in vivo and in vitro [36], and 
altered methylation patterns of clustered protocad-
herins, including PCDHGC4, have been observed in 
various solid cancers [37], while CHST11 [38, 39] and 
CRABP2 [40] have been suggested as potential diagnos-
tic and therapeutic targets due to their involvement in 
several processes ranging from cancer cell stemness, 
EMT, cell proliferation, cell cycle and drug resistance in 
different entities.

Second, the research is limited due to several factors, 
namely, its small cohort size, monocentricity and ret-
rospective nature, which can all negatively influence 
generalizability.

The small cohort size could lead to confounding influ-
ences and insufficient statistical power, negatively influ-
encing generalizability, particularly in the subgroup 
analyses.

The mono-centric design did not allow for inde-
pendent validation of the PSMA-TV correlations with 
meth-ctDNA, which we tried to mitigate using a multi-
ple-testing correction to avoid false discoveries.

Its retrospective nature, makes us prone to recall and 
potential selection bias, which we mitigated by exclud-
ing patients with inconclusive records and employing 
an all-comer recruitment strategy. Next, while PSMA 
PET/CT offers the highest detection for metastatic dis-
ease [17], false negative lesions can occur, as signified 
by one patient in our cohort with a PSMA-negative, 
biopsy-proven pulmonary PCa metastasis. Further, due 
to the exploratory study design, which aimed at gaining 
a contextualizing perspective across the whole spectrum 
of disease, the utilized cohort was biological and thera-
peutic heterogeneous partially limiting the direct clinical 
interpretability.

Despite the study’s limitations, its strengths also merit 
acknowledgment. Contemporaneous tracer injection and 
plasma sampling ensured biological synchronicity for an 
optimal comparative perspective, and the balanced inclu-
sion of castration statuses allowed for an informative per-
spective across the disease spectrum.
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As the investigated meth-ctDNA markers partially 
show great potential for accurate, minimally-invasive 
diagnosis of mCRPC and survival prognostication, their 
applicability for systemic therapy response prediction, as 
ICEs for outcome surrogacy and their incremental value 
for disease monitoring in PSA-low advanced PCa should 
be investigated in future prospective trials.

Conclusion
This study identified ctDNA methylation markers that 
appear accurate for the minimally-invasive detection and 
outcome prognostication for advanced, castration-resist-
ant disease but do not seem suitable for clinical char-
acterization of hormone-sensitive PCa. This warrants 
further prospective studies for their potential applicabil-
ity for systemic therapy response and outcome prediction 
in advanced CRPC and their incremental value for dis-
ease monitoring in PSA-low advanced PCa.
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