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EDITORIAL

Clinical promise and applications 
of epigenetic biomarkers
G. Bea A. Wisman1*, Tomasz K. Wojdacz2, Lucia Altucci3,4,5,6, Marianne G. Rots7, Dawn L. DeMeo8 and 
Harold Snieder9* 

Epigenetic dysregulation is involved in a wide spectrum 
of diseases, and many studies have reported differential 
molecular epigenetic signatures between diseased tis-
sues/cells and healthy control samples [1, 2]. Such epige-
netic signals may point to promising therapeutic targets, 
but may also have great potential as biomarkers. Indeed, 
increasing evidence shows that epigenetic biomarkers 
have potential for prediction [3], early diagnosis [4–6] or 
prognosis [7] of disease, archiving a life course of envi-
ronmental exposures [8, 9], as well as stratifying for and 
monitoring of therapy [3]; some have linked epigenetic 
variability to predictions of mortality [10–12]. Although 
in the field of oncology, various commercially available 
kits already exist [1, 13], clinical applications are lagging 

behind the discoveries of new biomarkers in other com-
mon diseases. In this thematic series of Clinical Epigenet-
ics, we define the current progress in the development of 
epigenetic biomarkers for clinical use in cancer as well 
as in other common complex diseases and aging and 
include a variety of contributions ranging from original 
research to opinion pieces [14–17] and reviews [18, 19]. 
In assembling this collection, we also highlight critical 
issues related to the Ethical, Legal and Social Implications 
(ELSI) of epigenetics research [14, 15]. This includes the 
growing responsibility for us as scientists to investigate 
and uncover the mechanisms relating social determi-
nants to human health [16] as technology advances and 
social inequities persist. Although epigenetic research 
and progress has accelerated dramatically in the past dec-
ade, the interest in applications of epigenetic age analysis 
in the realm of life insurance, direct to consumer testing 
and confirmation of juvenile-age for asylum (immigra-
tion) [14], highlights the obligation of engaged scientists 
to promote research standards and provide balanced 
interpretations of epigenetics observations.

In this Clinical Epigenetics series on epigenetic bio-
markers, the range of topics (Fig. 1) supports the grow-
ing clinical translational relevance of epigenetic research, 
especially research on DNA methylation variability. 
Although best developed for cancer, the emergence of 
high-throughput assays has supported the development 
of epigenetic epidemiological research of (fetal) expo-
sures and other common diseases.

The current collection of articles addresses fetal 
origins of complex diseases [20], lifestyle associations 
with the epigenome [8, 9, 21, 22], as well as predictive 
marks of heart disease [9, 21, 23–27] and cancer [5–7, 
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22, 28–32]. Epigenetic marks of cancers have advanced 
beyond complex disease, and this special collection 
highlights several innovations including the applica-
tion of cell-free DNA methylomes providing insights 
to ovarian cancer [5], a custom sequencing panel for 
acute myeloid leukemia [7], as well as advances with 
promise of clinical translation for lung [32], breast 
[22], renal [31], colorectal [29] or oropharyngeal can-
cers [28]. This compendium on cancer also includes 
a three gene test for cervical intraepithelial neopla-
sia and cervical cancer [6]. As the consideration of a 
clinical translational role for epigenetic biomarkers 
matures, we have also observed the potential relevance 
of fetal programming of adult diseases through the 
evaluation of placental methylomes [20], and advance-
ments of insights to capture impacts of both social 

determinants [16] and lifestyle exposures [8, 9] on the 
epigenome. For clinical applications to nonneoplastic 
disease, multiple studies [21, 23, 24] have addressed 
the relevance of peripheral methylomes to cardiovas-
cular disease, including the calculation of epigenetic 
clocks [21]. Methylation biomarkers in neurologic dis-
eases and syndromes using leukocyte DNA holds par-
ticular promise as evidenced through the prediction of 
stroke risk [26], characterization of stroke outcomes 
[25], as well as the prediction of multiple sclerosis 
severity through the development of epigenetic risk 
scores [33]. Applications to ulcerative colitis [34] high-
light opportunities for pharmaco-epigenetic targeting 
in nonneoplastic disease, here immune cell targets, 
and considerations for organ transplantation [19] may 
transform the clinical landscape related to posttrans-
plant complications.

Fig. 1 Word cloud showing the range of topics in the Clinical Epigenetics series on Epigenetic Biomarkers
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DNA methylation biomarkers
Although histone modifications and DNA hydroxymeth-
ylation might prove useful epi-markers in the future, so 
far DNA methylation has been exploited most for epi-
genetic biomarker development mainly due to relatively 
high stability of this epigenetic modification. A variety 
of methods are available to measure differences in DNA 
methylation. Most assays make use of bisulfite conver-
sion before the methylation analysis, although emerging 
technologies avoid this potentially harsh DNA treatment 
in favor of bisulfite-free approaches [35–37]. For sin-
gle gene analysis, the most common assays are (quan-
titative) methylation-specific PCR ((Q)MSP), bisulfite 
pyrosequencing, combined bisulfite restriction analysis 
(COBRA), targeted bisulfite sequencing and methyla-
tion-sensitive high-resolution melting (MS-HRM) [38, 
39]. For diagnostic methylation assays of specific genes, 
QMSP is the most commonly used technique followed by 
bisulfite pyrosequencing [38–41] and can be regarded as 
established techniques applicable for biomarker develop-
ment and clinical implementation [39].QMSP is a specific 
and sensitive method that allows accurate quantification, 
high-throughput testing and only requires a minimal 
amount of input DNA [40, 41]. The advantage of bisulfite 
pyrosequencing is that it provides an absolute level of 
methylation by determining the ratio of methylated and 
unmethylated cytosine residues separately [39, 42]. Dis-
advantages of the bisulfite pyrosequencing are that it is 
less sensitive to quantify methylated CpGs from dys-
plastic cells in an environment of many normal cells as 
found in multiple body materials, is only possible when 
sufficient CpG-free flanking sequences are available for 
primer design and is relatively expensive [42]. The ana-
lytical sensitivity of the methylation detection assay pro-
vided by PCR-based methods appears to be critical for 
diagnostic applications of epimutation testing. For exam-
ple, using the same samples, MS-HRM was able to detect 
BRCA1 epimutations, whereas the Illumina BeadChip 
microarray was not [43].

Analysis on the genome-wide level can be achieved by 
methylation (micro)arrays preceded by bisulfite conver-
sion, such as EPIC arrays, immunoprecipitation of meth-
ylated DNA combined with next-generation sequencing 
and genome-wide bisulfite sequencing. Since the intro-
duction of standard arrays allowing genome-wide 
interrogation of methylation over 10  years ago, epige-
nome-wide association studies (EWAS) have become a 
popular approach to identify biomarkers for both envi-
ronmental exposures and disease outcomes [44, 45]. 
Case–control or prospective (longitudinal) cohort studies 
are the most widely used designs for the discovery of epi-
genetic biomarkers in EWAS [45]. To ensure the quality 
of reporting of such studies, general reporting guidelines 

on observational studies in epidemiology as specified in 
the STROBE (STrengthening the REporting of OBserva-
tional Studies in Epidemiology) statement should be used 
(see also: https:// www. equat or- netwo rk. org/ repor ting- 
guide lines/). However, reporting guidelines for observa-
tional studies such as case–control or cohort designs as 
specified in the STROBE checklist [46] are very general 
and guidelines specific for EWAS do not exist.

Similar to genome-wide association studies (GWAS), 
the early years of EWAS were characterized by a lack of 
consensus on data preparation and quality control, sta-
tistical analysis and reporting standards, including issues 
related to replication, multiple comparisons and general-
izability. In essence, both GWAS and EWAS are obser-
vational studies investigating the association of either 
genetic (single-nucleotide polymorphisms [SNPs]) or 
methylation markers (CpG sites) with outcome traits. 
For GWAS, reporting guidelines were drawn up by the 
STrengthening the REporting of Genetic Association 
Studies (STREGA) panel [47] by extending the STROBE 
checklist with a number of items particularly relevant 
to genetic association studies, such as laboratory meth-
ods related to genotyping, genotyping accuracy, popula-
tion stratification and adjustment for multiple testing. 
Unfortunately, such reporting guidelines and stand-
ards are lacking for EWAS making it more difficult to 
ensure standardized reporting and quality of such stud-
ies. In general, the study design and statistical analyses 
of biomarker discovery studies such as EWAS need to 
minimize sources of bias and optimize the chances of 
reporting true findings. For the latter, similar to GWAS, 
sufficient sample size (i.e., power), proper adjustment 
for multiple testing and replication of the findings in an 
independent sample are key. Unlike GWAS, epigenetic 
profiles are tissue specific, and lack of proper adjustment 
for cell-type heterogeneity is now generally recognized 
as one of the most important sources of confounding in 
EWAS [17].

A recent review concluded that the recent rise in 
EWAS has aided discovery of epigenetic biomarkers of 
disease outcomes, but translation of these findings into 
clinically useful applications such as prognostic biomark-
ers and therapeutic targets in the epigenome has so far 
been limited by inappropriate or inadequate statistical 
analyses, insufficiently powered studies, non-validated 
findings and an inability to establish causality [45].

Implementation of epigenetic biomarkers in health 
care
For the implementation of a new biomarker in health 
care, it is recommended to adhere to a five-phase frame-
work as described by Pepe et  al. [48]. The 5 phases are: 
(1) preclinical exploratory studies, (2) assessment in 

https://www.equator-network.org/reporting-guidelines/
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noninvasive samples, (3) retrospective longitudinal stud-
ies, (4) prospective screening studies and (5) prospective 
intervention studies. Most importantly, for all phases, 
but especially for phases 4 and 5, blinding and randomi-
zation are essential to robustly validate biomarkers [48]. 
Most studies investigating DNA methylation marks as 
diagnostic tests are in phase 1 and 2. Only a few studies 
analyzed the application of methylation markers in pro-
spective studies [49–54]. So far, only the promoter hyper-
methylation biomarkers GSTP1 and MGMT have been 
implemented in health care, with GSTP1 as a powerful 
diagnostic tool for prostate cancer [55, 56], and MGMT 
predicting a better response to treatment with alkylating 
agents chemotherapy in glioblastomas [3, 57].

Journal guidelines
Given the lack of specific reporting guidelines for epi-
genetic biomarker studies such as EWAS and in order 
to take epigenetic biomarker research to a higher level 
Clinical Epigenetics has formulated a number of key 
requirements. For a biomarker study, to be considered 
for publication in Clinical Epigenetics, the manuscript 
should: (i) contain a discovery and an independent vali-
dation samples, i.e., biological (rather than technical) 
replication. Validation data might also be obtained from 
publicly available repositories. Potential exceptions 
include rare diseases or findings yielding strong scien-
tifically novel insights with convincingly described clini-
cal relevance; (ii) provide access to raw data (according 
to the Findable Accessible Interoperable Reusable [FAIR] 
principles). This makes replication and verification of 
research easier, and the data can be used to study new 
research questions; (iii) have sufficient sample size (i.e., 
power) to detect realistic effect sizes and apply proper 
adjustment for multiple testing; (iv) when only using pre-
existing datasets, include functional validations or pre-
sent a solid discussion on functional implications.

Conclusions
It is important to have quality standards for (reporting 
on) epigenetic biomarker studies, as this ensures realis-
tic expectations regarding the promise of new (classes 
of ) biomarkers that are still at the research stage and/
or in preclinical development. In tandem, this collection 
has highlighted some promising innovations and techni-
cal advances beyond data analytics, including advances 
related to the interrogation of cell-free DNA for cancer 
(ovarian) [5] and non-cancer (vascular) applications [27]. 
The growing potential of single cell and spatial technolo-
gies [58, 59] will likely further improve the translational 
success rate of these biomarkers into the clinic, establish-
ing a clear role for epigenetics in precision medicine.
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