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Abstract 

Background Pleural mesothelioma (PM) is a rare and aggressive cancer type, typically diagnosed at advanced stages. 
Distinguishing PM from other lung diseases is often challenging. There is an urgent need for biomarkers that can 
enable early detection. Interest in the field of epigenetics has increased, particularly in the context of tumour develop-
ment and biomarker discovery. This study aims to identify specific changes in DNA methylation from healthy pleural 
tissue to PM and to compare these methylation patterns with those found in other lung diseases.

Results EPIC methylation array data (850 K) were generated for 11 PM and 29 healthy pleura in-house collected sam-
ples. This is the first time such a large dataset of healthy pleura samples has been generated. Additional EPIC meth-
ylation array data (850 K) for pleural mesothelioma and other lung-related diseases were downloaded from public 
databases. We conducted pairwise differential methylation analyses across all tissue types, which facilitated the identi-
fication of significantly differentially methylated CpG sites. Extensive differential methylation between PM and healthy 
pleura was observed, identifying 81,968 differentially methylated CpG sites across all genomic regions. Among these, 
five CpG sites located within four genes (MIR21, RNF39, SPEN and C1orf101) exhibited the most significant and pro-
nounced methylation differences between PM and healthy pleura. Moreover, our analysis delineated distinct meth-
ylation patterns specific to PM subtypes. Finally, the methylation profiles of PM were distinctly different from those 
of other lung cancers, enabling accurate differentiation.

Conclusions DNA methylation analyses provide a robust method for distinguishing PM from healthy pleural tissues, 
and specific methylation patterns exist within PM subtypes. These methylation differences underscore their impor-
tance in understanding disease progression and may serve as viable biomarkers or therapeutic targets. Moreover, dif-
ferential methylation patterns between PM and other lung cancers highlights its diagnostic potential. These findings 
necessitate further translational studies to explore their clinical applications.
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Introduction
Malignant mesothelioma is a rare and aggressive cancer 
type emerging from the mesothelium, which borders 
the surface of several organs, among which the lungs. 
Around 80% of all mesothelioma cases originate from 
the pleura, the mesothelial layer covering the lungs, and 
are called pleural mesothelioma (PM) [1]. PM is divided 
into three main subtypes based on its histomorphological 
growth pattern: epithelioid (55%), sarcomatoid (15%) and 
biphasic (30%), the latter having characteristics of both 
epithelioid and sarcomatoid PM.

The most important factor causing the development 
of PM is asbestos exposure, accounting for more than 
80% of cases [2]. Inhaled asbestos fibres are deposited in 
the lungs and can cause chronic inflammation and frus-
trated phagocytosis, leading to DNA damage and tumour 
formation [3]. The latency period between first asbes-
tos exposure and disease diagnosis is estimated to be 
30–50 years. Describing the worldwide burden of PM is 
challenging, as there is invalid reporting and inaccurate 
diagnoses in many countries. At least 30,870 mesothe-
lioma deaths worldwide were estimated in 2020, with the 
highest numbers in Northern Europe [4]. Due to the ban 
on the use of asbestos in several countries, the incidence 
rate has recently decreased for the first time [4]. Cur-
rently, the standard treatment has a palliative intent for 
most cases, and the prognosis is poor, with a median life 
expectancy of 10–12 months for untreated patients and 
18 months for patients treated with immunotherapy [5].

The diagnosis of PM is difficult due to several reasons, 
including slow growth and non-specific presenting symp-
toms [6]. This results in an important diagnostic delay, 
often leading to diagnosis at an advanced disease stage. 
Moreover, PM is hard to differentiate from other benign 
or malignant lung-related diseases such as lung cancer. 
Currently, the initial diagnostic step for PM involves con-
ducting a computed tomography (CT) scan [7, 8]. How-
ever, a chest CT scan is only able to visualize the tumour 
once it reaches a certain size [2]. The shape of a PM 
tumour also impedes visualization, because of its diffuse 
and non-spherical growth pattern along the lungs [9]. 
Moreover, conventional imaging methods, such as chest 
CT scans, are unreliable in distinguishing PM tumours 
from other benign asbestos-related lesions [2]. The his-
tological examination of a biopsy sample by pathologists 
is the final challenging step towards the diagnosis of PM 
[10]. Initially, the cellular origin is determined using a 
targeted panel of mesothelial (e.g. WT1 and calretinin) 
and epithelial (e.g. MOC-31 and claudin-4) immu-
nomarkers, for which sarcomatoid PM samples are nega-
tive [10, 11]. After confirmation of the mesothelial origin, 
histologic morphology is assessed. However, the mor-
phologic overlap between PM and benign mesothelial 

lesions complicates a reliable distinction. Therefore, 
additional immunohistochemical markers (e.g. for loss 
of BAP1 and MTAP expression) and fluorescence in situ 
hybridization (e.g. for homozygous deletion of CDKN2A) 
are used to assist this decision [10]. Unfortunately, the 
absence of these specific markers is not consistent across 
all PM cases, thereby reducing the sensitivity of the diag-
nostic process. Another difficulty is both inter- and intra-
tumour heterogeneity [8]. This diversity appears in both 
morphological and molecular dimensions. Molecular 
analyses elucidate notable heterogeneity among patients, 
within distinct regions of a given tumour concerning dif-
ferent clonal compositions, and throughout the treat-
ment trajectory [12]. All these facts stress the need for 
biomarkers for early detection of PM with high specific-
ity and sensitivity and for possible treatment allocation in 
case of an actionable target [6].

The field of tumour genetics is promising for the identi-
fication of novel biomarkers. Genetic alterations, includ-
ing mutations in suppressor genes, such as BAP1 (45.1%), 
CDKN2A (42.2%), CDKN2B (36.0%), NF2 (31.3%), and 
MTAP (27.3%), have been reported in PM [13]. How-
ever, mutations are not suitable as general biomarkers for 
PM, as PM exhibits a heterogeneous genetic landscape 
and a low somatic mutational burden. Furthermore, no 
oncogenic driver mutations have been identified [14]. 
This could be explained by the fact that asbestos is a 
non-mutagenic carcinogen [15]. Therefore, interest in 
the epigenome has grown for the elucidation of tumour 
development and the identification of biomarkers [3]. 
The epigenome consists of histone modifications (includ-
ing acetylation, methylation and phosphorylation) and 
DNA alterations (including methylation) without chang-
ing the genetic nucleotide sequence. An important epige-
netic modification that is considered to be a hallmark of 
cancer is DNA methylation [16, 17].

DNA methylation involves the addition of a methyl 
group on the fifth position of cytosine in a CpG dinu-
cleotide context, resulting in 5-methylcytosine [16]. 
Regions with a high frequency of CpG sites are called 
CpG islands and are often located in promotor regions 
of genes. In general, global epigenetic reprogramming 
is observed in all kinds of tumour types [17]. Overall, a 
global loss of methylation is detected in tumour cells, 
leading to genomic instability [17]. In contrast, hyper-
methylation of specific CpG islands can lead to gene 
silencing or inactivation, as observed in tumour suppres-
sor genes. Conversely, hypomethylation of a CpG island 
in a promotor region can lead to gene activation or over-
expression, potentially involving oncogenes [16]. Until 
now, most research has focused on DNA methylation of 
individual genes in PM [18]. Epigenome-wide analyses on 
PM samples have been sparse until two research groups 
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recently published DNA methylation analyses performed 
on a large cohort of PM patients [11, 19]. Bertero et  al. 
aimed to discriminate PM from neoplastic and reactive 
histologic mimics, and Jurmeister et  al. built a classifi-
cation model to distinguish PM from chronic pleuritis, 
pleural carcinosis, and pleomorphic lung carcinomas. 
Neither research group included a control group com-
prising healthy pleural tissue samples. In this study we 
aimed to elucidate specific changes from healthy pleural 
tissue towards PM, necessitating the use of such a con-
trol group. Furthermore, variations in methylation pat-
terns between PM and other lung-related diseases were 
studied. These alterations in DNA methylation patterns, 
when compared to those in pleural tissue and other lung 
diseases, hold the potential to serve as diagnostic bio-
markers for PM.

Methods
Sample collection
PM tumour tissue samples were routinely collected 
between 2012 and 2021 by the biobank of the Antwerp 
University Hospital (UZA, Belgium). The UZA ethical 
committee approved our study and permitted the use of 
retrospective samples (Reference number 16/23/248). 
All tissue samples were fresh frozen and stored at -80 °C 
after collection until further use. Diagnosis and overall 
tumour percentage were verified and determined by a 
pathologist (D.P.) by histological examination of hema-
toxylin–eosin-stained sections. We used 11 fresh frozen 
PM tumour tissue samples from treatment naïve patients, 
collected between 2013 and 2020. All samples had an 
overall tumour cell percentage (TCP) between 40 and 
80% (Suppl Table S1).

For this study, 29 healthy parietal pleural tissue sam-
ples were prospectively collected from treatment naïve 
patients after approval of the UZA ethical committee 
(EDGE number 002046) in the Antwerp University Hos-
pital in 2021 and 2022. The samples were collected from 
patients who underwent thoracic surgery for another 
reason than mesothelioma (Suppl Table S1). All patients 
gave written informed consent. All tissue samples were 
fresh frozen and stored at -80  °C after collection until 
further use. The samples were verified by a pathologist 
(D.P.) by histological examination of hematoxylin–eosin-
stained sections.

DNA extraction and methylation analysis
DNA was extracted from ten to fifteen 10  µm-sections 
from the tissue samples, depending on the tissue size, 
using the QIAamp DNA Micro Kit (Qiagen, Hilden, 
Germany) according to the manufacturer’s protocol. The 
DNA was stored at -20 °C until further usage. 500 ng of 
each DNA sample was bisulfite converted with an EZ 

DNA methylation kit (Zymo Research, California, USA) 
following the manufacturer’s protocol specifically for 
a downstream analysis with an Infinium Methylation 
Microarray. Genome-wide methylation profiles were 
obtained using an Infinium Methylation EPIC 850  K 
BeadChip Kit both v1.0 and v2.0 (Illumina, California, 
USA) according to the manufacturer’s protocol.

Methylation data processing and differential methylation 
analysis
Raw intensity array files were processed using the 
ChAMP (2.29.1) Bioconductor package [20, 21]. Meth-
ylation status was reported as Beta values, which range 
from 0 (indicating no methylation) to 1 (indicating full 
methylation). After data read-in, samples with more 
than 5% of their probed data missing were excluded. 
Underperforming probes were filtered out from the 
downstream analysis; this included control probes, X‐/Y‐
chromosome probes, multihit probes, and probes with 
known single nucleotide polymorphisms (SNPs). The 
remaining probes with missing values were also removed 
and Beta values less than 0 were set at 0 and values 
above 1 were set at 1. To assess data quality, we calcu-
lated both the log2 median intensity ratios (for methyl-
ated and unmethylated signals) and the density of Beta 
values. To minimize technical discrepancies between 
Type-I and Type-II Illumina probes, BMIQ normaliza-
tion was applied. Differential methylation was also con-
ducted using ChAMP, which employs parametric linear 
mixed models to assess variations in methylation across 
different groups. The first criterion for identifying differ-
entially methylated CpG sites (DMCs) was an adjusted 
P‐value (adj.P.Val) ≤ 0.05, corrected for multiple testing 
using the Benjamini–Hochberg method [22]. The delta 
beta for each probe was defined as the difference in mean 
Beta value between group A and group B. A positive delta 
beta indicates higher methylation in group A (hyper-
methylation), while a negative delta beta reflects lower 
methylation in group A (hypomethylation). DMCs with 
an absolute delta beta value ≤ 0.05 were filtered out to 
reduce false positives. Lastly, we assessed the significance 
of batch effects across the CpG sites by comparing the fit 
of an ordinary least square regression model (with group 
as independent variable) without a random effect to that 
of a linear mixed model, incorporating batch as a random 
effect and group as a fixed effect. For each CpG site, we 
then tested whether the random effect was significant 
using a likelihood ratio test. Under the null hypothesis 
that no batch effect exist, the p-values from the random 
effect should follow a uniform U(0,1) distribution. After 
calculating the significance of the random effect for all 
CpG sites, we compared the observed p-value distribu-
tion with the expected null distribution. CpG sites whose 
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p-value distribution deviated from the null were subse-
quently excluded from the final DMP list. Differentially 
methylated regions (DMRs) were identified using the 
Bumphunter algorithm extension in ChAMP. The signifi-
cance of DMRs was determined based on the harmonic 
mean of the individual CpG P-values (FDR-corrected). 
DMRs with a mean difference ≤ 0.05 were filtered out to 
reduce false positives. All genomic locations are reported 
using Genome Build 19/ GRCh37.

Publicly available datasets
The MESOMICS Methylation EPIC 850  K 
(EGAD00010002053) and the LungNENomics Meth-
ylation EPIC 850  K (EGAD00010001720) datasets were 
downloaded from the European Genome-phenome 
Archive (EGA) after a Data Access Agreement with the 
owners [23, 24]. All other used datasets were downloaded 
from the Gene Expression Omnibus (GEO) and are listed 
in Table  1. To maintain uniform data processing, we 
chose to use raw idat files over processed beta values. 
The datasets were then processed using the same steps 
described above.

Statistical analyses
Subsequent analyses were carried out using the R soft-
ware (version 4.3.1). For exploratory and visualization 
purposes, dimensionality reduction using t-distributed 
stochastic neighbour embedding (tSNE) clustering was 
performed using the Rtsne package with the 100,000 
most variable probe Beta values. All adjusted P-values are 
two‐sided, and those ≤ 0.05 were considered statistically 
significant. All genomic annotations were done using the 
GRCh37/hg19 genome build.

Results
Generation of the methylation data matrix
We performed a meta-analysis, combining our in-house 
generated EPIC methylation dataset consisting of 11 PM 
tissue samples and 29 healthy pleural tissue samples with 
10 online available datasets of EPIC methylation data 
from PM and other lung diseases (Table  1). Collecting 
healthy pleural samples is challenging and to the best of 
our knowledge, this is the first time such a large data-
set of healthy pleura samples has been generated. After 
quality control, 5 PM samples (dataset GSE164269) and 
1 LUAD sample (dataset GSE203061) were excluded due 
to an excess of failed CpG sites (cut-off failed fraction of 
0.05). Of the 865,917 examined CpG sites on the EPIC 
methylation array, 551,236 CpG sites have a successful 
measurement for each of the samples and were retained 
for further analysis (Suppl Table  S2). The final data 
matrix consisted of DNA methylation data for 551,236 
CpG sites on 257 pleural mesothelioma (PM) samples, 
32 healthy pleura (PL) samples, 7 chronic pleuritis (CP) 
samples, 90 lung adenocarcinoma (LUAD) samples, 77 
lung squamous cell carcinoma (LUSC) samples, 56 lung 
carcinoid (LUCA) samples, 20 large cell neuroendocrine 
carcinoma (LCNEC) samples, and 44 lung adjacent nor-
mal (LAN) samples.

Differential methylation between pleural mesothelioma 
and healthy pleura
First, we explored the methylation data of the PM and 
the healthy pleural tissue using a t-distributed stochas-
tic neighbour embedding (tSNE) plot. Figure  1 displays 
a nearly perfect division between healthy pleura and PM 
samples. The healthy pleura samples are clustered closely 

Table 1 Datasets and samples used in this study

Bold indicates the total numbers are given before filtering and after QC filtering

CP, Chronic pleuritis; LAN, Lung adjacent normal; LCNEC, Large Cell Neuroendocrine Carcinoma of the Lung; LUAD, Lung adenocarcinoma; LUCA, Lung carcinoid; LUSC, 
Lung squamous cell carcinoma; PL, Pleura; PM, Pleural Mesothelioma

Dataset CP LCNEC LAN LUAD LUCA LUSC PL PM TOTAL

Own data 29 11

EGAD00010001720 [24] 20 56

EGAD00010002053 [23] 3 130

GSE114989 [60] 7 27

GSE124052 [61] 25

GSE126043 [62] 9 6

GSE158422 [63] 37 37

GSE164269 [19] 79

GSE175769 [64] 10

GSE180060 [65] 27

GSE203061 [11] 7 28 9 32

TOTAL 7 20 44 91 56 77 32 262 589
After QC filtering 7 20 44 90 56 77 32 257 583
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together, while the PM samples are more widespread. 
Three healthy pleura samples are visualized at the bound-
ary of the PM cluster. We examined the association 
between tumour cell percentage (TCP) of each sample 
and the methylation pattern, but we found no correlation 
(Suppl Figure S1).

Differential methylation was identified in distinct genomic 
regions
Next, we investigated differential methylation patterns of 
individual CpG sites between PM tissue and healthy pleu-
ral tissue. Of the 551,236 examined CpG sites, we found 
81,968 significantly differentially methylated CpG sites 
(DMCs). Of these, 50,346 are located in 14,745 unique 
protein-coding genes, 421 DMCs in 223 microRNA-cod-
ing genes, 1,178 DMCs in 569 lncRNA-coding genes and 
30,023 in intergenic regions. For all DMCs, the difference 
in methylation level (delta beta) between the two groups 
was calculated. Of all DMCs, 63,463 CpG sites are hypo-
methylated in PM (negative delta beta), and 18,505 CpG 

sites are hypermethylated in PM (positive delta beta). The 
only genomic locations with clear hypermethylation, are 
within CpG islands, especially in the intergenic regions 
(IGRs), in the 1500  bp and 200  bp fragment before the 
transcription start site (TSS200), the 5’UTR region, and 
the first exon (Fig. 2). In all other regions, hypomethyla-
tion predominates, especially in the open sea regions (i.e. 
not in proximity of CpG islands). Delta beta values range 
between −0.549 and 0.568.

Most significant and differentially methylated CpG sites
To identify interesting CpG sites, we calculated two top 
50 DMC lists, one ranked on adjusted P-value and one 
ranked on delta beta, as both parameters are essential for 
discrimination (Suppl Tables S3 and S4). Afterwards, we 
determined the overlap between both lists. This way, five 
CpG sites in four genes were identified: MIR21, RNF39, 
SPEN and C1orf101 (Fig. 3 and Table 2). The area under 
the ROC curve (AUC) for the discrimination between 

Fig. 1 t-distributed stochastic neighbour embedding (tSNE) plot of the methylation patterns based on the 100,000 most variable CpG sites of 257 
PM samples and 32 healthy pleura samples
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PM and healthy pleura for these DMCs ranges between 
0.986 and 0.994.

We examined these four genes in more detail (Fig. 4). 
For MIR21 (MicroRNA 21), all four examined CpG sites 
are hypomethylated and demonstrate a large delta beta 
(0.429, 0.482, 0.469 and 0.418). Two of them are located 
in the TSS200, the other two in the gene body. In RNF39 
(Ring Finger Protein 39), 28 of the 54 examined CpG 
sites are differentially methylated. There are 14 DMCs 
with a delta beta higher than 0.2 (hypermethylated). All 
of them are located in a CpG island at the end of the 
gene body. Notably, all DMCs in the promotor region 
are hypomethylated. However, in that region, no large 
delta beta values were detected. In SPEN (Spen Family 
Transcriptional Repressor), 11 of the 36 examined CpG 
sites are differentially methylated. Most of the DMCs are 
hypomethylated and DMCs with the highest absolute 
delta beta are located at the end of the gene body. In the 
promotor region, there is only one significant CpG site. 

For C1orf101 also known as CATSPERE (Catsper Chan-
nel Auxiliary Subunit Epsilon), seven of the 16 exam-
ined CpG sites are differentially methylated. Most of the 
DMCs are hypomethylated and DMCs with the highest 
absolute delta beta are located at the end of the gene 
body. In the promotor region, there is only one signifi-
cant CpG site.

Comparison with COSMIC genes
We compared our list of DMCs with the COSMIC list 
(Catalogue of Somatic Mutations in Cancer) [25]. COS-
MIC presents a list of 743 genes with mutations causally 
implicated in cancer, including oncogenes, tumour sup-
pressor genes, and fusion genes. Of this list, 677 genes 
are examined by the EPIC methylation array. Among 
the 81,968 DMCs we identified between PM and healthy 
pleura, 2,973 CpG sites are located in 556 COSMIC 
genes. For these genes, we calculated which ones have 
a high ratio of significant DMCs compared to the total 

Fig. 2 Boxplot showing the delta beta distribution of each location category for all DMCs between PM and healthy pleura. Categories are based 
on genomic location (y-axis) and relation to a CpG island (colours). ExonBnd, exon boundaries; IGR, intergenic region; TSS, transcription start site; 
UTR, untranslated region
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examined CpG sites for that gene, excluding genes with 
10 or fewer examined CpG sites. One gene has a ratio of 
significant DMCs to examined CpG sites exceeding 0.5, 
which is PDCD1LG2 (Programmed Cell Death 1 Ligand 
2). Notably, all eight significant DMCs of PDCD1LG2 are 
hypomethylated and are located in all regions of the gene 
(5’UTR, TSS1500, TSS200, first exon, and gene body).

Differentially methylated regions
In addition to analysing DMPs, we extended our inves-
tigation to differentially methylated regions (DMRs) 
between PM and healthy pleura. Through our analy-
sis, we identified a total of 3,078 DMRs. Of these, 1,494 
regions are hypermethylated in PM, while 1,584 regions 
are hypomethylated. To enhance the specificity of our 
findings, we applied a minimum cut-off value of 0.1 to the 
mean differential methylation. This more stringent cri-
terion resulted in a refined list of 1,053 DMRs. Among 
these, the five most significant DMRs overlap with the 
genes RNF39, SPEG, PISD, SEPT9, and PVT1, respec-
tively (Table 3).

Differential methylation between pleural mesothelioma 
subtypes
We compared the methylation patterns of the three PM 
subtypes: epithelioid (n = 157), biphasic (n = 57) and 

sarcomatoid (n = 43). In the tSNE plot (Fig.  5), the sub-
types are not grouped in clearly separate clusters. How-
ever, the epithelioid PM and the sarcomatoid PM clusters 
are notably distinct from each other, whereas the bipha-
sic PM samples cluster between the other two groups. 
Moreover, we found 182,840 DMCs between epithelioid 
and sarcomatoid PM, 93,871 DMCs between epithelioid 
and biphasic PM, and 52,139 DMCs between bipha-
sic and sarcomatoid PM (Fig.  6A). The majority of the 
DMCs are hypermethylated in epithelioid PM compared 
to biphasic and sarcomatoid PM. The largest amount of 
DMCs are differentially methylated between epithelioid 
and sarcomatoid PM, and a large part of these DMCs 
(n = 61,825) is also differentially methylated between epi-
thelioid and biphasic PM (Fig. 6B). Of all DMCs between 
the subtypes, 9,157 are overlapping in each comparison, 
i.e. 9,157 CpG sites are significantly differentially methyl-
ated between each of the three groups.

Next, we compared the methylation level of the three 
subtypes separately with healthy pleura. We found 
208,938 DMCs between pleura and epithelioid PM, 
259,849 DMCs between pleura and biphasic PM, and 
280,785 DMCs between pleura and sarcomatoid PM 
(Fig. 7A). The vast majority of these DMCs are hyper-
methylated in pleura compared to each of the PM sub-
types. For the 9,157 overlapping DMCs between the 

Fig. 3 Volcano plot showing delta beta (x-axis) and adjusted P-value (y-axis) for all 81,968 DMCs between PM and healthy pleura. The five 
overlapping DMCs of the top 50 for delta beta (blue) and adjusted P-value (green) are coloured orange
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Fig. 4 Scatter plot showing the delta beta (difference in the methylation level) between PM and healthy pleura for each examined CpG site 
in the genes A MIR21, B RNF39, C SPEN, and D C1orf101. The dark grey points indicate the significantly methylated DMCs, the light grey points 
indicate the non-significant CpG sites and the orange arrow indicates the genomic location and the direction of transcription

Table 3 Five most significant differentially methylated regions between pleural mesothelioma and healthy pleura

HMFDR: harmonic mean of the individual CpG P-values (FDR-corrected)

Chrom Start Stop Width Number of 
CpGs

HMFDR Maxdiff Meandiff Overlapping 
genes

chr6 30,038,254 30,039,466 1213 20 7,61E-34 0,474,573,918 0,229,528,006 RNF39

chr2 220,298,547 220,300,568 2022 13 2,79E-30 0,378,931,486 0,140,166,887 SPEG

chr22 32,057,065 32,058,810 1746 8 1,17E-27  − 0,335,338,607  − 0,173,441,195 PISD

chr17 75,281,339 75,284,193 2855 13 5,72E-26  − 0,396,400,033  − 0,230,612,988 SEPT9

chr8 128,806,271 128,808,554 2284 13 7,98E-26  − 0,486,066,199  − 0,181,561,728 PVT1
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Fig. 5 t-distributed stochastic neighbour embedding (tSNE) plot of the methylation patterns based on the 100,000 most variable CpG sites of 157 
epithelioid PM samples, 57 biphasic PM samples and 43 sarcomatoid PM samples

Fig. 6 Number of DMCs between the three PM subtypes. a Barplot showing the numbers of DMCs higher methylated in each of the subtypes 
and each of the comparisons. b Venn diagram showing the overlapping DMCs in each of the comparisons. The darker the grey, the higher 
the amount of DMCs
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subtypes, the distribution of the methylation levels 
for the three subtypes and healthy pleura is shown in 
a violin plot (Fig. 7B). This plot shows clearly that the 
methylation levels are highest in healthy pleura, lower 
in epithelioid PM, even lower in biphasic PM, and low-
est in sarcomatoid PM.

Differential methylation between pleural mesothelioma 
and other lung diseases
We compared the methylation pattern of PM with 
those from the other lung-related samples (PL, CP, 
LUAD, LUSC, LUCA, LCNEC, LAN), aiming to detect 
tissue and tumour type-specific methylation patterns. 
In the tSNE plot (Fig.  8), most of the groups form a 
clear cluster. In dimension 1, the pleura-related sam-
ples are perfectly distinguishable from lung-related 
samples, while dimension 2 discriminates based on 
the disease state. For each comparison, the num-
ber of DMCs was calculated (Suppl Table  S5). More 
than 70,000 DMCs were identified for each compari-
son, except for the comparison with chronic pleuri-
tis, where 13,834 DMCs were detected. Of all DMCs, 
2,204 CpG sites are differentially methylated between 
PM and each of the other groups. In a violin plot 
showing the average methylation levels of those com-
mon DMCs for each of the groups (Fig. 9), it is evident 
that most of these DMCs are hypomethylated in PM, 
as the density of PM is much higher around a methyla-
tion level of 0.4, while in all other groups, the methyla-
tion level is denser for higher values.

Discussion
Pleural mesothelioma is a rare and rapidly fatal disease, 
with asbestos exposure standing out as the foremost risk 
factor contributing to its development. Previous research 
has demonstrated the presence of somatic mutations in 
PM [13]. However, PM exhibits a relatively low number 
of pathogenically significant mutations [26]. Therefore, 
the epigenome is now extensively being investigated. 
The precise mechanism behind the prominence of epi-
genetic alterations in PM remains elusive. However, it 
is widely recognized that chronic inflammation is a pri-
mary response to asbestos exposure. Notably, epigenetic 
modifications have been closely associated with inflam-
matory processes in other cancers [27]. This suggests that 
inflammation-related epigenetic changes may play an 
important role in various human cancers, including pleu-
ral mesothelioma.

Currently, the investigation of genome-wide methyla-
tion changes from healthy pleura to PM has been limited. 
Our study aims to further elucidate the epigenetic land-
scape of PM. Surprisingly, widespread differential meth-
ylation between PM and healthy pleura was observed, 
considering that we detected 81,968 differentially meth-
ylated CpG sites. These DMCs are located in all genomic 
regions, including noncoding RNA, which is perhaps 
not surprising as methylation also plays an important 
role in the regulation of noncoding RNA transcription, 
in addition to protein-coding genes [28]. MiRNAs and 
lncRNAs are regulators of cellular processes such as dif-
ferentiation and proliferation, and aberrant methylation 
of these types of RNA can lead to cancer development 

Fig. 7 a Barplot showing the numbers of DMCs higher methylated in each of the subtypes or healthy pleura, and each of the comparisons. 
b Violin plot showing the distribution of the methylation levels in each of the subtypes and healthy pleura for the 9,157 overlapping DMCs 
between the subtypes
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[28]. Unfortunately, the noncoding genomic regions are 
underrepresented on the EPIC methylation array, despite 
being crucial in the epigenetic regulation. This is due to a 
selection process primarily focusing on genes implicated 
in cancer. This obstacle could potentially be addressed 
through future implementation of genome-wide ONT 
sequencing. Unexpectedly, a large number of DMCs was 
found in intergenic regions. It is still unclear whether 
these aberrations are tumour-causing or a consequence.

Actively transcribed genes in healthy human cells are 
known to have unmethylated promotors, especially when 
they contain a CpG island, and slightly methylated gene 
bodies [28]. In tumour cells, however, a global loss of 
DNA methylation is described in several studies. On the 
other hand, CpG islands and shores in gene promotors 
are often hypermethylated in tumoural DNA, resulting 
in gene silencing of tumour suppressor genes [28, 29]. 
Roughly 50% of all human genes harbour CpG islands, 
and are therefore susceptible to this type of aberrant 

silencing [30]. Moreover, hypomethylation of promotor 
regions without CpG island has been observed as well 
and can result in overexpression of oncogenes and proto-
oncogenes, although this occurs less frequently [28]. This 
is in agreement with our observations (Fig.  2). When 
comparing healthy pleura to PM, the only hypermethyl-
ated locations are the CpG islands (in all gene locations 
and IGRs). Other locations are hypomethylated in all 
gene locations and IGRs.

Christensen et al. performed a genome-wide methyla-
tion analysis comparing PM samples with healthy pleura 
[15]. However, they investigated only 1505 CpG sites 
associated with 803 cancer-related genes using the Illu-
mina GoldenGate BeadArray technology and compared 
158 PM samples to only 18 healthy pleura samples. They 
identified 969 CpG sites in 646 genes that are aberrantly 
methylated in mesothelioma samples. Of these genes, 
two overlap with our Top 50 DMCs ranked on delta beta: 
FHIT and PLXDC2. Surprisingly, in our analysis, FHIT 

Fig. 8 t-distributed stochastic neighbour embedding (tSNE) plot of the methylation patterns based on the 100,000 most variable CpG sites of 257 
PM samples, 32 healthy pleura samples, 7 chronic pleuritic samples, 90 lung adenocarcinoma samples, 77 lung squamous cell samples, 56 lung 
carcinoid samples, 20 large cell neuroendocrine carcinoma samples, and 44 lung adjacent normal samples
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has a hypermethylated CpG site in PM (in the promo-
tor region), while in Christensen’s study, FHIT has two 
hypomethylated CpG sites (one in the promotor and 
one in the body). The Fragile Histidine Triad Diadeno-
sine Triphosphatase (FHIT) gene encodes for a triphos-
phate hydrolase that is involved in purine metabolism. 
In addition, FHIT is a tumour suppressor gene crucial 
for DNA repair, cell cycle regulation, and apoptosis. It 
has been suggested to be a target of lung carcinogens, 
such as tobacco smoke and asbestos [31]. FHIT has been 
described to have a reduced protein expression in PM 
[32, 33]. In childhood acute lymphoblastic leukaemia, 
FHIT is defined to have both promotor hypermethylation 
and reduced mRNA expression [34]. PLXDC2 encodes 
for Plexin Domain Containing-Protein 2 and is also 
known as TEM7R (tumour endothelial marker 7-related). 
In both studies, PLXDC2 is hypomethylated. Dysregula-
tion of PLXDC2 is associated with cancer progression 
and metastasis via roles in angiogenesis, cell migration, 
and invasion, for example in gastric cancer [35]. How-
ever, PLXDC2 has never been linked with mesothelioma 
before.

We selected four genes for a more detailed examina-
tion. MIR21 encodes for a microRNA which is a small 
RNA fragment that regulates gene expression of sev-
eral genes at post-transcriptional level [36]. MIR21 has 
been described earlier to be over-expressed in PM [37]. 
This corresponds to our finding that the TSS200 of the 
MIR21 gene is hypomethylated in PM [38]. MicroRNAs 

are described to be stable in body fluids and as such 
have potential as biomarkers [39]. Expression of MIR21 
is also been described to be a potential prognostic bio-
marker for PM [40]. However, a recent review describes 
how MIR21 is claimed to be a predictive or prognostic 
biomarker for at least 29 diseases [39]. This knowledge 
undermines the potential of MIR21 as a specific bio-
marker for PM.
RNF39 encodes for Ring Finger Protein 39 which is sug-

gested to play a role in an early phase of synaptic plastic-
ity and has potential E3 ubiquitin ligase activity [41]. The 
altered expression of RNF39 is described to be a potential 
prognostic biomarker for cholangiocarcinoma and pan-
creatic cancer [42, 43]. The RNF39 gene is located in a 
significantly hypomethylated region in peripheral blood 
mononuclear cells of breast cancer patients with DOX-
induced cardiotoxicity [44]. Further, little is known about 
the functions of this gene in cancer [43].
SPEN encodes for Spen Family Transcriptional Repres-

sor which is a hormone-inducible transcriptional repres-
sor and is mainly involved in X chromosome inactivation 
[45]. It is also known as SMART/HDAC1-associated 
repressor (SHARP) [46]. A recent study describes the 
potential of SPEN mutations as a predictive biomarker for 
immunotherapy in a pan-cancer analysis [45]. Another 
study describes SPEN as a tumour suppressor gene and 
a candidate predictive biomarker in ERα-positive breast 
cancers [47]. However, until now no association between 
this gene and PM has been described.

Fig. 9 Violin plot showing the distribution of the methylation levels in PM and other lung-related samples for the 2,204 overlapping DMCs 
between all the groups. CP, Chronic pleuritis; LAN, Lung adjacent normal; LCNEC, Large Cell Neuroendocrine Carcinoma of the Lung; LUAD, Lung 
adenocarcinoma; LUCA, Lung carcinoid; LUSC, Lung squamous cell carcinoma; PM, Pleural Mesothelioma; PL, Pleura
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C1orf101 is also known as CATSPERE and encodes for 
Catsper Channel Auxiliary Subunit Epsilon. This is an 
auxiliary component of the CatSper complex, a complex 
involved in sperm cell hyperactivation. A recent study 
identified CATSPERE as a mediator of colorectal can-
cer susceptibility and progression [48]. Furthermore, no 
associations of this gene with cancer are described.

DNA methylation occurs early in tumour development 
and can be detected in body fluids [29]. Therefore, it is 
an ideal source for biomarkers. The aberrant methylation 
that we identified in this study, can be further investi-
gated as a potential diagnostic biomarker for the detec-
tion of PM. The five CpG sites we elucidated (Table  2) 
have an AUC ranging between 0.986 and 0.994, and 
therefore have high biomarker potential. In addition to 
biomarkers, DNA methylation could also be a source of 
therapeutic targets. DNA methylation is reversible and 
methyltransferase inhibitors, such as 5’-azacytidine, are 
currently being used to treat several cancer types, includ-
ing acute myeloid leukaemia [29, 49]. Understanding the 
functional roles of particular genes in the context of PM 
pathogenesis could offer valuable insights into the under-
lying molecular mechanisms driving this aggressive can-
cer and may hold promise for the development of novel 
targeted therapies.

We analysed our findings in the light of established 
knowledge about cancer in general and PM specifically. 
The COSMIC database, which catalogues mutations, 
copy number alterations and other genomic changes in 
cancer, provides a valuable reference for our study. Nota-
bly, of the cancer genes listed in COSMIC with CpG sites 
examined by the EPIC array, 82% (556/677) exhibited 
altered methylation in PM. This suggests that methyla-
tion changes in PM are more ubiquitous than mutations, 
extending across the entire genome rather than being 
confined to a few driver mutations.

In addition to analysing DMPs, we examined DMRs 
between PM and heathy pleura to gain a broader per-
spective on epigenetic regulation. While cancer cells are 
generally more hypomethylated than normal cells, as 
confirmed by our DMP analysis, we observed an almost 
equal number of hypermethylated and hypomethylated 
DMRs. This suggests a complex and nuanced landscape 
of epigenetic regulation in PM cells. Although global 
hypomethylation is a common feature, these results 
indicate that epigenetic changes in PM are not uniform. 
They involve both the silencing of key regulatory genes 
through hypermethylation and the activation or desta-
bilization of other regions through hypomethylation. 
Notably, the five most significant DMRs overlap with 
the genes RNF39, SPEG, PISD, SEPT9, and PVT1. The 
DMR overlapping RNF39 corresponds to the end of the 
gene body (width of 1213  bp), where we also identified 

several DMPs (Fig. 4). Surprisingly, the DMR overlapping 
SEPT9 (Septin 9) is hypomethylated, even though SEPT9 
is frequently described as a hypermethylated biomarker 
in colorectal cancer and other cancer types [50, 51]. Long 
noncoding RNA plasmacytoma variant translocation 1 
(PVT1) has been identified as playing an important role 
in cancer development as oncogene [52]. However, the 
genes SPEG and PISD have not been previously linked to 
cancer.

When comparing the methylation patterns of the three 
PM subtypes, no explicit separation can be visualized 
by clustering. However, a clear trend is observed in the 
methylation levels of the subgroups and healthy pleura 
(Fig.  7). The highest methylation levels are detected in 
healthy pleura, followed by epithelioid PM, subsequently 
biphasic PM, and finally, sarcomatoid PM, in which the 
lowest methylation levels are observed. Increased hypo-
methylation observed in tumours is often associated 
with more aggressive and malignant disease phenotypes 
[53]. This hypomethylation can lead to the activation of 
oncogenes and to genomic instability, which contributes 
to tumour progression and aggressiveness. Studies have 
shown a correlation between the extent of hypometh-
ylation in other tumours and the severity of the disease, 
including increased invasiveness, metastatic potential, 
and resistance to therapy [54, 55]. Global DNA hypo-
methylation is also associated with a detrimental prog-
nosis in tumour patients [56]. This is consistent with 
our findings, as sarcomatoid PM is described to have 
more distant metastases than other PMs, and has the 
worst prognosis [57]. Moreover, differential methylation 
between the PM subgroups could potentially be used for 
PM subclassification. This was already demonstrated on 
central nervous system tumours, for which the applica-
tion of DNA methylation-based classification has been 
demonstrated in a routine diagnostic setting [58].

Based on the methylation patterns, PM can be accu-
rately distinguished from other lung-related diseases. For 
all comparisons, we reported more than 70,000 DMCs 
except when compared to chronic pleuritis. Chronic 
pleuritis, also known as chronic inflammation of the 
pleura, is not universally recognized as a precursor stage 
of mesothelioma. While chronic inflammation can some-
times precede the development of mesothelioma, it 
does not necessarily indicate a direct progression from 
chronic pleuritis to mesothelioma in all cases. The rela-
tionship between chronic pleuritis and mesothelioma is 
complex and may involve various contributing factors 
beyond inflammation alone. Therefore, it is important 
for individuals with chronic pleuritis and a history of 
asbestos exposure to undergo regular medical evaluation 
and monitoring for the potential development of meso-
thelioma. Although only 13,834 DMCs were identified 
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between chronic pleuritis and PM, we believe that the 
small sample size of the chronic pleuritis group (n = 7) 
resulted in the lack of power to identify more DMCs. 
Studies with larger sample sizes are needed to validate 
the potential to discriminate PM from chronic pleuri-
tis based on the methylation pattern. One remarkable 
observation is the differential methylation in the RNF39 
gene between PM and chronic pleuritis. Five CpG sites 
of the top 10 DMCs ranked on delta beta are located in 
the RNF39 gene (Suppl Table  S6). The end of the gene 
body is extremely hypermethylated in PM compared to 
chronic pleuritis (Suppl Figure S2), which is very similar 
to Fig. 4B in which PM is compared to healthy pleura.

In addition to biomarkers differentiating PM from 
healthy pleura, it could become even more interesting 
when biomarkers can be identified to distinguish PM 
from similar diseases to improve diagnostic accuracy. 
Especially differentiation from different types of lung 
cancer is important, as these can present with similar 
symptoms, such as chest pain, shortness of breath, and 
coughing. Additionally, both PM and lung cancer can 
result from exposure to carcinogens, such as asbestos. 
Moreover, radiographic findings can overlap between 
PM and other lung cancers, with features such as pleural 
thickening, pleural effusion, and mass lesions within the 
lung or pleura. Finally, these similar disease entities fre-
quently show the same expression of pathologic immu-
nohistochemical markers as PM, which complicates 
diagnosis and may even result in the wrong diagnosis. 
DNA methylation profiles are very robust and disease-
specific and could potentially resolve all mentioned dif-
ficulties for the diagnosis of lung diseases, leading to 
appropriate treatment planning and management for the 
correct diagnosis.

Differences in genome-wide methylation patterns 
between PM and lung cancer were already described by 
several research groups. Goto et  al. conducted a com-
parison of 6157 CpG islands in 20 PM samples with 20 
LUAD samples using methylated CpG island amplifi-
cation microarray analysis [59]. Across all samples, an 
average of 387 genes exhibited hypermethylation in PM, 
whereas 544 genes showed hypermethylation in LUAD. 
Among the most noteworthy hypermethylated genes in 
PM were TMEM30B, KAZALD1, and MAPK13. Notably, 
these genes were unmethylated in LUAD samples, con-
firming their specificity for PM [59]. Bertero et al. utilized 
EPIC methylation arrays to analyse the methylation pat-
terns of 79 PM samples in comparison to 202 cases rep-
resenting malignant and benign diagnostic mimics [19]. 
Employing both unsupervised hierarchical clustering and 
t-distributed stochastic neighbour embedding analysis, 
PM samples exhibited a distinct DNA methylation profile 
compared to other neoplastic and reactive mimics [19]. 

Jurmeister et al. utilized both 450 K and EPIC methyla-
tion arrays to compare the methylation patterns among 
196 PM, 507 LUAD, 413 LUSC, and 17 CP samples [11]. 
Through the application of two machine learning algo-
rithms, the study attained high accuracies using their 
support vector machine (97.8%), while their random 
forest model exhibited lower performance (89.5%), par-
ticularly in distinguishing PM from CP. Furthermore, 
differential methylation analysis uncovered promoter 
hypermethylation in PM specimens, implicating tumour 
suppressor genes such as BCL11B, EBF1, FOXA1, and 
WNK2 [11].

Conclusion
In conclusion, the analysis of DNA methylation pat-
terns emerges as a promising avenue for differentiation 
between various tissue and tumour types. The substan-
tial number of methylation alterations observed between 
healthy pleura and PM underscores the importance of 
these epigenetic changes in the pathogenesis of the dis-
ease. These alterations could be used as biomarkers or 
molecular targets for therapy. Additionally, the ability to 
distinguish between different subtypes of PM based on 
their unique methylation profiles offers valuable insights 
for personalized diagnostic and therapeutic interventions 
as well as prognosis. Finally, the distinct methylation sig-
natures exhibited by PM compared to other lung can-
cers highlight the potential of methylation profiling as a 
diagnostic tool in the clinical setting. Translational stud-
ies need to be conducted to enable the utilization of this 
methylation signature in clinical settings.
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