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Abstract 

Background Night shift work during pregnancy has been associated with differential DNA methylation in placental 
tissue, but no studies have explored this association in cord blood. We aimed to examine associations of maternal 
night shift work with cord blood DNA methylation.

Methods A total of 4487 mother–newborn pairs from 7 studies were included. Maternal night shift work dur‑
ing pregnancy was ascertained via questionnaires and harmonized into “any” versus “no”. DNA methylation was meas‑
ured in cord blood using the Illumina Infinium Methylation arrays. Robust linear regression models adjusted for rel‑
evant confounders were run in the individual cohorts, and results were meta‑analyzed.

Results Maternal night shift work during pregnancy ranged from 3.4% to 26.3%. Three CpGs were differentially meth‑
ylated in relation to maternal night shift work during pregnancy at a false discovery rate adjusted P < 0.05: cg10945885 
(estimate (β) 0.38%, standard error (SE) 0.07), cg00773359 (β 0.25%, SE 0.05), and cg21836426 (β − 0.29%, SE 0.05). 
Associations of the identified CpGs were found in previous literature for gestational age and childhood and adoles‑
cent BMI. In a mouse model of prenatal jet lag exposure, information on offspring DNA methylation of ten homolo‑
gous genes annotated to the 16 CpGs with P < 1 ×  10−5 in our analysis was available, of which eight were associated 
(enrichment P: 1.62 ×  10−11).

Conclusion Maternal night shift work during pregnancy was associated with newborn DNA methylation at 3 CpGs. 
Top findings overlapped with those in a mouse model of gestational jet lag. This work strengthens evidence that DNA 
methylation could be a marker or mediator of impacts of circadian rhythm disturbances.
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Background
As an adaptation to the environment created by the 
earth’s rotation, many mammalian behaviors and physi-
ological processes reflect a near 24-h circadian rhythm, 
from Latin “circa diem”, about a day [1, 2]. Daylight is the 
most important synchronizing agent of the circadian sys-
tem, which is composed of a central clock in the brain 
and peripheral clocks in all other tissues [2]. Circadian 
rhythm disturbances, such as those encountered during 
jet lag or night shift work, are associated with adverse 
health outcomes in adults [3]. For instance, extended 
periods of night shift work among nurses are associated 
with increased risk of developing breast cancer [4] and 
type 2 diabetes [5]. According to Eurofound, the preva-
lence of shift work in Europe was 19% in 2015 [6]. In 
2021, 38% of the general working population reported 
working for at least 2 h between 10 pm and 5am at least 
occasionally, including 27% among women [7].

Women exposed to shift work during pregnancy have 
an increased risk of pregnancy-related complications, 
including miscarriage, prematurity, and low birthweight 
offspring [8–10]. This warrants the study of circadian 
rhythm disturbances during pregnancy and its long-term 
implications for offspring health.

Differential DNA methylation has emerged as a poten-
tial mechanism underlying the associations of exposures 
during pregnancy with offspring health outcomes [11]. 
Prenatal exposures such as maternal smoking, body mass 
index (BMI), and folate levels during pregnancy have 
been robustly associated with differential DNA meth-
ylation in offspring [12–14]. Several animal models have 
been developed to study the long-term consequences of 
circadian rhythm disruption during pregnancy on off-
spring health [15]. Exposure of pregnant mice to circa-
dian rhythm disturbances predisposes adult offspring to 
impaired cardiac and metabolic function and reduced 
bone mass [16–18]. Analysis of DNA methylation in 
adult offspring liver tissue indicated differential DNA 
methylation between groups exposed and unexposed to 
circadian rhythm disturbances [16]. In humans, expo-
sure to maternal night shifts during pregnancy has been 
associated with differential DNA methylation in placental 
tissue at 57 CpGs at PFDR < 0.05. In 53 out of 57 associa-
tions, exposure to night shifts was associated with lower 
DNA methylation [19]. As DNA methylation is tissue-
specific, associations of night shift exposure in placen-
tal tissue may reflect different biological adaptations 
to circadian disruption than in other tissues. No stud-
ies have yet explored this association in offspring cord 
blood. Therefore, we examined associations of maternal 
night shift work during pregnancy with offspring cord 
blood genome-wide DNA methylation in a multi-cohort 
setting.

Methods
Participants
Seven studies collaborating in the pregnancy and child-
hood epigenetics (PACE) Consortium [20] participated 
in this study: the Avon Longitudinal Study of Parents and 
Children (ALSPAC) from the UK [21, 22], the Effects of 
aspirin in gestation and reproduction (EAGeR) rand-
omized clinical trial from the USA [23], the Generation 
R Study from the Netherlands [24], the INfancia y Medio 
Ambiente (INMA) Project from Spain [25], the Norwe-
gian Mother, Father and Child Cohort Study (two subco-
horts: MoBa1 and MoBa2) [26–28], and the Pre-, Peri-, 
and Postnatal Stress: epigenetic impact on depression 
(POSEIDON) study from Germany [29, 30]. We excluded 
all twins and for non-twin siblings we included one sib-
ling per mother, based on completeness of data or, if 
equal, randomly. Complete case analyses were performed 
at the cohort level. Further details can be found in Addi-
tional File 1. Informed consent was obtained for all par-
ticipants, and all studies were approved by their local 
ethics committees.

Maternal night shift work (exposure)
Maternal night shift work during pregnancy was ascer-
tained independently by each study through question-
naires administered to the mothers at different time 
points. As such, each study had different definitions, e.g., 
based on frequency of night shift work or on number of 
hours worked in different time intervals. In ALSPAC, 
mothers were questioned about their current work life 
at both 18 and 32 weeks of gestation. In EAGeR, partici-
pants were asked about their current working schedule 
2 months prior to pregnancy. In MoBa, pregnant women 
answered the questionnaire between the 15th and 25th 
week of pregnancy, and the question referred to current 
working conditions. In the Generation R Study, the ques-
tionnaire was received after the 25th week of gestation, 
and the question referred to the previous 3 months. In 
INMA, the questionnaire was received at 32  weeks and 
the questions referred to the full pregnancy. In POSEI-
DON, mothers received questionnaires at recruitment 
(3rd trimester), while the question referred to early-preg-
nancy working conditions. For the purpose of this study, 
the participating studies were requested to harmonize 
night shift work into "any" versus "no" night shift work 
exposure. Please see Additional File 1 for detailed expo-
sure information.

DNA methylation (outcome)
Epigenome-wide DNA methylation was measured in 
cord blood using the Illumina Infinium® HumanMethyla-
tion450 (6 cohorts) or EPIC BeadChip assays (1 cohort) 
(Illumina, San Diego, CA, USA). Quality control and 
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normalization were conducted independently by each 
study using their preferred methods (see Additional 
File 1 for detailed methods). Untransformed autosomal 
beta values, ranging from 0 to 1, were used as outcome. 
Extreme DNA methylation values were winsorized for 
2% of the participants per probe, 1% at the upper end and 
1% at the lower end [31].

Covariates
Included covariates were maternal covariates, cell types, 
batch, and child sex. Maternal covariates were maternal 
age (continuous, years), education (categorized according 
to study definition into two to four levels), and smoking 
status during pregnancy (preferably categorized into sus-
tained smoking versus no smoking or quitting in first tri-
mester; if that was not possible, then according to study 
definition). Proportions of seven blood cell subtypes 
(CD8 + Tcells, CD4 + Tcells, natural killer cells, B cells, 
monocytes, granulocytes, and nucleated red blood cells) 
were estimated based on DNA methylation using a cord 
blood-specific reference panel [32]. Batch effects were 
corrected using cohort-preferred methods, for example 
by including a batch variable in the model or by surrogate 
variable analysis with the sva R package [33]. As sample 
sizes for groups of non-European ancestry in the partici-
pating cohorts were not sufficiently large, cohort-specific 
analyses were restricted to participants of European 
ancestry. Please see Additional File 1 for details.

Cohort‑specific epigenome‑wide association analyses
Each cohort analyst followed a pre-specified analysis plan 
and analytic code [11]. Robust linear regression models 
(rlm) were used for all cohort-specific epigenome-wide 
analyses. The basic (“crude”) model was adjusted only for 
child sex and batch. The main analysis was additionally 
adjusted for the maternal covariates and cell type propor-
tions. A reduced main model, run as a sensitivity analy-
sis, included all main model variables, except for cell type 
proportions. A link to the analytic code used in this pro-
ject can be found in the Availability of data and materi-
als section.

Meta‑analyses
We performed a two-stage meta-analysis [11], in which 
the results files from the cohort-specific epigenome-
wide association studies were shared with the leading 
team and meta-analyses were run centrally at Erasmus 
MC in Rotterdam (NL). The PACE consortium employs 
rigorous quality control procedures for each meta-
analysis [11]. We performed quality control of the indi-
vidual cohort results with the QCEWAS R package [34], 
which checks for impossible effect sizes and P values 
and generates several plots (i.e., QQ plots with lambda 

(λ) values, volcano and Manhattan plots, and histo-
grams of effect sizes and standard errors). After quality 
control, we ran fixed-effects inverse variance weighted 
meta-analyses in METAL [35]. Independent shadow 
meta-analyses were performed at ISGlobal in Barcelona 
(Spain), using the EASIER R package [36] for the qual-
ity control and GWAMA [37] for the meta-analyses. The 
results were compared and found to be identical. Addi-
tionally, cohort-specific epigenome-wide studies passed 
all the QC steps. We found some evidence of inflation at 
the cohort level, but most λ values were close to 1 (mini-
mum λ = 0.96 and maximum = 1.61). As only one cohort 
used the EPIC array to assess DNA methylation, we only 
included probes from that cohort which overlapped 
with the 450  K array. Overall, probes measured in only 
one cohort (N = 383,683), probes mapped to the X and 
Y chromosomes (N = 10,232), and cross-reactive probes 
(N = 10,232) [38, 39] were excluded, leaving 429,959 
CpGs in the main model meta-analysis. Probes listed as 
potentially polymorphic were flagged, but not excluded 
[38, 39]. We corrected for multiple testing individually 
for each meta-analysis model based on a 5% false discov-
ery rate (FDR) [40]. Manhattan and volcano plots were 
created to visually present results. The λ value for the 
main meta-analysis model was 1.24. For the CpGs with 
a PFDR value < 0.05, we created forest plots and calculated 
I-squared values using the EASIER R package, to assess 
heterogeneity across studies. To evaluate whether any 
individual study was a major driver of these FDR-signif-
icant findings, we conducted leave-one-out analyses, in 
which we repeated the meta-analysis leaving each one 
of the seven studies out at a time. All statistical analyses 
were performed in R [41], unless otherwise specified.

The full epigenome-wide meta-analyses results of the 
crude, main, and reduced main models can be found 
in Additional File 2 and in the Zenodo repository (link 
can be found in the Availability of data and materials 
section).

Follow‑up analyses
To examine potential functionality of the identified CpGs 
in a broader context, we performed four types of fol-
low-up analyses: enrichment analyses, comparison with 
previous EWAS literature, examination of mQTLs and 
eQTMs, and examination of annotated genes in a mouse 
model of prenatal jet lag.

Enrichment analyses
We ran functional enrichment analyses using Gene 
Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) in the R package MissMethyl [42], and 
we examined enrichment for tissue-specific regulatory 
components in eFORGE 2.0 [43] using an expanded set 
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of 118 CpGs with unadjusted P values below 1 ×  10–4, to 
assure sufficient input for these analyses. We considered 
results of these analyses to be significant if FDR-adjusted 
P values were < 0.05.

Comparison to previous EWAS literature
We looked up the FDR-significant CpGs in the EWAS 
Catalog [44], to examine whether these CpGs had pre-
viously been associated with other phenotypes. We also 
examined the effect estimates of the FDR-significant 
CpGs identified in the current study in previous EWASs 
of child phenotypes that are specifically relevant to 
our exposure of interest and its adverse health conse-
quences: birthweight [45], gestational age [46], and BMI 
[47], as well as in the previous EWAS of maternal night 
shift work during pregnancy conducted in placental tis-
sue [19]. Additionally, we examined the effect estimates 
of our FDR-significant CpGs in a recent EWAS of shift 
work in adults [48] as well as in an EWAS of sleep pat-
terns in children [49]. Finally, we also examine the effect 
estimates from the hits reported in the placental EWAS 
of maternal shiftwork in our main model results.

When reporting the results of these comparative analy-
ses, we report CpGs with unadjusted P values < 0.05 from 
the original studies as suggestive associations. Although 
DNA methylation at these CpGs was not significantly 
associated in the earlier studies, we consider it impor-
tant to report them, as their nominal significance can be 
interpreted as supportive of our findings and may indi-
cate potentially relevant biological mechanisms.

Examination of mQTLs and eQTMs
To examine whether there might be any genetic effects on 
the FDR-significant CpGs, we investigated whether these 
were associated with genetic variants, i.e., methylation 
quantitative trait loci (mQTLs), based on two available 
databases [50, 51]. The dataset published by Gaunt et al. 
is based on 1,018 mother–child pairs from the ARIES 
study to examine genetic influences on DNA methylation 
at different childhood stages and during pregnancy [50]. 
This dataset is smaller, but it can discern mQTLs spe-
cific to early life. Min et  al. used a much larger dataset 
including 27,750 participants across all life stages in the 
GoDMC consortium to identify mQTLs and is therefore 
more powered, but not specific in terms of life stage [51]. 
We investigated the DNA methylation distribution for 
the FDR-significant CpGs and tested unimodality with 
the diptest R Package [52].

Similarly, we also examined the associations of the 
FDR-significant CpGs with gene expression in child-
hood blood, based on expression quantitative trait 
methylation (eQTMs) reported by the Human Early 
Life Exposome (HELIX) project [53]. This dataset 

includes blood autosomal cis-eQTMs from 832 chil-
dren, adjusted for cell type proportions.

Examination of annotated genes in a mouse model 
of prenatal jet lag
To examine effects of sustained circadian disruption 
throughout pregnancy under controlled circumstances, 
we used the results of an existing mouse study, in 
which pregnant mice were subjected to a jet lag proto-
col. DNA methylation was measured in the offspring, 
and differentially methylated regions (DMRs) in rela-
tion to jet lag exposure were previously analyzed [16]. 
We examined whether the genes annotated to the 16 
CpGs with unadjusted P values below 1 ×  10–5 from our 
main model were also implicated in the mouse model, 
i.e., whether a DMR associated with jet lag exposure 
was present in the corresponding mouse gene. For 
this examination, we use a less stringent P value cutoff 
below 1 ×  10–5, to indicate suggestive findings that may 
still represent relevant biology.

To summarize the jet lag animal model study, mat-
ing was conducted on a regular 12:12-h light–dark 
cycle. Then, pregnant mice were assigned to one of the 
three groups: a 12:12-h light–dark cycle and a serial 8-h 
advanced or delayed light–dark cycles. After birth, all 
groups were exposed to a regular 12:12-h light–dark 
cycle and several examinations were performed on the 
offspring, including liver DNA methylation analysis in 
4-week-old male mice. Differently methylated regions 
(DMRs) between control and the jet lag groups were 
examined with the MeD-seq method [54]. DMRs were 
classified as regions with more than 10 CpGs, more 
than 100 bp long, and with a more than twofold change 
between controls and at least one of the jet lag groups.

The lookup of mice DMRs was done at gene level, tak-
ing the nearest gene annotated to the human CpGs and 
then looking for DMRs in the correspondent mouse 
gene. For one CpG without annotation, we identified the 
closest upstream and downstream genes in the UCSC 
Genome Browser. One-tailed Fisher’s exact test was used 
to calculate enrichment for gene-level replication.

Results
Participants
A total of 4487 mother–child pairs from seven cohorts 
from the PACE Consortium were included in the main 
meta-analysis. Cohort-specific characteristics can be 
found in Table 1. The proportion of children exposed to 
maternal night shift work during pregnancy ranged from 
3.4% to 26.3%, and the participants were of European 
ancestry only (Additional File 1).
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Meta‑analyses
In the main model, we identified three CpGs at PFDR < 0.05 
differentially methylated in relation to exposure to mater-
nal night shift work during pregnancy, as compared to 
no exposure: cg10945885 (0.38% higher methylation, 
standard error (SE) = 0.07, P = 2.40 ×  10–8), cg00773359 
(0.25% higher methylation, SE = 0.05, P = 2.14 ×  10–7), 
and cg21836426 (0.29% lower methylation, SE = 0.05, 
P = 1.67 ×  10–7). Meta-analysis results for the 16 CpGs 
with a P value below 1 ×  10−5 are shown in Table  2. A 
link to the full results for crude, main, and reduced main 
models can be found in the Availability of data and mate-
rials section. Only cg21836426 had PFDR < 0.05 in all mod-
els. Manhattan and volcano plots for the main model are 
presented in Fig. 1 and for the crude and reduced main 
model in Additional File 3, Supplementary Fig.  1. QQ 
plots for all models are in Additional File 3, Supplemen-
tary Fig.  2. The Spearman genome-wide correlation of 
effect sizes between the main and reduced main models 
was 0.88 (Additional File 3, Supplementary Fig.  3). For-
est plots and leave-one-out plots for the three significant 
CpGs can be found in Fig. 2 and in Additional File 3, Sup-
plementary Figs.  4, respectively. The  I2 values were 69, 
21, and 0 for cg10945885, cg21836426, and cg00773359, 
respectively. We believe the high heterogeneity for 
cg10945885 is driven both by POSEIDON, which had an 
effect estimate in the opposite direction of the remain-
ing cohorts, and also by INMA, which had a relatively 
large effect estimate and slightly higher than the remain-
ing cohorts, although still in the same direction. For 
cg10945885, the CpG with highest heterogeneity, visual 

inspection of the forest and leave-one-out plots showed 
that the INMA cohort had a relatively strong effect on 
the meta-analysis result. However, results for the meta-
analysis without INMA were still significant at P < 0.05, as 
seen in the leave-one-out plot. For cg21836426, leaving 
out the ALSPAC cohort slightly affected the meta-anal-
ysis result, but including ALSPAC gave a more conserva-
tive effect estimate. Cg00773359 showed the most stable 
results. Random effects meta-analyses showed similar 
results to the fixed-effects meta-analyses (Fig. 2).

Follow‑up analyses
Enrichment analyses
Functional enrichment analyses on the 118 CpGs with 
P < 1 ×  10−4, a cutoff for suggestive association which 
gives a sufficient number of CpGs for meaningful analy-
ses [47, 55–57], did not show FDR-significant pathways 
for either GO or KEGG (Additional File 3, Supplemen-
tary Table  1). Additionally, there was no significant 
enrichment for tissue-specific regulatory elements (Addi-
tional File 3, Supplementary Fig. 5).

Comparison to previous EWAS literature
A lookup of our three FDR-significant CpGs in the EWAS 
Catalog showed that DNA methylation at cg10945885, 
which was not annotated to a gene by the Illumina 
annotation, was associated with childhood age changes 
from birth until 18 years old in blood [58] and with dif-
ferential DNA methylation in buccal cells versus whole 
blood in children [59]. DNA methylation at cg21836426, 
annotated to RWDD4A (5’UTR/ first exon) and C4orf41 

Table 1 Cohort‑specific descriptive statistics

Values are presented as mean and standard deviation (SD) for continuous variables and counts (N) and percentage (%) for categorical variables
a High and bHigh: only MoBa used two categories of higher education.  Higha refers to less than 4 years of university and  Highb to more than 4 years

ALSPAC EAGeR Generation R INMA MoBa1 MoBa2 POSEIDON

Sample size (main model) 810 354 1162 339 946 583 293

Maternal shift work (yes, N (%)) 79 (9.8) 93 (26.3) 43 (3.7) 15 (4.4) 202 (21.4) 119 (20.4) 28 (9.6)

Maternal age (years, mean (SD)) 30.2 (4.3) 28.3 (4.4) 31.8 (4.1) 31.1 (4.0) 30.1 (4.2) 30.0 (4.4) 31.5 (4.9)

Maternal BMI (kg/m2, mean (SD)) 22.9 (3.8) 25.2 (5.6) 24.1 (4.0) 23.5 (4.2) 24.0 (4.1) 24.2 (4.4) 24.6 (5.2)

Maternal education (N (%))
Low
Medium
Higha

Highb

408 (50.4)
241 (29.8)
161 (19.9)
–

34 (9.6)
–
320 (90.4)
–

18 (1.5)
363 (31.2)
781 (67.2)
–

83 (24.5)
143 (42.2)
113 (33.3)
–

57 (6.0)
299 (31.6)
432 (45.7)
158 (16.7)

36 (6.2)
184 (31.6)
249 (42.7)
114 (19.6)

30 (10.2)
88 (30.0)
175 (59.7)
–

Maternal smoking (N (%))
no/until pregnancy was known
sustained smoking

740 (91.4)
70 (8.6)

328 (92.7)
26 (7.3)

1009 (86.8)
153 (13.2)

296 (87.3)
43 (12.7)

816 (86.3)
130 (13.7)

520 (89.2)
63 (10.8)

260 (88.7)
33 (11.3)

Child sex (female, N (%)) 400 (49.4) 178 (50.3) 579 (49.8) 172 (50.4) 442 (46.7) 252 (43.2) 140 (47.8)

Birth weight (grams, mean (SD)) 3492 (488) 3360 (468) 3560 (497) 3268 (418) 3638 (546) 3642 (541) 3411 (487)

Gestational age (weeks, mean (SD)) 39.6 (1.5) 38.9 (1.5) 40.2 (1.4) 39.7 (1.4) 39.5 (1.6) 39.5 (1.6) 39.2 (1.3)

Preterm births (gestation < 37 weeks, N (%)) 22 (2.7) 26 (7.3) 31 (2.7) 0 (0) 31 (3.3) 29 (5.0) 9 (3.0)
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(alternative gene name TRAPPC11) (TSS1500), was pre-
viously associated with progressive supranuclear palsy, 
a form of tau-related dementia, in adults [60]. DNA 

methylation at cg00773359, annotated to the gene body 
of HEATR2 (alternative gene name DNAAF5), was previ-
ously associated with childhood age changes from birth 

Table 2 Main model meta‑analysis results for the 16 CpG sites with P < 1 ×  10−5

We report CpGs with unadjusted with P < 1 ×  10−5, to indicate suggestive findings that may still represent relevant biologic mechanisms
a Effect size and SE are presented as % difference in DNA methylation for exposed as compared to unexposed groups
b Cohorts are ordered as follows: ALSPAC, EAGeR, Generation R, INMA, MoBa1, MoBa2, POSEIDON

β: effect estimate; SE: standard error;  I2: heterogeneity; Chr: chromosome; FDR: false discovery rate; 5’UTR : 5ʹ untranslated region; TSS1500: 1500 bases upstream of 
transcriptional start site

Results presented correspond to main model EWAS for the associations of maternal shift work during pregnancy and newborn cord blood DNA methylation, adjusted 
for child sex, maternal educational, maternal age, maternal smoking, batch effects and cell type proportions
* Alternative gene names: RWDD4A = RWDD4; C4orf41 = TRAPPC11; HEATR2 = DNAAF5

Marker name Effect (β) a SEa P value Directionb I2 Chr Position Gene
Region

Relation to
Island

Nearest
Gene

FDR
P value

cg10945885 0.38 0.07 2.40 ×  10–8  + + + + + + ‑ 69 1 22,665,067 – N_Shelf – 0.01

cg21836426  − 0.29 0.06 1.67 ×  10–7 ‑ ? – – ‑ 21 4 184,580,106 5’UTR 
1stExon;
TSS1500

Island RWDD4A*;
C4orf41*

0.03

cg00773359 0.25 0.05 2.14 ×  10–7  + + + + + + ‑ 0 7 805,214 Body N_Shelf HEATR2* 0.03

cg25933594  − 0.64 0.13 5.24 ×  10–7 – – – ‑ 76 4 190,751,062 – – 0.06

ch.14.955325R  − 0.39 0.08 1.24 ×  10–6 – ‑ ? – ‑ 0 14 69,350,231 Body – ACTN1 0.10

cg01005536 0.58 0.12 1.35 ×  10–6 + + + — + + + 31 16 532,596 Body Island RAB11FIP3 0.10

cg08437570  − 0.21 0.04 1.95 ×  10–6 – – – ‑ 13 10 104,195,699 TSS1500 S_Shelf MIR146B 0.12

cg09670616 0.20 0.04 3.70 ×  10–6 + ? + + — + + 79 2 145,277,790 Body
5’UTR 
1stExon

N_Shelf ZEB2 0.20

cg02311152  − 0.19 0.04 4.86 ×  10–6 – + – – 0 14 71,276,396 TSS1500 Island MAP3K9 0.23

cg23913995  − 0.38 0.08 6.00 ×  10–6 ‑ + – – ‑ 14 20 21,490,665 – Island 0.24

cg04079538 0.56 0.12 6.16 ×  10–6  + + + + + + + 0 1 51,811,558 TSS1500 S_Shore TTC39A 0.24

cg05529152  − 0.47 0.10 7.27 ×  10–6  + – – – 42 12 52,414,843 – N_Shelf 0.24

cg22087659  − 0.16 0.04 7.77 ×  10–6 – + – – 0 7 99,516,845 1stExon Island TRIM4 0.24

cg23696886  − 0.16 0.04 8.09 ×  10–6 – – – ‑ 25 8 22,437,193 TSS1500
5’UTR 

S_Shore PDLIM2 0.24

cg01039573 0.39 0.09 8.26 ×  10–6  + + + + + + + 0 19 457,696 Body N_Shore SHC2 0.24

cg11973682  − 0.08 0.02 9.00 ×  10–6 ‑ ? – – ‑ 32 4 5,890,633 Body
TSS1500

Island CRMP1 0.24

Fig. 1 Manhattan (a) and volcano (b) plots of the main model meta‑analysis results. Dashed lines indicate the cutoff for the P value adjusted 
for FDR at 5% significance level
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until 18  years old in blood [58], gestational age in fetal 
brain [61] and with acoustic cry variation in buccal cells 
from preterm infants [62].

The examination of our FDR-significant CpGs in pre-
vious EWASs of child phenotypes specifically relevant 
to maternal night shift work and its adverse health con-
sequences revealed suggestive associations (unadjusted 
P < 0.05) for DNA methylation at cg00773359 in cord 
blood with gestational age [46] and with late-child-
hood BMI [47]. DNA methylation at cg10945885 and 
cg21836426 in whole blood was associated with adoles-
cent BMI (Table  3). No associations were found in the 
longitudinal EWAS of sleep in children [49] (Table  3), 
and the three CpGs identified in our study were not 
found among the CpGs with P < 5 ×  10−4 of the EWAS of 
shift work in adults [48].

A prior EWAS on maternal circadian disruption dur-
ing pregnancy in placental tissue identified 57 CpG at 5% 
FDR, 10 of which also met the Bonferroni significance 
threshold [19]. Of those, 51 were present in our data, of 
which five had an unadjusted P value < 0.05, but showed 
an opposite direction of effect in the placenta as com-
pared to cord blood (Additional File 3, Supplementary 
Table  2). All nine available Bonferroni-significant CpGs 
had an opposite direction of effect between the stud-
ies, with only one, cg21373996, having an unadjusted P 
value < 0.05 in our cord blood analyses. Among the three 
CpGs we found to be significantly associated with shift 
work in cord blood, only cg00773359 was suggestively 
associated before multiple testing correction in placental 
tissue, again in the opposite direction (Table 4).

Examination of mQTLs and eQTMs
In the ARIES mQTL database [50], 16 trans-mQTL sin-
gle nucleotide polymorphisms (SNPs) were associated 
with the three FDR-significant CpGs. Particularly, in 
cord blood, two SNPs, rs117371715 and rs183291851 
(both with MAF = 0.01), were associated with methyla-
tion at cg21836426. In the Genetics of DNA Methyla-
tion Consortium (GoDMC) database [51], 9 cis-mQTLs 
were identified in association with cg10945885, but 
none with cg00773359 or cg21836426 (Additional File 
3, Supplementary Tables  3 and 4). Density plots for the 

FDR-significant CpGs are shown in Additional File 3, 
Supplementary Figs. 6–12. The P values for the diptests 
were all > 0.05, indicating that we found no evidence for 
strong differential DNA methylation by genotype in our 
populations.

In the HELIX eQTM database [53], DNA methyla-
tion at cg00773359 was associated with expression of 4 
transcripts, but none of the associations survived mul-
tiple testing correction (Additional File 3, Supplemen-
tary Table  5). DNA methylation at cg10945885 and 
cg21836426 was not associated with gene expression in 
cis.

Examination of annotated genes in a mouse model 
of prenatal jet lag
From the 18 human genes annotated to the top 16 CpGs 
(P < 1 ×  10−5), 10 homologous genes were present in the 
mouse model and could therefore be examined. Of these, 
8 genes contained a DMR in liver tissue of the jet lag 
animal model, which represents significant enrichment 
(Fisher’s P = 1.62 ×  10−11, Additional File 3, Supplemen-
tary Table 6).

Discussion
This meta-analysis of seven studies from the PACE Con-
sortium, with a total of 4487 mother–child pairs, revealed 
some evidence for associations of maternal night shift 
work exposure with offspring DNA methylation. There 
were three CpGs associated at genome-wide significance: 
cg10945885 and cg00773359 were positively associated 
and cg21836426 was inversely associated with maternal 
night shift work exposure during pregnancy. Some asso-
ciations of these three CpGs in previous EWASs of ges-
tational age [45] and childhood BMI [47] as well as with 
gene expression [53] were found. There was a significant 
overlap with differentially methylated regions identified 
in liver in a mouse model of jet lag [16].

Exposure to shift work in adults has been associated 
with differential DNA methylation [48, 63]. In new-
borns exposed to maternal shift work during pregnancy, 
a particularly sensitive period of development, differen-
tial DNA methylation has only been explored in placen-
tal tissue [19]. In our study, we found differential DNA 

Fig. 2 Forest plots for the FDR‑significant CpGs main meta‑analyses. MD: mean difference; 95%‑CI: 95% confidence interval. For each study, 
the vertical line corresponds to the study effect estimate for that CpG; the horizontal line corresponds to the 95% CI. These lines are white 
when the 95% CI is completely inside the gray box. The gray box size corresponds to the study weight in the fixed‑effects (or common effect) 
meta‑analysis. Red and blue diamonds represent the results of the fixed‑effects and random‑effects meta‑analyses, respectively. Dashed vertical 
red and blue lines are added to allow easier comparison of each study effect estimate with the fixed‑effects and random‑effects meta‑analyses 
effect estimates, respectively. The main model was adjusted for child sex, batch, cell type proportions, maternal age, education, and smoking status 
during pregnancy. Cg21836426 is not part of the EPIC array, and hence, EAGeR does not have results for this CpG

(See figure on next page.)
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Fig. 2 (See legend on previous page.)
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methylation in cord blood, a tissue that may reflect dif-
ferent biological adaptations to circadian disruption. 
The magnitude of the effect sizes found in our study is 

relatively small, which is in line with other EWASs on 
environmental exposures and DNA methylation [64]. It is 
thought that the accumulation of differential DNA meth-
ylation at many epigenome-wide sites, each with a very 
small effect, rather than at a single site with a large effect, 
may be involved in downstream biological processes.

Of the three genome-wide significant CpGs, 
cg00773359 is annotated to HEATR2. Mutations in this 
gene have been associated with primary ciliary dyskine-
sia [65]. Cg21836426 is annotated to both the RWDD4A 
and C4orf41 genes. Mutations in C4orf41 have been asso-
ciated with myopathies, intellectual disability, and cer-
ebral atrophy [66, 67]. RWDD4A has not been robustly 
associated with any phenotype in previous literature. 
Cg10945885 was not annotated to a gene in the Illu-
mina annotation, but ZBTB40 and WNT4 are the closest 
genes, according to UCSC Genome Browser. Variants in 
ZBTB40 have been associated with inflammatory bowel 
disease and low bone density [68] and WNT4 with sex-
determination developmental disorders [69, 70]. Overall, 
the potential biological mechanisms linking these genes 
to child health outcomes associated with maternal night 
shift work during pregnancy need to be further studied.

The examination of our FDR-significant CpGs in pre-
vious EWASs of phenotypes associated with maternal 
circadian rhythm disruption during pregnancy showed 
that cord blood methylation at cg00773359 was inversely 
associated with gestational age [46] and with late-child-
hood BMI [47], before multiple testing correction. DNA 
methylation at cg10945885, which had a positive asso-
ciation in our study, was negatively associated with 

Table 3 Associations of maternal shift‑work‑related CpG sites with relevant child outcomes in previous studies

( +)/(-): direction of the association in current study

SE standard error, 1: numbers in brackets represent citations to the original EWAs; SDS standard deviation scores

Model A: longitudinal associations of cord blood DNA methylation with early-childhood BMI (2–5 years)

Model B: longitudinal associations of cord blood DNA methylation with late-childhood BMI (5–10 years)

Model C: cross-sectional associations of childhood blood DNA methylation with childhood BMI (2–10 years)

Model D: cross-sectional associations of adolescent blood DNA methylation with adolescent BMI (14–18 years)

Effect sizes, SE and P values copied directly from original studies. Please refer to each study for more details

Bolded values correspond to unadjusted P values < 0.05 in the original study

Phenotype cg10945885 ( +) cg21836426 (‑) cg00773359 ( +)

Effect size SE P value Effect size SE P value Effect size SE P value

Birthweight (grams) (45)1  − 27.19 21.33 0.20  − 10.91 22.46 0.63  − 11.04 28.15 0.70

Gestational age (weeks) (46)1 7.76 ×  10–6 2.77 ×  10–5 0.78  − 2.24 ×  10–5 2.30 ×  10–5 0.33  − 4.02 × 10–5 1.87 × 10–5 0.03
Child BMI, Model A (SDS) (47)1 0.002 0.95 0.99 0.98 1.12 0.38 1.38 1.27 0.28

Child BMI, Model B (SDS) (47)1 0.19 0.68 0.78 0.89 1.10 0.42 1.63 0.84 0.05
Child BMI, Model C (SDS) (47)1  − 0.72 0.94 0.45 0.63 1.40 0.65 0.31 1.38 0.82

Child BMI, Model D (SDS) (47)1  − 1.87 0.77 0.02  − 2.27 1.07 0.03  − 0.09 1.24 0.94

Parent‑reported sleep duration 
in school age (SDS) (49)1

0.71 1.03 0.49 0.40 1.05 0.70  − 0.94 1.14 0.41

Table 4 Associations of maternal shift work with cord DNA 
methylation for placental Bonferroni CpGs and vice versa

1: Effect size, SE and P value correspond to the results of a lookup of these CpGs 
in the results of the current cord blood study

2: Effect size, SE and P value correspond to the results of a lookup of these 
CpGs in the results of the previously published EWAS of maternal shift work in 
placental tissue (19)

( +)/(-): direction of the association in the original study; SE: standard error

Bolded values: unadjusted P value < 0.05 in the lookup study

CpG sites previously identified as differentially methylated in relation 
to maternal shift work in placental tissue

Effect  size1 SE1 P  value1

cg14377596 (‑) 0.0000 0.0100 0.72

cg14168733 (‑) 0.0700 0.2100 0.74

cg01411786 (‑) 0.0000 0.0200 0.86

cg25342875 (‑) 0.0500 0.1100 0.62

cg06667732 (‑) 0.1700 0.2700 0.52

cg21373996 (‑) 0.1500 0.0700 0.03
cg14814323 (‑) 0.1700 0.0900 0.06

cg14858786 (‑) 0.0400 0.0300 0.17

cg08082763 (‑) 0.1000 0.0900 0.25

CpG sites identified as differentially methylated in relation to maternal 
shift work in cord blood

Effect  size2 SE2 P  value2

cg10945885 ( +)  − 0.0076 0.0082 0.35

cg21836426 (‑)  − 0.0019 0.0018 0.29

cg00773359 ( +)  − 0.0025 0.0011 0.03
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cross-sectionally measured BMI in adolescence (unad-
justed P value < 0.05) [47]. Maternal shift work during 
pregnancy has been associated with adverse birth out-
comes, such as low birthweight, which, in turn, has been 
associated with higher childhood BMI [71]. Therefore, a 
negative association of cg10945885 with cross-sectional 
BMI in adolescence was not in line with the expected 
direction of effect. However, DNA methylation is known 
to change with age [58], so our findings at birth may 
not reflect biological processes in adolescence. Over-
all, our findings may support a potential role for DNA 
methylation as a mediator of the associations of early-
life circadian rhythm disturbances with child health, but 
further studies are needed to disentangle the biological 
mechanisms.

Only one previous study in humans has examined the 
association of maternal night shift work during preg-
nancy with offspring DNA methylation, but this was 
done in placental tissue [19]. That study found differ-
ential DNA methylation at several CpGs, but none of 
the results were replicated in our study of cord blood. 
Cg00773359, which was positively associated with mater-
nal night shift work in our study, was inversely associated 
with maternal night shift work in placental tissue. Like-
wise, the lookup of the placenta tissue hits in our study 
revealed effect sizes in opposite directions. Placental and 
cord blood DNA methylation reflect different and tissue-
specific methylation patterns, which may explain the 
different findings. Of note, also for maternal smoking in 
pregnancy, where extensive differential DNA methyla-
tion has been identified, and for maternal pre-pregnancy 
BMI, overlap between findings for cord blood and pla-
centa is minimal [72, 73].

A lookup of our findings in the childhood and preg-
nancy mQTL database [50] identified 16 trans-mQTLs 
for the FDR CpGs, two of which were specifically found 
at birth, for cg21836426. In the GoDMC database [51], 
we did not find mQTLs in association with cg21836426. 
This suggests that a potential genetic influence on DNA 
methylation at cg21836426 may be present at birth or in 
early life but not at later stages of life. We found some evi-
dence for an association of cg00773359 with gene expres-
sion in childhood in the HELIX cis-eQTM database, but 
the associations did not survive multiple testing correc-
tion. We did not find cis-eQTM for the other two CpGs.

Furthermore, the lookup of the 118 CpGs with 
P < 1 ×  10−4 in the GO, KEGG, and eFORGE bioinfor-
matics tools did not reveal any indication for enriched 
biological (regulatory) processes. The number of CpGs 
used in the searches might be limiting the discovery of 
meaningful pathways. We refrained from further increas-
ing the P value cutoff, which would increase the number 
of CpGs added to the pathway analysis, as the weaker 

associations with night shift work may introduce too 
much noise in the output.

DNA methylation at the genes annotated to the 16 
CpGs with a P value < 1 ×  10−5 had a high gene-level 
replication in the jet lag mouse model. The comparison 
of human versus mouse findings is not straightforward, 
and the methodologies used in the studies were dif-
ferent. Nevertheless, the stringent criteria to classify a 
DMR in the animal model limits the potential for false-
positive findings. Additionally, DNA methylation in the 
mouse model was measured in liver tissue, a tissue that 
is potentially more relevant for the study of metabolic 
conditions, such as those associated with maternal night 
shift work, than cord blood. Although cross-tissue cor-
relations of DNA methylation levels between blood and 
liver in humans have been reported to be generally low 
[74], the consistency of the findings between our human 
blood and mouse liver findings adds to the evidence for 
associations of circadian rhythm disturbance with DNA 
methylation at these loci.

Our study had several limitations. First, information 
on maternal night shift work during pregnancy was self-
reported and collected using questionnaires at varying 
times prior to or during pregnancy, with the question 
pertaining to varying time windows and having differ-
ent response options. The percentages of exposure to 
night shift work varied between the cohorts. This is likely 
related to the timing of filling out the questionnaire, with 
questionnaires earlier in pregnancy giving higher per-
centages, while the questionnaires in later pregnancy 
correspond to the lower exposure percentage. Only one 
study, EAGeR, assessed night shift work in the precon-
ception period. We believe it is likely that the working 
conditions and shiftwork pattern continue at least from 
preconception into early pregnancy. Moreover, the leave-
one-out meta-analysis of the FDR-hits did not reveal sig-
nificant differences when EAGeR participants were left 
out. Therefore, the earlier collection time point did not 
seem to influence the meta-analysis result unduly. Sec-
ond, the different timing and varying response options 
led to a relatively coarse classification of the exposure 
into “any” versus “no” night shift work during preg-
nancy. This may have limited our ability to find associa-
tions. Future studies with more detailed information on 
maternal working conditions during the periconceptional 
period and in pregnancy are needed to shed further light 
on the intricacies of timing- and dose-effects of expo-
sure to night shift work in pregnancy. Third, the Illumina 
Infinium Human Methylation450 and EPIC BeadChips 
cover only 2–3% of all CpG sites in the DNA, and thus, 
DNA methylation at other unmeasured CpG sites may 
also be associated with exposure to night shift work. 
Fourth, we examined DNA methylation in cord blood, 
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which may not represent the main target tissue in rela-
tion to future health outcomes. Fifth, the participants in 
the current study are all from European ancestry, so gen-
eralizability to other ancestries requires further study. 
Last, even though we adjusted our analyses for several 
confounders, residual confounding due to unmeasured 
factors might still be present, especially concerning occu-
pational exposures, for example the risk of exposure to 
specific chemicals in industrial or cleaning jobs.

Regarding the study strengths, this is the first meta-
analysis of epigenome-wide association studies examin-
ing the associations of maternal night shift work during 
pregnancy with offspring cord blood DNA methylation 
in a large sample of mothers and children from multiple 
countries. The studies included in this meta-analysis fol-
lowed a predefined analysis plan and analytic code, which 
is standard practice in the PACE Consortium [20], and 
limits potential variation between cohorts and errors in 
the analyses.

Our results support further research into DNA meth-
ylation as a potential molecular mechanism underly-
ing the associations of maternal night shift work during 
pregnancy with offspring health outcomes. Studies with 
more detailed information on maternal working con-
ditions during pregnancy are still needed. Wearable 
devices to register sleep and wake patterns have become 
widely available in recent years and could provide a more 
detailed assessment of circadian rhythm disruptions in 
future studies.

Conclusion
Maternal night shift work during pregnancy was associ-
ated with newborn DNA methylation at three CpGs, with 
potential associations with child gestational age and BMI. 
Top findings overlapped with those in a mouse model of 
jetlag, a related exposure. This work strengthens evidence 
that DNA methylation could be a marker or mediator of 
impacts of circadian rhythm disturbances.
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