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Abstract 

Background  Aberrant embryo implantation and suboptimal placentation can lead to (severe) complications such 
as preeclampsia and fetal growth restriction later in pregnancy. Current identification of high-risk pregnancies relies 
on a combination of risk factors, biomarkers, and ultrasound examinations, a relatively inaccurate approach.

Previously, aberrant DNA methylation due to placental hypoxia has been identified as a potential marker of placental 
insufficiency and, hence, potential (future) pregnancy complications. The goal of the Early Prediction of prEgnancy 
Complications Testing, or the ExPECT study, is to validate a genome-wide, cell-free DNA (cfDNA) methylation strat-
egy to diagnose preeclampsia accurately. More importantly, the predictive potential of this strategy is also explored 
to reliably identify high-risk pregnancies early in gestation. Furthermore, a longitudinal study was conducted, includ-
ing sequential blood samples from pregnant individuals experiencing both uneventful and complicated gestations, 
to assess the methylation dynamics of cfDNA throughout these pregnancies.

A significant strength of this study is its enzymatic digest, which enriches CpG-rich regions across the genome with-
out the need for proprietary reagents or prior selection of regions of interest. This makes it useful for the cost-effective 
discovery of novel markers.

Results  Investigation of methylation patterns throughout pregnancy showed different methylation trends 
between unaffected and affected pregnancies. We detected differentially methylated regions (DMRs) in pregnancies 
complicated with preeclampsia as early as 12 weeks of gestation, with distinct differences in the methylation profile 
between early and late pregnancy. Two classification models were developed to diagnose and predict preeclampsia, 
demonstrating promising results on a small set of validation samples.

Conclusions  This study offers valuable insights into methylation changes at specific genomic regions through-
out pregnancy, revealing critical differences between normal and complicated pregnancies. The power of noninvasive 
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cfDNA methylation profiling was successfully proven, suggesting the potential to integrate this noninvasive approach 
into routine prenatal care.

Keywords  Preeclampsia, Placental insufficiency, Cell-free DNA, CfDNA methylation, Epigenetics, Differentially 
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Background
The placenta is a dynamic and temporary organ that 
plays a vital role in fetal development, involving finely 
tuned mechanisms such as appropriate cytotrophoblast 
invasion with spiral artery remodeling, extensive pla-
cental angiogenesis, and crucial fetal–maternal interface 
development. It also acts as a protective barrier against 
infections and teratogens and produces hormones essen-
tial for maintaining and regulating various stages of preg-
nancy. Placentation begins with the implantation of the 
blastocyst into the endometrium, inducing its transfor-
mation into the decidua. Extravillous trophoblasts from 
the blastocyst migrate into this decidua, modifying the 
spiral arteries of the uterus, a crucial step in establish-
ing uteroplacental circulation. At the end of the first tri-
mester, maternal blood flows through the placental villi, 
introducing a drastic increase in oxygen concentration. 
Adverse pregnancy outcomes such as preeclampsia and 
fetal growth restriction are assumed to result from dys-
function in one of these processes, leading to suboptimal 
uteroplacental perfusion and oxidative stress [1–3]. Sev-
eral factors are known to increase the risk of develop-
ing preeclampsia, such as chronic hypertension, assisted 
reproduction, increased maternal BMI, and advanced age 
[2–6]. Additionally, it is hypothesized that couple-spe-
cific immune maladaptation, an important risk factor for 
primiparous individuals or a subsequent pregnancy with 
a new partner, could also play a significant role in causing 
insufficient trophoblast invasion, leading to the develop-
ment of preeclampsia [7].

Preeclampsia is a pregnancy-related hypertensive 
disorder with a highly variable clinical presentation 
induced by maternal endothelial dysfunction, includ-
ing proteinuria and/or maternal end-organ dysfunc-
tions such as neurological complications, pulmonary 
edema, hematological issues, acute kidney injury, liver 
involvement, and uteroplacental dysfunction [2, 8, 9]. 
These complications pose a substantial risk for preterm 
birth, fetal growth restriction, and neurodevelopmental 
delay. After childbirth, a considerably increased risk for 
a maternal cardiovascular disorder remains, necessitating 
lifelong follow-up. This is particularly crucial for those 
who experienced early onset and/or severe preeclampsia 
[10]. Although this disease affects 2–5% of pregnancies 
worldwide [8, 11, 12] and the extensive research already 
conducted on preeclampsia, the exact pathophysiology 

remains unclear. Moreover, most preeclampsia patients 
did not exhibit a prior increased risk. Preeclampsia can 
be categorized into an early and late-onset disease [13], 
even though this division is still a topic of debate given 
the many diverse definitions of this disease and the 
incomplete knowledge of the underlying pathology. Early 
stage preeclampsia can be linked to poor placentation 
and fetal growth restriction, characterized by placental 
dysfunction involving incomplete spiral artery remode-
ling and undetectable abnormal placentation. In the later 
stage, this is followed by the onset of maternal symp-
toms. Mainly due to endoplasmic reticulum stress and 
oxidative stress in the syncytiotrophoblast, the ischemic 
placenta releases vasoactive molecules, proinflamma-
tory cytokines, toxins, and syncytial fragments into the 
maternal bloodstream, leading to systemic endothelial 
dysfunction, intravascular inflammation, and activa-
tion of the hemostatic system [1, 2, 14–16]. Early onset 
preeclampsia is acknowledged as the severe type, often 
leading to fetal morbidity, mortality, and iatrogenic pre-
term delivery. Late-onset preeclampsia is associated with 
factors related to the growth and aging of the placenta, 
such as maternal obesity, environmental factors, multiple 
pregnancies, and large-for-gestational-age fetuses, lead-
ing to constrained intervillous perfusion [12].

The primary preventive treatment is a daily low dose of 
acetylsalicylic acid (aspirin), which lowers the incidence 
of early onset preeclampsia by half when administered 
before the 16th week of pregnancy [17–21]. Additionally, 
hypertension medication can be prescribed to manage 
maternal blood pressure. Fetal delivery is currently the 
only known ‘cure’ for severe preeclampsia, often resulting 
in a preterm birth.

A wide variety of clinical prediction tools and diagnos-
tic approaches have been introduced worldwide, each 
incorporating variations of ultrasound observations, 
maternal characteristics, and medical history [22, 23]. 
Additionally, circulating angiogenic factors in plasma 
can be used as noninvasive biomarkers of placental 
health. An imbalance between the anti-angiogenic fac-
tor soluble fms-like tyrosine kinase 1 (sFlt-1) and the 
pro-angiogenic factor placental growth factor (PlGF) has 
been demonstrated, with their ratio tending to be ele-
vated just before the onset of preeclampsia (1–4 weeks) 
[24–28]. Unfortunately, this latter approach is a short-
term prediction tool, mainly applicable late in pregnancy, 
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providing little opportunity for early preventive or thera-
peutic treatment. Instead, it serves as a tool to determine 
whether to proceed with urgent interventions, like hospi-
tal admission or delivery of the baby.

Postnatal investigations on placental tissue have been 
conducted to elucidate the underlying pathology of pla-
cental insufficiency. Microscopic examinations have 
identified localized areas of ischemic villous necrosis, 
diagnosing placental hypoxia [29]. The processes of pla-
centation have been shown to correlate with altered 
epigenetic mechanisms such as histone modification, 
microRNAs, and DNA methylation, hereby inducing 
changes in placental gene expression. Indeed, altered 
gene expression profiles and dysregulation of biological 
pathways associated with preeclampsia have been identi-
fied in placental cells [30–34]. Genome-wide DNA meth-
ylation studies have revealed genome-wide hypo- and 
hypermethylation as well as specific imprinting patterns 
necessary to adapt to different intrinsic and environmen-
tal factors [35–39]. Furthermore, studies focusing on pla-
cental dysfunction have shown that placental disease can 
induce aberrant methylation patterns and, consequently, 
altered gene expression, primarily due to oxidative stress 
[40–46].

Although obtaining placental tissue during pregnancy 
would be invasive and therefore not feasible for routine 
screening, these investigations have provided valuable 
insights into placental pathology, indicating the poten-
tial for exploring the placental epigenome as a prenatal 
diagnostic or, preferably, a prenatal screening tool for 
pregnancy complications. A solution to tackle this issue 
is to analyze cell-free RNA (cfRNA) and cell-free DNA 
(cfDNA) present in maternal blood and originating from 
placental syncytiotrophoblast cells. Recently, liquid biop-
sies have been applied to explore adverse pregnancy 
outcomes resulting from placental dysfunction [47–55]. 
This approach allows for the noninvasive examination of 
placental-derived transcription profiles and (aberrant) 
methylation patterns.

The Early Prediction of prEgnancy Complications 
Testing or ExPECT study aims to develop a noninva-
sive screening test early in pregnancy to predict future 
placenta-related complications based on cfDNA meth-
ylation profiling. The two main objectives of the ExPECT 
study are (1) to confirm the feasibility of using cfDNA 
methylation data for the accurate diagnosis of pregnan-
cies complicated by preeclampsia, and (2), with a greater 
clinical significance, to explore the predictive capacity of 
cfDNA methylation profiling during the early stages of 
pregnancy, to reliably identify high-risk pregnancies and 
thereby enable an improved, personalized prenatal care. 
To achieve the objectives of the ExPECT study, cfDNA 
from individuals with uneventful and complicated 

pregnancies was analyzed to develop the optimal pre-
diction model based on unsupervised clustering of 
significant differentially methylated regions (DMRs). 
Furthermore, a longitudinal study was conducted, 
including sequential blood draws from individuals expe-
riencing both uncomplicated and complicated gestations, 
to assess the methylation dynamics of cfDNA throughout 
their pregnancies.

Methods
Participants and sample collection
Since April 1st, 2019, all pregnant people followed at 
Ghent University Hospital have been asked to consent 
to four-weekly blood sampling throughout gestation 
and one sample after delivery. Additionally, all patients 
admitted to the maternal intensive care unit were asked 
for a blood sample at admission, and after delivery. Once 
delivered, the pregnancies of the participants were cat-
egorized as normal, complicated by preeclampsia with 
or without fetal growth restriction, complicated by fetal 
growth restriction without preeclampsia, or complicated 
by other pathologies (e.g., preterm premature rupture of 
the membranes or spontaneous preterm labor). Plasma 
samples were stored in a dedicated biobank, and relevant 
patient characteristics were recorded, including precon-
ception BMI, pre-existing or chronic hypertension, prior 
history of preeclampsia, and maternal cardiovascular 
disease. Additionally, pregnancy details, such as fertility 
treatment, ultrasound findings, laboratory tests, non-
invasive prenatal testing (NIPT), and aspirin treatment, 
were documented. Standardized definitions were applied 
to enhance the validity of its findings, addressing the 
issue of variability in preeclampsia definitions observed 
in other studies [8]. Data registration was done in RED-
Cap (Research Electronic Data Capture) [56, 57], a web-
based platform that facilitates research data capture with 
an intuitive interface, audit trails, automated export, and 
interoperability with external sources.

Patient and sample selection during symptomatic 
and presymptomatic stages
For the symptomatic cohort (diagnosing disease 
approach), 23 samples were chosen from 23 severe preec-
lampsia cases (e.g., gestational hypertension accompa-
nied with maternal end-organ dysfunction). All samples 
were taken between 24 and 37 weeks of gestation (with 
an average gestational age (GA) of 31.6 weeks). Further-
more, 49 samples were selected from 49 controls (une-
ventful pregnancies without an increased risk), with an 
average GA of 31.0 weeks (Fig. 1B). The cases and con-
trols were matched by selecting gestational age over 
20  weeks, with a similar average GA at sampling per 
category.
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For the presymptomatic cohort (predicting disease 
approach), 33 samples from 33 cases were selected (with 
an average GA at blood sampling of 11.9 weeks), of which 
25 later developed severe preeclampsia and eight a less 
severe form. 136 samples from 136 controls with term-
birth were selected, again GA-matched at sampling (with 
an average GA of 12.2 weeks) (Fig. 1A).

For the longitudinal analysis, sequential blood samples 
of 25 individuals were investigated (Fig.  1C). A total of 
104 samples, taken between 11 and 38 weeks of gestation, 
were analyzed, comprising 43 samples from 10 preec-
lamptic patients and 61 samples from 15 individuals with 
uncomplicated pregnancies.

All included participants had singleton pregnancies 
and were of predominantly Caucasian ethnicity (Supple-
mentary Table  1). The samples in the different cohorts 
were not fully independent; most patients in the lon-
gitudinal cohort were also included in the presympto-
matic cohort (n = 15). Overlap between the symptomatic 
and presymptomatic cohort is limited, with only three 

patients having samples included in both cohorts. (Sup-
plementary Fig. 1).

Genome‑wide methylation profiling through cfDNA 
reduced representation bisulfite sequencing (cf‑RRBS)
Blood was collected in EDTA tubes and processed within 
2–4  h post-collection. When not feasible, such as dur-
ing weekends, blood was collected in PAXgene tubes 
to stabilize the maternal blood cells. Plasma separa-
tion was achieved through centrifugation at 1900  g for 
15 min. Subsequently, the plasma samples were stored in 
a biobank at − 80  °C, aliquoted to prevent freeze–thaw 
cycles. Cell-free DNA (cfDNA) was extracted using the 
Maxwell RSC LV ccfDNA kit (Promega) according to the 
manufacturer’s instructions.

The cf-RRBS protocol is a cost-effective and automat-
able approach for methylation profiling of highly frag-
mented cfDNA, initially described by De Koker et al. [58] 
and adapted by Van Paemel et al. [59], using the EZ DNA 
Lightning kit (ZymoResearch). CpG-rich regions are 

Fig. 1  Overview of the sample collection per analysis cohort. A stacked bar chart showing the number of samples collected at given time points 
during pregnancy. Each bar represents a group of samples collected during the specified week of gestation. Colors show the sample type, controls 
in green, and preeclampsia (PE) cases in orange. Separate charts show the numbers of samples used in the different analyses, presymptomatic (A), 
symptomatic (B) and longitudinal (C) study
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targeted through restriction enzyme activity, and subse-
quent hairpin-shaped adaptors generate circular cfDNA 
with dual cut-sites. This process effectively removes 
non-circular undesired fragments, amplifies CpG-rich 
genomic regions, and preserves crucial methylation 
information, guaranteeing sufficient genome coverage 
and accurate quantification of the methylation status. 
The library concentrations were assessed by qPCR using 
the KAPA Library Quantification Kit for Illumina plat-
forms (Kapa Biosystems), and samples were pooled equi-
molarly. Single read sequencing (100 cycles) was done 
using the NovaSeq 6000 instrument (Illumina), with dual 
indexing and a 2% PhiX spike-in. On average, 26.76 mil-
lion reads [19.83–33.69] were obtained per sample.

Raw sequencing data were first demultiplexed using 
BCL Convert (v4.0.3; Illumina) and then processed with 
the nf-core/methylseq (v2.4.0) [60] pipeline. The Bismark 
[61] workflow of the pipeline was used for mapping and 
methylation extraction, with the additional RRBS flag to 
ensure correct trimming of the reads and the omission 
of the deduplication step. Reads were mapped with bow-
tie2 [62] to the GRCh38 reference genome. Bismark cov-
erage files from the methylation extraction output were 
used to further analyze the CpG site methylation. From 
these coverage files, CpG clusters were defined based on 
location with a custom script. This script gathers coor-
dinates for all CpG sites that were covered in all samples 
and orders these into groups. CpG clusters are defined 
based on specific criteria. First, each cluster must con-
tain at least two CpG sites. Additionally, every CpG site 
in the cluster should be covered at least once, and the 
total coverage of the site in the cluster should be at least 
five. The maximum distance between CpG sites in a sin-
gle cluster is 50 base pairs. Finally, the created clusters 
must be present in at least 50% of the samples included 
in the study. The methylation for these clusters was com-
puted as a mean of the CpG methylation values per clus-
ter after local likelihood smoothing with BSmooth [63]. 
The smoothed methylation values for these clusters were 
then used as an input for differentially methylated region 
(DMR) calculation with the R packages limma (v3.45.2) 
[64] and bsseq (v1.38.0) [63].

Cohort‑level DMR investigation
Genome-wide methylation differences were calculated 
by generating a sample-wise mean methylation value 
for all included clusters, as described above. Wilcoxon 
rank-sum tests were performed to compute differences 
between sample groups. Samples from patients included 
in both cohorts were removed from the symptomatic 
dataset to assure independence (four control samples 
and one case sample). DMRs were computed with limma, 
and a linear model, including the category of the sample 

(case versus control), fetal sex, sequencing batch, and 
gestational age (in weeks) as main effects, was created 
based on the methylation clusters described above. Clus-
ters that were significantly correlated with the category 
factor of the limma model were then extracted and fur-
ther investigated. Significant DMRs were filtered based 
on their absolute log fold change (> 0.1) and Benjamini 
and Hochberg’s adjusted p value (< 0.01). This approach 
obtained the best results for the symptomatic sample 
cohort and was used on this cohort. These DMRs were 
visualized with the R package pheatmap (v1.0.12).

DMRs were annotated with overlapping genes, and a 
gene ontology enrichment analysis was performed using 
the goana function from the limma package with a false 
discovery rate cutoff of 0.05. Mean methylation values 
for genes of interest, such as soluble fms-like tyrosine 
kinase-1 (sFLT-1) and placental growth factor (PlGF), 
were computed by taking the mean across overlapping 
CpG clusters. For the longitudinal cohort, mean methyla-
tion levels were computed across the CpG clusters on a 
whole genome basis as well as on clusters overlapping the 
genes of interest. The DMRs computed on the sympto-
matic and presymptomatic cohorts, as described above, 
were also investigated in the longitudinal cohort. For this, 
DMRs were clustered using hierarchical clustering with 
complete linkage. Clustering trees were cut into four 
groups for visualization purposes. Mean methylation val-
ues were then computed on a sample-wise base for each 
of these four groups.

Prediction modeling
Exploratory machine learning prediction models were 
created with the R package tidymodels (v1.1.0). For this, 
the symptomatic and presymptomatic cohort were split 
into a training and testing set. DMRs were then recalcu-
lated with DMRfinder based on the samples in the train-
ing datasets. Only CpG sites with a minimum coverage 
of two in at least two samples of the control and preec-
lampsia set were included. DMRs were filtered based on 
size (> = 3 CpG sites), absolute log fold change (> 0.1), 
and q-cutoff (> 0.99 or < 0.01). The top 25 most significant 
DMRs from these training datasets were further used for 
model creation. Three classification models were evalu-
ated: random forest, support vector machine, and logistic 
regression (with the ranger, kernlab and glmnet packages, 
respectively, as backends). Methylation values of training 
DMRs were used as predictors for disease status. Hyper-
parameter tuning was performed with a fivefold cross-
validation using random oversampling examples (ROSE) 
to adjust for class imbalance in the analysis set of each 
validation fold. The final model performance was calcu-
lated using the original test set with sensitivity, specific-
ity, and accuracy as quality metrics.
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Code availability
All codes used for data processing and analysis are availa-
ble on GitHub. A rendered report of the code can also be 
found in the same repo. https://​github.​com/​Cente​rForM​
edica​lGene​ticsG​hent/​ExPECT-​analy​sis

Results
Patient characteristics
Significant differences in primiparity of the pregnancy 
(p = 0.022) were found when comparing all pregnancies 
affected by preeclampsia (n = 56) versus unaffected con-
trols (n = 183) (Supplementary Table 1). The mean GA at 
birth was 34.2 ± 3.45 standard deviation (SD) for com-
plicated pregnancies and 39 ± 1.39 SD weeks for normal 
pregnancies (p < 0.001, Wilcoxon rank-sum test), indicat-
ing the associated higher incidence of preterm birth in 
the severe preeclampsia cohort. Significant differences 
between the two groups could be observed in fertil-
ity treatments (e.g., insemination, IVF/ICSI) and BMI 
(p = 0.066 and p = 0.056).

Methylation profiling
To explore the effects of established preeclampsia on 
DNA methylation, cfDNA blood samples from cases 
(n = 27) were collected after the onset of maternal symp-
toms. Control samples (n = 50) were collected at a simi-
lar GA. A total of 4,517,769 unique methylation loci were 
detected, with an average of 4,010,419 unique CpG sites 
per sample. To increase the overlap in covered meth-
ylation loci between samples, methylation values were 
smoothed with BSmooth. To further improve the power 
of the analysis, the methylation loci were clustered based 
on their position, as the methylation of most CpG loci is 
heavily correlated with that of nearby located sites [65]. 
367,429 unique CpG clusters could be identified using a 
custom coordinate-based clustering method.

After batch correction, an overall hypomethylation was 
observed in symptomatic preeclampsia samples com-
pared to controls, with an estimated difference of 0.032 
(95% confidence interval (CI) 0.020–0.043) (Fig. 2).

Within the early pregnancy cohort, a significant dif-
ference was also observed, with preeclampsia cases 
having an estimated hypomethylation of 0.014 (95% CI 
0.027–0.0033).

Identification of differentially methylated regions (DMRs)
We observed a clear impact of the gestational age on the 
methylation patterns and, therefore, computed DMRs 
separately in the different groups, using the diagnostic 
approach using symptomatic samples and the predicting 
approach using presymptomatic samples. After correct-
ing for batch, fetal sex, and gestational age, 53,994 DMRs 

between symptomatic preeclampsia patients and con-
trols were discovered (p < 0.05). Of these, 21,499 had an 
absolute methylation difference larger than 10% between 
controls and preeclamptic patients. Gene set enrichment 
analysis of these regions identified multiple groups of 
genes related to developmental pathways. However, no 
gene ontology (GO) terms related to placental develop-
ment were found to be significantly overrepresented. To 
test the power of the identified DMRs in differentiating 
between the sample categories, a hierarchical cluster-
ing of the samples is performed using the top 250 most 
significant DMRs (Fig.  3A). The sex of the fetus and 
aspirin treatment were not utilized in the clustering 
method. They were, however, included as annotations to 
facilitate the interpretation of whether these parameters 
influenced the clustering patterns and, consequently, 
had an impact on the methylation. We found no differ-
ences in clustering patterns based on fetal sex or aspirin 
treatment.

In the presymptomatic case–control group, a similar 
approach yielded 67 DMRs (p < 0.05), of which 42 had an 
absolute methylation difference above 10% when com-
pared to matched controls (p < 0.01). To assess the dif-
ferentiation power, a clustering with these DMRs was 
performed (Fig.  3B), again with annotation of fetal sex 
and aspirin treatment, with, once more, no differences in 
clustering patterns based on each of these parameters.

When we compare the 21,499 DMRs from the symp-
tomatic group with the 42 DMRs identified in the 
presymptomatic group, only two are present in both, rep-
resenting, respectively, 0.0001% and 4.8% of the DMRs, 
with an overlap of 0.0001%.

Classification performance for preeclampsia diagnosis
For the diagnostic approach, three preliminary classifica-
tion models, based on the methylation of the top 25 most 
significant DMRs, were created to test the potential diag-
nostic power: random forest, support vector machine, 
and binomial logistic regression (Fig. 4A). For these mod-
els, the methylation values of the selected DMRs were 
the only used predictors for disease status. The training 
subset contained 57 samples (split in 5 validation folds of 
45 and 12 samples for hyperparameter tuning), and mod-
els were tested using a validation set of 20 samples. Areas 
under the curve (AUC) of 0.868, 0.824, and 0.835 were 
obtained for the random forest, support vector machine, 
and regression model after receiver operator characteris-
tic (ROC) analysis. Optimal models were selected based 
on the highest accuracy. The random forest and support 
vector machine models obtain a specificity of 100% and 
sensitivity of 57.1%, while the logistic regression model 
obtains a specificity of 61.5% and sensitivity of 85.7%.

https://github.com/CenterForMedicalGeneticsGhent/ExPECT-analysis
https://github.com/CenterForMedicalGeneticsGhent/ExPECT-analysis
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Prediction performance for preeclampsia risk stratification 
during early pregnancy
Identical model training was performed for the predictive 
approach using a training set of 126 first and early sec-
ond-trimester samples (Fig. 4B). A test set of 43 samples 
was used for validation, and AUCs of 0.699, 0.735, and 
0.716 were obtained for the random forest, support vec-
tor machine, and regression model, respectively. Optimal 
models were selected based on the highest accuracy. The 
random forest model obtained the highest specificity of 
97% and a sensitivity of only 22%. The support vector 
machine achieved a specificity of 91.1% and a sensitiv-
ity of 33.3%, while the logistic regression model obtained 
a similar specificity of 88.2% and an equal sensitivity of 
33.3%.

Additionally, models trained on early samples did not 
perform well in classifying late-pregnancy samples, and 
vice versa. Models trained on the presymptomatic data 

performed slightly better on the symptomatic cohort 
than the models trained on symptomatic data performed 
on the presymptomatic cohort. The first set of three 
models obtained AUCs of 0.739, 0.673, and 0.629, respec-
tively, while the second set obtained AUCs of 0.640, 
0.653, and 0.646, respectively (Fig. 4).

Longitudinal methylation profiling
When investigating the mean genomic methylation of 
sequential samples from pregnancies affected by preec-
lampsia compared to healthy pregnancies, no significant 
differences could be observed in the methylation trends 
across the pregnancy (Fig. 5A). Global genomic methyla-
tion appears to follow a similar pattern in both cases and 
controls, namely a decrease during the pregnancy.

The methylation trends of sFLT-1 and PIGF were 
also investigated (Fig.  5B, C). We observed a consist-
ent methylation of PIGF throughout pregnancy for both 

Fig. 2  General decrease in methylation during pregnancy, with a significant genome-wide hypomethylation in preeclampsia patients near late 
pregnancy. Box plots showing the mean genomic methylation level of controls and preeclampsia (PE) cases. Means were compared with Wilcoxon 
rank-sum tests using Bonferroni multiple testing correction. Methylation levels from presymptomatic samples, sampled between 11 and 14 weeks 
of gestation, show no significant difference. Methylation levels between cases and controls sampled after 20 weeks of gestation show a significantly 
lower methylation level of cases compared to controls. Significant methylation differences between presymptomatic and symptomatic groups can 
be observed for both preeclampsia cases and controls
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pregnancies unaffected and affected by preeclampsia 
(Fig. 5B, C). Pregnancies affected by preeclampsia appear 
to maintain stable methylation. For sFLT-1, no signifi-
cant changes in methylation could be observed in either 
cases or controls of the longitudinal cohort. However, 
when looking at the presymptomatic and symptomatic 
cohorts, a significant decrease in methylation could be 
observed for both cases and controls in the later stages 
of the pregnancy (Supplementary Fig. 4). No methylation 
differences could be observed for PIGF in these cohorts. 
(Supplementary Fig. 5).

However, when comparing the methylation trends 
of the DMRs identified during both the predictive and 
diagnostic stages of this study, there are apparent differ-
ences in the evolution of the methylation. To investigate 
if multiple genomic regions followed similar methyla-
tion trends across the duration of pregnancy, hierarchical 
clustering of DMRs discovered in symptomatic and pre-
symptomatic samples was performed. The methylation 
values of regions contained in these clusters were plotted 
across the pregnancy duration (Supplementary Figs.  2 
and 3). Trends in the methylation patterns of sympto-
matic DMRs seemed to diverge at the end of pregnancy 
duration, while the methylation patterns of presympto-
matic DMRs seemed to converge. This further illustrates 

the difference between DMRs present early in pregnancy 
versus later in pregnancy. However, due to limited data 
points, the significance of these trends remains to be 
seen.

Lastly, the DMR calculation was reevaluated, employ-
ing the methodology as previously described, but now all 
longitudinal samples were included, meaning multiple 
samples per participant. Novel DMRs were computed 
with GA as a factor in the DMR modeling procedure with 
limma; subsequent samples from the same patient were 
not considered. This analysis identified a limited number 
(73) of DMRs between preeclampsia cases and healthy 
pregnancies that were statistically independent of GA. 
These DMRs prove insufficient for the creation of a clas-
sification model that would perform well throughout the 
duration of the pregnancy.

Discussion
This study revealed important insights into the epigenetic 
landscape of placental development, with a primary focus 
on diagnosing and predicting preeclampsia. Our find-
ings offer a significant understanding of DMRs linked 
to pregnancy complications, providing crucial knowl-
edge about methylation changes at specific genomic 
regions. By revealing critical differences between normal 

Fig. 3  Significantly differently methylated regions (DMRs) enable distinct clustering of preeclampsia cases and controls during third trimester 
pregnancies. Heatmap figures show a hierarchical clustering of samples (columns) from the symptomatic analysis set (A) and the presymptomatic 
analysis set (B). The clustering is based on the methylation level of the top 250 significant DMRs for the symptomatic set and all 42 DMRs 
for the presymptomatic set. The sample category, fetal sex, and aspirin treatment are included as additional annotations per sample
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and complicated pregnancy, this study underscores the 
potential for further refinement of these regions through 
an expanded sample set, which appears to be a worth-
while prospective goal for additional analysis.

Genome-wide DNA methylation studies on placen-
tal tissue have shown that placental disease can induce 
aberrant methylation patterns and, hence, inferred gene 
expression, primarily due to oxidative stress [40, 46]. In 
general, genome-wide hypomethylation is observed, 
with hypo- and hypermethylation of specific promotor 
regions. This suggests that these regions are associated 
with disease progression and play a role in regulating 
early onset preeclampsia-specific gene expression [36, 
40–42, 44, 46, 66–68].

Recent developments in liquid biopsies have revealed 
important biomarker discoveries for noninvasive dis-
ease exploration. These advancements have enabled 
early cancer detection, tumor identification, and moni-
toring of treatment responses [69]. The potential of 
noninvasive cfDNA profiling to predict preeclampsia 
has been investigated in several studies [47, 49, 51–54, 
66]. Typically, there is a gradual decrease in cfDNA 

methylation levels throughout both normal and compli-
cated pregnancies, particularly noticeable in the latter. 
In this prEgnancy Complications Testing or ExPECT 
study, we conducted analyses in both early, mid, and 
late stages of pregnancy for 25 pregnancies, allowing for 
a longitudinal assessment of the genome-wide meth-
ylation status. Indeed, we observed a general decrease 
in genome-wide methylation throughout pregnancy 
(Fig. 5A). Furthermore, we observe a significant reduc-
tion within both control and complicated pregnancies 
when distinguishing between general genome-wide 
methylation patterns during early and late pregnancy 
(Fig.  2). Importantly, we noted a substantial hypo-
methylation in late pregnancy among pregnancies 
complicated by preeclampsia compared to their early 
pregnancy stage and compared to the entire pregnancy 
duration of the controls. Interestingly, within the early 
pregnancy cohort, we detected a significant differ-
ence in methylation patterns between pregnancies that 
later developed preeclampsia and those that remained 
uncomplicated. This observation indicates that meth-
ylation changes associated with preeclampsia may be 

Fig. 4  Multiple machine learning classifiers allow successful classification and prediction of preeclampsia patients. Three different types 
of classification models were tested: random forest (1), support vector machine (2), and a weighted logistic regression model with elastic net 
regularization (3). Models in the top row (A) are trained on a symptomatic sample set (> 20 weeks gestational age, n = 57). Models in the bottom 
row (B) are trained on a presymptomatic sample set (between 11 and 14 weeks of gestation, n = 126). Curves are based on a symptomatic test set 
(n = 20) in orange and a presymptomatic test set in green (n = 43)
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detectable early in pregnancy, potentially before clini-
cal symptoms manifest.

The diagnostic precision of our developed test is prom-
ising. It could serve as a screening test for high-risk 
pregnancies during their third trimester, guiding deci-
sion-making concerning timely interventions. It could 
enhance disease identification and the distinction of 
preeclampsia from other less severe pregnancy-related 
disorders, such as pregnancy-induced hypertension 
(PIH), that might not progress to preeclampsia. A clini-
cal application could be retesting at several time points 
starting from the onset of maternal symptoms, allowing 
for more precise monitoring of (suspected) preeclampsia.

More importantly, a key finding was the identification 
of 42 distinct DMRs during early pregnancy in cfDNA 
from patients who subsequently developed severe preec-
lampsia. We employed unsupervised clustering to ana-
lyze a vast dataset using a limited set of predefined data 
groups without relying on prior knowledge or labeled 
information. This approach aims to maximize the simi-
larity within each cluster while simultaneously maximiz-
ing dissimilarity between different clusters. This process 
reveals valuable insights and relationships that may not 
be readily apparent; using various machine learning tech-
niques, preliminary diagnostic models were created with 
a sensitivity of 71.4% and a specificity of 100%.

Fig. 5  General genome-wide methylation trends across pregnancy differ between preeclampsia cases and controls. Mean whole genome 
methylation follows a similar trend for preeclampsia patients and controls across pregnancy duration. At 11–13 weeks of gestation, a lower global 
methylation is noted for preeclampsia cases (A). The methylation pattern of two preeclampsia-related genes, sFLT-1 (B) and PlGF (C), is slightly 
different for controls and preeclampsia patients. Smoothing was performed with local polynomial regression fitting, and standard error (SE) 
is shown as a band
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In this study’s diagnostic and predictive approaches, 
we identified different, significant DMRs during late and 
early pregnancy, with a limited overlap of 0.0001%. This 
disparity is also evident when applying the symptomatic 
prediction models to the presymptomatic sample cohort 
and vice versa, leading to low AUC values. This find-
ing is significantly lower than previously reported data 
[51], where a 7.4% overlap of significant DMRs during 
and proceeding preeclampsia was observed. This indi-
cates that the DMRs associated with preeclampsia early 
in pregnancy do not correspond to those during mater-
nal symptoms. The higher percentage of overlapping 
DMRs in previous studies is most likely due to their tar-
geted focus on placenta-driven regions. The difference in 
detecting significant DMRs in cfDNA during early and 
late pregnancy can be attributed to several factors. Dif-
ferent gene expression levels in the placenta throughout 
pregnancy depend on several fetal development stages, 
maternal health, and environmental influences. There-
fore, methylation changes in the placenta over time are a 
natural phenomenon. Additionally, maternal blood flow 
through the placental villi typically starts at the end of the 
first trimester, significantly increasing oxygen levels and 
leading to placental stress, potentially initiating aberrant 
placentation. As a result, subtle methylation changes in 
the placenta may appear during this period, making it dif-
ficult to detect noninvasively due to the limited amount 
of placental cfDNA present in maternal circulation at 
that time point. In contrast, as pregnancy progresses 
and maternal disease develops, there is a more apparent 
association between cfDNA shed from multiple tissues, 
including the placenta, liver, and kidneys, and altered 
methylation patterns. This increased relevant cfDNA 
provides a more robust signal for detecting methylation 
changes, making it easier to observe significant preec-
lampsia-related changes compared to the earlier stages of 
pregnancy.

A significant strength of this ExPECT study lies in the 
non-selection approach, which overcomes the limitations 
of studies with predefined target regions, covering ~ 3% 
of the genome and ~ 80% of relevant CpG islands. This 
approach, enriching regions across the genome, might 
also explain the significantly reduced overlap between 
DMRs observed early in pregnancy and those observed 
during maternal symptoms, as we do not focus only on 
specific placental-driven regions. The success of our 
developed models can be attributed to the evaluation of 
DMRs from methylation data across the genome, without 
preselection of regions and the diverse set of patients in 
the study. However, due to a limited testing set of sam-
ples, rigorous validation of the obtained model is man-
datory. A more extensive validation set of samples from 
presymptomatic preeclampsia patients should be used to 

confirm our findings and determine the screening test’s 
positive and negative predictive values.

Several other studies focused on the analysis of cfRNA, 
identifying aberrant gene expression profiles associated 
with GA, infection, preterm birth, and preeclampsia, and 
independent of maternal characteristics, like BMI and 
race [47, 48, 70–72]. As epigenetic changes are directly 
linked to gene expression, it is unsurprising that signifi-
cant differences can also be measured here.

However, it is important to mention that our analysis 
process using cf-RRBS is considerably more straightfor-
ward than complex cfRNA analyses.

A detailed evaluation of genes and associated pathways 
was not the focus of our study. However, given the sig-
nificance of the biomarkers PlGF and sFLT-1 in clinical 
prediction models, we did evaluate the methylation sta-
tus of these two genes. sFLT-1 and PlGF biomarkers are 
able to predict preeclampsia ahead of symptom onset and 
prognostically characterize symptom severity after diag-
nosis [73, 74]. We found a slightly increased methylation 
of the anti-angiogenic factor PlGF in normal pregnancies 
after 30  weeks of gestation. A relatively stable methyla-
tion was observed in preeclampsia cases, indicating that 
more PlGF will be expressed late in these pregnancies 
compared to normal controls. However, the methylation 
values of PIGF are less reliable in our data due to the lim-
ited number of CpG sites we pick up related to the gene 
(three clusters). For the pro-angiogenic factor sFLT-1, a 
drop in methylation was observed in preeclampsia cases 
after 30  weeks of gestation; in control pregnancies, a 
smaller decrease was observed, which could result in an 
increased sFLT-1 gene expression late in preeclamptic 
pregnancies. The methylation values of sFLT-1 are more 
reliable due to a higher number of data points (23 clus-
ters). Hence, expression values of sFLT-1 could lie sig-
nificantly higher in preeclampsia cases than in control 
pregnancies. At the same time, we cannot draw signifi-
cant conclusions about PIGF based on our data.

Gestational age is an important parameter influenc-
ing cfDNA methylation levels. Obesity, associated with 
a lower fetal fraction, increases methylation during the 
first trimester [66]. However, other variables like mater-
nal age, fetal gender, smoking, alcohol and drug use, 
chemical exposure, and nutrition are also associated with 
changed methylation patterns [50, 68]. We matched cases 
and controls for GA to address the potential bias from 
naturally induced changes in placental and cfDNA meth-
ylation. Other patient characteristics such as BMI, aspi-
rin treatment, chronic hypertension, previous history of 
preeclampsia, and maternal cardiovascular disease were 
not matched. De Borre et  al. [51] conducted an elabo-
rate matching strategy and found no significant effect of 
BMI, parity, a positive history of preeclampsia, or disease 
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severity. Therefore, we opted against matching for these 
patient characteristics, creating a model that requires 
minimal patient information. This approach reduces the 
risk of errors or delays due to incomplete patient data 
and is objective by excluding operator bias, such as those 
from ultrasound examinations or inaccurate blood pres-
sure measurements. The clinical parameters BMI, pri-
miparity of the pregnancy, and fertility treatment were 
included as annotations in the unsupervised clustering 
but showed no clear relevance (data not shown). This lack 
of significance supports our decision to exclude them 
from further analysis. An important positive influenc-
ing factor on placental development is aspirin treatment 
[75]. However, for the predictive power of our models, it 
is important to note that blood sampling occurs before 
14 weeks when no or little effect of this aspirin treatment 
has occurred yet. For this reason, we did not include 
aspirin treatment in our models.

The National Institute for Health and Care Excellence 
(NICE, UK) and the American College of Obstetricians 
and Gynecologists (ACOG) have made recommenda-
tions based on maternal risk factors such as hypertensive 
disorder during a previous pregnancy and high BMI [76, 
77]. However, these risk factors have a poor predictive 
performance, with a detection rate of only 41% when fol-
lowing the NICE scoring system [78]. Numerous studies 
aimed to enhance risk assessment, leading to the devel-
opment of various models [22, 23, 79–83]. The Fetal 
Medicine Foundation (FMF) developed an algorithm that 
improved first trimester risk assessment by combining 
maternal factors, biomarkers (PlGF and Pregnancy-asso-
ciated plasma protein A or PAPP-A), ultrasound-based 
measurements (mean uterine artery resistance) and mean 
arterial blood pressure further. This approach resulted 
in an improved detection rate of 82% [84–88]. De Borre 
et al. [51] included the extended prior risk model (ePRM) 
[89] into their prediction model, improving the sensitiv-
ity of their model. We did not integrate an existing clini-
cal model into our prediction model because, in practice, 
obstetricians use various parameters and guidelines. 
These clinical screening models rely on different combi-
nations of maternal characteristics and medical history, 
which can lack sufficient power or reliability for effective 
risk prediction. Additionally, the interpretation of spe-
cialized ultrasound examinations, blood biomarkers, and 
blood pressure measurements can be subjective and may 
not accurately reflect the actual condition, often influ-
enced by operator bias. To facilitate the implementation 
of our prediction model into obstetric health care, we 
aimed to develop a genetic model that can easily be intro-
duced as an independent risk factor determination, guid-
ing each obstetrician in the prenatal follow-up of their 
patients.

cf-RRBS is a cost-efficient, open-source technol-
ogy that is easy to implement and can be automated. It 
requires minimal high-cost investments, primarily an 
Illumina sequencing platform. The library preparation is 
a single-tube procedure and does not rely on expensive 
target probes or commercial kits. Additionally, our data 
analysis workflow is freely available and straightforward 
to implement, making it accessible for various applica-
tions in research and clinical settings. Another advan-
tage of the cf-RRBS method is the ability to perform copy 
number analysis [59]. This would allow for a more com-
prehensive prenatal screening to simultaneously assess 
the risk of preeclampsia and to screen for fetal aneuploi-
dies. This would broaden the clinical application and is 
worthwhile to explore further. However, large-scale vali-
dation studies must be conducted before this method can 
be implemented in the context of noninvasive prenatal 
testing (NIPT).

While cf-RRBS effectively assesses cfDNA methyla-
tion, novel long-read sequencing technologies now offer 
a more holistic view. This expands our understanding 
beyond methylation by incorporating end motif analysis, 
and fragment size evaluation, and tissue of origin deter-
mination, ultimately enabling more comprehensive char-
acterization of complex pathologies [90, 91]. For example, 
long-read sequencing by Oxford Nanopore Technologies 
(ONT) has been introduced in liquid biopsy studies to 
identify cell type, cancer-specific methylation changes, 
and cancer-associated fragmentation signatures [92, 93]. 
This comprehensive analysis enables a deeper insight 
into the biological processes underlying various diseases. 
Despite its potential, the application of fragmentomics in 
routine diagnostics requires further investments to man-
age the complex data analysis.

Conclusions
Improving the accuracy of identifying pregnant indi-
viduals at risk of developing placental dysfunction 
would enable improved and more precise prenatal care, 
leading to a reduction or even prevention of adverse 
pregnancy outcomes, and could avoid overtreatment. 
Previous studies have established the identification of 
disease-associated methylation changes in the placenta. 
We have translated this identification process into a 
noninvasive strategy via cfDNA methylation profil-
ing. Our approach can be used to identify and moni-
tor preeclampsia during third-trimester pregnancy to 
enable more targeted prenatal interventions that would 
lead to improved pregnancy outcomes. The focus of the 
ExPECT study was to improve the reliability of identi-
fying high-risk pregnancies early in gestation, a signifi-
cant step forward in prenatal care. Our findings reveal 
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promising results. However, we acknowledge the need 
to expand the test set and include additional hospitals 
to further validate and improve the model’s perfor-
mance. Nonetheless, our noninvasive cfDNA analysis 
has demonstrated its potential to be introduced into 
daily diagnostic practice as a diagnostic and predic-
tive tool for placental dysfunction, aiming to minimize 
adverse pregnancy outcomes and reduce unnecessary 
treatments.
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