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Abstract 

Background/objective There is limited knowledge on how diet affects the epigenome of children. Ultra‑processed 
food (UPF) consumption is emerging as an important factor impacting health, but mechanisms need to be uncov‑
ered. We therefore aimed to assess the association between UPF consumption and DNA methylation in children.

Methods We conducted a meta‑analysis of epigenome‑wide association studies (EWAS) from a total of 3152 children 
aged 5–11 years from four European studies (HELIX, Generation XXI, ALSPAC, and Generation R). UPF consumption 
was defined applying the Nova food classification system (group 4), and DNA methylation was measured in blood 
with Illumina Infinium Methylation arrays. Associations were estimated within each cohort using robust linear regres‑
sion models, adjusting for relevant covariates, followed by a meta‑analysis of the resulting EWAS estimates.

Results Although no CpG was significant at FDR level, we found suggestive associations (p‑value <  10–5) between UPF 
consumption and methylation at seven CpG sites. Three of them, cg00339913 (PHYHIP), cg03041696 (intergenic), 
and cg03999434 (intergenic), were negatively associated, whereas the other four, cg14665028 (NHEJ1), cg18968409 (inter‑
genic), cg24730307 (intergenic), and cg09709951 (ATF7), were positively associated with UPF intake. These CpGs have been 
previously associated with health outcomes such as carcinomas, and the related genes are mainly involved in pathways 
related to thyroid hormones and liver function.

Conclusion We only found suggestive changes in methylation at 7 CpGs associated with UPF intake in a large EWAS 
among children: although this shows a potential impact of UPF intake on DNAm, this might not be a key mechanism 
underlying the health effects of UPFs in children. There is a need for more detailed dietary assessment in children 
studies and of intervention studies to assess potential epigenetic changes linked to a reduction in UPF in the diet.
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Introduction
Ultra-processed foods (UPFs) are industrially formulated 
products that undergo a series of physical, chemical, and 
biological processing. UPFs often lack intact healthy food 
components, contain various additives, and are energy 
dense and nutritionally poor (i.e. high in free sugar, salt, 
and saturated and trans fats but low in dietary fibre, and 
micronutrients) [1] and usually have softer textures [2]. 
Their consumption has risen dramatically in the last dec-
ades among countries worldwide. UPF intake (percent-
age of total calories consumed) in the adult population 
ranges from 15 to 57% in Romania and in the UK, respec-
tively [3]. In school-aged children, it was estimated that 
UPF comprised 65.4% of daily calorie intake in a repre-
sentative sample in the UK (4–10  years) [4], 66% in US 

children [5], while it was lower in Belgian children aged 
3–9 years (33.3%) [6] and in Colombia (19%) [7].

The consumption of UPF has been associated with 
a range of adverse health outcomes in adults, as shown 
in a recent umbrella review [8]. In children, UPF intake 
has also been associated with an increase in energy 
intake and weight gain [9] and the modulation of biologi-
cal pathways related to adiposity accumulation [10, 11], 
increasing risk of obesity-related diseases [12, 13], and 
insulin resistance [14]. The rise in obesity prevalence 
in children [15] is a significant public health concern 
with far-reaching ramifications, as childhood obesity 
tracks into adolescence and adulthood [16]. Obesity is 
associated with an elevated risk of the development of 
non-communicable diseases (NCDs) [17], in particular 
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cardiometabolic diseases, type 2 diabetes, and some can-
cers [18].

Epigenetic mechanisms have been implicated in the 
development of obesity, with studies showing that early-
life obesity risk factors, such as birthweight, maternal 
BMI, and rapid weight gain during infancy, are associated 
with variations in DNA methylation (DNAm) [19–21]. 
Given the role of epigenetics in obesity, nutritional epige-
netics can play an important role in unravelling the effect 
of nutrition in the regulation of gene expression impli-
cated in the aetiology of disorders such as obesity [22]. 
Recent epigenome-wide associations studies (EWAS) in 
adults found differentially methylated CpGs associated 
with diet quality, using measures of diet quality such as 
Mediterranean-style diet scores [23, 24]. A large pro-
portion of these CpGs associated with diet quality have 
been linked to chronic diseases, in particular cardio-
metabolic diseases in adults [23, 24]. Other studies have 
investigated the intake of specific nutrients, such as fat 
and carbohydrate [25], or specific foods (coffee and tea) 
in relation to DNAm. However, the number of identified 
CpGs in these studies was comparatively smaller [26].

Existing diet-EWASs have been mainly focused on 
diet quality and were conducted in adults [23–26], new-
borns, or mothers [27, 28]. The few published EWASs in 
children so far have focused on glycaemic index [29] or 
on parental diet quality [30], but none have specifically 
examined UPF intake.

To explore the potential epigenetic changes associated 
with UPF consumption, we conducted the first meta-
EWAS of UPF intake in relation to blood DNA methyl-
ation, in children aged between 5 and 11  years (middle 
childhood) from four European studies representing nine 
birth cohorts.

Materials and methods
Participating cohorts
We used data from four studies (Human Early-Life Expo-
some [HELIX], the Avon Longitudinal Study of Parents 
And Children [ALSPAC], Generation XXI, and Gen-
eration R) including a total of nine longitudinal birth 
cohorts that started with the recruitment of women dur-
ing pregnancy or at delivery and followed up their chil-
dren at different time points. The HELIX study comprises 
six sub-cohorts. All the children included were in over-
all healthy condition and did not have any congenital 
malformations.

The participants in cohorts from the HELIX sub-cohort 
were recruited between 2003 and 2010 from six birth 
cohorts across Europe [31]: BIB (Born in Bradford, UK 
[32, 33], EDEN (Study of determinants of pre- and post-
natal development, France) [34], INMA (Environment 
and Childhood, Spain) [35], KANC (Kaunas Cohort, 

Lithuania) [36], MoBa (The Norwegian Mother and 
Child Cohort Study, Norway (Oslo region)) [37], and 
RHEA (Mother–Child Cohort in Crete, Greece) [38]. 
The follow-up period of HELIX children used in the pre-
sent study was from 2013 to 2016 and included children 
between 5 and 11 years. All were of European ancestry, 
except in the BIB study which included 50% of children 
of South Asian ethnicity (n = 115). The Generation XXI 
(G21) study [39] recruited mothers living in the Porto 
metropolitan region, Portugal, in 2005–2006, and evalu-
ated diet and blood DNAm of children of diverse eth-
nicity aged 9–11  years in 2015–2017. Mothers included 
in the ALSPAC study, in the UK [40, 41], were recruited 
between 1990 and 1992 with a total of 14,203 mothers, 
and we used the data of the children (G1 children) who 
attended examination at 7  years old. Finally, the Gen-
eration R (GenR) study was carried out in Rotterdam, 
included mothers recruited between April 2002 and 
January 2006. Child data used in the present study were 
from the follow-up when children were 10 years old [42].

Ethical approval for the study was granted by the 
Research Ethics Committees of each participating centre 
of each cohort. Full details are listed in the Supplemen-
tary Material S1.

Dietary assessment
Dietary data of the HELIX children were collected via a 
semi-quantitative food frequency questionnaire (FFQ) 
covering the child’s habitual diet, which was filled in by 
the parent attending the examination appointment. The 
FFQ, developed by the HELIX research group, was trans-
lated to the corresponding country’s languages for each 
participating sub-cohorts of the HELIX project [31]. It 
included 43 questions about the consumption of various 
food and drink items [14].

Generation XXI dietary data were obtained from 
2-day or 3-day food diaries (1 or 2 weekdays and 1 week-
end day) filled by the main caregiver [43]. The codifica-
tion process of food diaries was conducted by a team of 
trained nutritionists, using an age-specific food coding 
manual described elsewhere [44]. Energy and nutrient 
intakes were estimated using the software Food Pro-
cessor SQL (2004–2005 ESHA Research) linked with 
the Food Composition Table of the US Department of 
Agriculture, and adapted with information of the Portu-
guese Food Composition Table at PortFir (http:// portfi r. 
insa. pt), and data from the European Food Information 
Resource (EuroFIR) network databases.

Dietary data in ALSPAC children were obtained using 
a 3-day food diary to record all food and beverage items 
the child consumed for 2 weekdays and 1 weekend day 
(not necessarily consecutive) which were completed 
by the caregivers [45]. Dietary data were reviewed by a 

http://portfir.insa.pt
http://portfir.insa.pt


Page 4 of 15Llauradó‑Pont et al. Clinical Epigenetics            (2025) 17:3 

nutritionist, and nutrient intakes were coded using the 
DIDO (Diet In, Data Out) computer program and linked 
to the 5th McCance and Widdowson British food com-
position tables [46]. Validity of dietary reporting was 
calculated using an individualized method based on the 
ratio of energy intake to estimated energy requirement 
and its 95% confidence interval.

In GenR, dietary intake was assessed using a validated 
71-item semi-quantitative FFQ, completed by the par-
ents of the child, reflecting the last 4 weeks of intake [47]. 
Information on frequencies, types, and portion sizes was 
converted into grams of individual food items per day 
based on standard Dutch portion sizes, using SAS VoVris 
(Vovris V2.4, TNO, 1999–2006).

To determine UPF intake, we identified foods and 
drinks as ‘ultra-processed’ by using the Nova classifica-
tion (group 4), a food classification system based on the 
nature, extent, and purpose of industrial food process-
ing [48]. To better capture dietary habits in each coun-
try, food group classifications are slightly different in 
each cohort, see Supplemental Table  S1. The consump-
tion of UPF for each child was defined as a continuous 
variable describing the intake of food group 4 relative to 
the total consumption of all food groups, either in weight 
(servings) or energy. In HELIX and GenR, UPF intake 
was expressed as the daily proportion of UPF serving (%) 
to the total daily sum of all food and drink servings as 
described in a recent article [14, 49], whereas in ALSPAC 
[15] and G21 [50], we used the proportion (%) of the total 
daily energy intake (kcal) derived from UPFs.

DNA methylation
DNA methylation was measured in peripheral whole 
blood. HELIX, ALSPAC, and GenR used the Illumina 
Infinium HumanMethylation450 BeadChip array, which 
measures DNAm at 485,512 CpG sites and G21 used the 
Illumina Infinium MethylationEPIC BeadChip array that 
measures DNAm at 866,836 CpG. We used normalized 
beta values, ranging from 0 (fully unmethylated) to 1 
(fully methylated). Further details on data normalization 
and quality control of DNAm in each cohort are given in 
Supplemental Material S2. In HELIX, ALSPAC, and G21, 
the array batch effect was corrected using the ComBat R 
package [51], while in GenR it was corrected by adjust-
ing for sample plate. To reduce the influence of extreme 
methylation levels at individual samples in analysis, we 
winsorized methylation levels at each site. Winsorizing 
limits extreme values in a dataset and reduces the effect 
of spurious outliers by setting all data within the specified 
threshold. All the data below or above the 5th and 95th 
were set to those percentiles. White blood cell propor-
tions (CD4 + and CD8 + T-cells, natural killer (NK) cells, 

monocytes, eosinophils, neutrophils, and B-cells) were 
estimated using the Houseman algorithm [52] and the 
Reinius reference panel [53].

Covariates
The basic covariates considered were child’s age at time 
of follow-up, sex (categorized as male or female), and 
ethnicity (white European or non-white European chil-
dren), assessed though questionnaires [10, 31–33, 49]. In 
the case of HELIX, most of the ethnicity heterogeneity 
comes from the BIB sub-cohort; therefore, HELIX mod-
els were adjusted by sub-cohort instead of ethnicity.

Maternal characteristics likely to affect either DNAm 
or diet related outcomes of the child [54, 55] were mater-
nal age (in years) at birth (HELIX and G21) [31, 56] or 
at pregnancy (ALSPAC and GenR) [41, 57], maternal 
early-pregnancy body mass index (BMI) (kg/m2) with 
weight and height being measured, and smoking status 
during pregnancy (active smoking yes or no) as covari-
ates. Maternal education in HELIX was defined as low, 
medium, and high [14]; in G21 based on the years of 
completed schooling as < 9y, 9-12y, and > 12y [49]; in 
ALSPAC as low (Certificate of Secondary Education, 
Vocational or Ordinary- (O-) level, educational qualifica-
tions generally obtained at 17 years of age), intermediate 
(Advanced- (A-) level (subject-specific qualifications gen-
erally obtained at age 18 years and required for university 
entry)), and high (university degree and above) [49]; in 
Gen R as low (no/primary education), intermediate (sec-
ondary school, vocational training), and high (bachelor’s 
degree, university) categories [42]. Maternal education 
was used as a proxy of socioeconomic status.

We also included as covariates: child’s BMI [58] and 
physical inactivity. BMI was calculated in kg/m2 based 
on weight (kg) and height  (m2) measured at examina-
tion. Sedentary behaviour [59] was assessed by asking the 
carers about the minutes/day their child spent watching 
TV, playing on the computer, or other sedentary games 
in HELIX [14] and in GenR [60], as minutes/day without 
doing sports in G21 [49], and in ALSPAC categorized 
as 1 h, 1–2 h or > 3 h average time per day watching TV 
[49]. Vegetable and fruit intake (from the FFQ or food 
diaries) were also used as covariates as a proxy of overall 
diet quality. This was done to address if there are intrin-
sic associations of methylation with UPF independently 
of diet quality [61]. Vegetable intake was categorized as 
low (< 6 serving/week), medium (6–8.5/week), and high 
(> 8.5/week) and fruit intake as low (< 7 servings/week), 
medium (7–14.1 servings/week), and high (> 14.1 serv-
ings/week) in HELIX [31] and G21 [62]. In ALSPAC and 
in Gen R, vegetable and fruit intakes were continuous in 
grams/week [45, 47].
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Epigenome‑wide association analysis (EWAS)
We included children who had available data on UPF 
intake (exposure) and whole-blood DNA methylation 
(outcome). UPF  intake, covariates, and DNA methyla-
tion were assessed at the same time point, so this study 
has a cross-sectional design. Prior to conducting the 

analyses (Fig.  1), a data analysis plan including details 
of the variable definition, the statistical modelling, and 
a sample R code was distributed to the participating 
cohorts. All statistical analyses were carried out using R 
statistical software 4.3 version. To estimate the associa-
tion between UPFs intake (exposure) and methylation at 

Fig. 1 Flowchart of meta‑EWAS
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each CpG site (outcome), robust linear regression models 
(rlm() from MASS package) were employed. The models 
incorporated several covariates based on previous liter-
ature as described above and the Houseman 7-cell type 
proportions. In each cohort, nested models were fitted as 
follows:

(1) Model 1: DNA methylation ~ UPF intake + HELIX 
sub-cohort or ethnicity + child sex + child age + cell 
type proportions

(2) Model 2: model 1 + maternal age + maternal 
BMI + maternal smoking + maternal education

(3) Model 3: model 2 + child BMI + child sedentary 
behaviour

In sensitivity analysis, we further adjusted for fruit and 
vegetable intake. Ethnicity was also considered, and chil-
dren of non-European ancestry a minority in our study 
population were removed from the analysis (only in 
HELIX and G21) to ensure that any observed associa-
tions were not confounded by this factor. Therefore, two 
additional models were conducted:

• Model 3 + fruit intake + vegetable intake
• Model 3 restricted to white European ancestry chil-

dren

Quality control and meta‑analysis
We performed the quality control of the cohort-specific 
EWAS results using the EASIER R package at ISGlobal 
(https:// github. com/ isglo bal- brge/ EASIER/). We 
excluded control probes, non-CpG probes, probes that 
mapped to X/Y chromosomes, probes with poor base 
pairing quality (lower than 40 on 0–60 scale), probes with 
non-unique 30  bp, subsequence (with cross-hybridizing 
problems), Infinium II probes with SNPs of global MAF 
over 1% affecting the extension base, and probes with a 
SNP in the extension base that causes a colour channel 
switch from the official annotation [63]. We also looked 
at the QQ plots as well as the inflation factor lambda (λ) 
and its confidence intervals.

To identify differentially methylated positions, EWAS 
results from each cohort were meta-analysed using 
inverse-variance weighted fixed-effects model. Hetero-
geneity was assessed using the  I2 statistics [64] for each 
CpG site, considering low heterogeneity an  I2 < 25%, 
medium 25– < 50%, and high ≥ 50%. We also performed 
random-effect model as sensitivity analyses. The meta-
analysis was performed using GWAMA software in the 
EASIER package using the pcent parameter at 75% there-
fore only those probes that were available in at least 3 
out of 4 cohorts were included in the meta-analysis. 

Only common probes for autosomal sites between the 
450  K and EPIC arrays were considered, resulting in 
408,712CpG sites to be tested in a total of 3152 children 
in the main analysis.

To account for multiple hypothesis testing, we applied 
the Benjamin–Hochberg false discovery rate (FDR) cor-
rection; an FDR-corrected p value < 0.05 denoted statis-
tical significance [65]. A less stringent p-value threshold 
(pSuggestive) of P < 1 ×  10−5 was used to select the top 
CpGs, as done in previous EWASs [66, 67]. Additionally, 
a shadow meta-analysis was conducted by an independ-
ent researcher using the metafor R package to confirm 
the obtained results. Finally, we conducted a leave-one-
out analysis, in which we ran the main models with one 
of the cohorts removed each time, to explore if any of the 
studies was disproportionately influencing our results.

Differentially methylated regions (DMRs)
To address the correlated structure of DNA methylation 
patterns, a regional analysis was conducted to identify 
differentially methylated regions (DMRs) associated with 
UPF intake in the main model in each individual cohort. 
The analysis was performed using the dmrff package in 
R, and all probes were included irrespective of their 
adjusted p-values. DMRs were defined based on the fol-
lowing criteria:

 (i) Distance between two neighbouring probes was at 
most 500 base pairs.

 (ii) The FDR-adjusted p-value for the region was < 0.05.
 (iii) A DMR must include at least two CpG sites.

Genomic and biologic context
We inspected the genomic surrounding of those CpGs 
that surpassed the suggestive threshold (P < 1 ×  10−5) by 
looking at their annotation (i.e. chromosome, position, 
nearest gene, if any) according to the human genome 
assembly GRCh37/hg19 provided by Illumina R pack-
age. Additionally, to assess whether methylation levels 
of CpGs were associated with the expression levels of 
nearby genes in child blood, we consulted the HELIX 
Expression Quantitative Trait Methylation (eQTM) cata-
log and considered significant CpG-eQTM pairs those 
with a p-value <  10–5 [68].

To identify whether there were any existing associa-
tions between these CpG sites and exposures or health 
outcomes, we also consulted the EWAS Catalog [69]—a 
manually curated databases of CpG–trait associations 
(with P-value < 1 ×  10–4) from published EWAS—and 
the EWAS atlas—a manually curated knowledgebase 
of EWAS associations (P-value < 1 ×  10–4 or adjusted 
P-value < 0.05) [70].

https://github.com/isglobal-brge/EASIER/
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Functional enrichment analyses
To gain biological insight, we performed a series of func-
tional enrichment analyses. To allow enough CpGs-genes 
to be included, a more lenient cut-off was used: p-value 
of  10–4 in model 3. Molecular functions and pathways 
that may be implicated in the associations between DNA 
methylation and high UPF intake were identified using 

Gene Ontology (GO) terms and pathways of the Kyoto 
Encyclopedia of Genes, Genomes (KEGG) using the 
missMethyl method [71], and protein complex-based sets 
(P) available in the Consensus Path database [72]. This 
was implemented in the Functional Enrichment module 
of the EASIER R package. We used eFORGE version 2.0 
[73] to test for enrichment of CpGs (p-value <  10–4) for 

Table 1 Characteristics of mothers and children in all participating cohorts

a Share of UPF in the total diet was expressed as percentage of total energy derived from UPF in ALSPAC and G21, and percentage of servings to the total servings of 
food and drinks ingested in HELIX and GenR
b Sedentary behaviour in HELIX is defined as minutes/day spent watching a screen, in G21 as minutes/day without doing sport, GenR as minutes/day viewing 
television and computer game use
c,d Total vegetables and fruit intake in ALSPAC and in GenR is a continuous variable expressed in grams/week
e Maternal education in G21 is categorized in years of schooling (< 9 years, 9–12 years and > 12 years). The categories for maternal education in ALSPAC are: O level/
vocational/CSE/no education qualifications, medium (A level), high (degree). The categories for GenR are: low (no/primary education), intermediate (secondary school, 
vocational training), and high (bachelor’s degree, university)
f Maternal age at birth for HELIX, G21, and ALSPAC and at child assessment for GenR

All continuous variables were expressed as mean ± SD while categorical variables are expressed as numbers, n (%)

N Cohorts (N = 3152)

HELIX G21 ALSPAC GenR

1138 732 892 390

Share of UPF in the diet in %a (mean (SD)) 24 (9) 34 (13) 61 (12) 36 (11)

Child sex: male (N (%)) 627 (55.1) 392 (53.6) 442 (49.6) 200 (51.3)

Child age (mean (SD)) (years) 7.81 (1.55) 9.72 (0.23) 7.45 (1.68) 9.76 (0.26)

White European Ancestry (N (%)) 1014 (89.1) 711 (97.1) 890 (99.8) 390 (100)

Child sedentary behaviour (min/day)b 240 (131) 492 (67) 124 (71)

Child sedentary behaviour (N (%))

 Screen time 1 h/day 246 (27.6)

 1‑2 h/day 581 (65.1)

 3 h/day or more 65 (7.3)

Child BMI (mean (SD)) (kg/m2) 16.8 (2.6) 18.6 (3.2) 16.2 (2.0) 17.1 (2.0)

Total vegetables intake (grams/week)c 197 (24) 98 (59)

Total vegetables intake (N (%))

 < 6 (servings/week) 573 (50.4) 188 (25.7)

 6.0–8.5 (servings/week) 216 (19.0) 346 (47.3)

 > 8.5 (servings/week) 349 (30.7) 119 (16.3)

 NA 79 (10.8)

Total fruit intake (grams/week) d 551 (513) 126 (68)

Total fruit intake(N (%))

 < 7 (servings/week) 372 (32.7) 387 (52.9)

 7–14.1 (servings/week) 384 (33.7) 207 (28.3)

 > 14.1 (servings/week) 382 (33.6) 59 (8.1)

NA 79 (10.8)

Maternal education (N (%)) e

 Low 170 (14.9) 304 (41.5) 251 (28.1) 29 (7.4)

 Middle 383 (33.7) 209 (28.6) 431 (48.3) 197 (50.5)

 High 585 (51.4) 219 (29.9) 210 (23.5) 164 (42.1)

Maternal pre‑pregnancy BMI (mean (SD)) (kg/m2) 25.0 (4.9) 24.5 (4.5) 22.9 (3.6) 24.6 (4.1)

Maternal age f (mean (SD)) (years) 30.7 (4.9) 29.6 (5.2) 29.7 (4.3) 42.4 (3.9)

Maternal active smoking during pregnancy (N (%)) 168 (14.8) 153 (20.9) 161 (18.0) 47 (12.1)
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Table 2 Fixed effect meta‑analysis for the top CpGs associated with UPF intake in children

Model 1 includes basic potential confounders related to the child (ethnicity, age, and sex)

Model 2 extends adjustments to maternal variables like smoking, education level, maternal BMI and age

Model 3 (main model) further includes child’s sedentary behaviour and BMI

Sensitivity 1: Model 3 restricted to European children only (n = 3007) (excluding non‑White children); Sensitivity 2: Model 3 + further adjusting for fruit and vegetable 
consumption

Beta values are DNA methylation change per 1% increase in UPF consumption

Model Beta Standard error p‑value Estimate direction (HELIX, G21, 
ALSPAC, GenR)

I2 (%)

cg14665028

 Model 1 0.0011 0.0003 4.3E−05  + + + + 11.1

 Model 2 0.0011 0.0003 1.8E−05  + + + + 0.0

 Model 3 0.0012 0.0003 5.3E−06  + + + + 0.0

 Sensitivity 1 0.0012 0.0003 2.7E−05  + + + + 0.0

 Sensitivity 2 0.0011 0.0003 1.3E−04  + + + + 0.0

cg18968409

 Model 1 0.0057 0.0011 4.5E−07  + + + + 0.0

 Model 2 0.0056 0.0011 9.3E−07  + + + + 0.0

 Model 3 0.0057 0.0012 9.4E−07  + + + + 0.0

 Sensitivity 1 0.0061 0.0012 3.6E−07  + + + + 0.0

 Sensitivity 2 0.0059 0.0012 1.3E−06  + + + + 0.0

cg00339913

 Model 1 − 0.0034 0.0008 9.7E−06 − − − − 0.0

 Model 2 − 0.0036 0.0008 4.1E−06 − − − − 0.0

 Model 3 − 0.0036 0.0008 7.0E−06 − − − − 0.0

 Sensitivity 1 − 0.0034 0.0008 3.0E−05 − − − − 0.0

 Sensitivity 2 − 0.0039 0.0008 2.2E−06 − − − − 0.0

cg24730307

 Model 1 0.0011 0.0003 2.3E−05  + + + + 0.0

 Model 2 0.0011 0.0003 2.0E−05  + + + + 0.0

 Model 3 0.0012 0.0003 4.8E−06  + + + + 0.0

 Sensitivity 1 0.0012 0.0003 6.2E−06  + + + + 0.0

 Sensitivity 2 0.0012 0.0003 2.3E−05  + + + + 0.0

cg03041696

 Model 1 − 0.0017 0.0003 1.4E−06 − − − − 4.9

 Model 2 − 0.0016 0.0003 3.3E−06 − − − − 2.4

 Model 3 − 0.0016 0.0004 2.2E−05 − − − − 8.7

 Sensitivity 1 − 0.0016 0.0004 7.8E−06 − − − − 6.8

 Sensitivity 2 − 0.0017 0.0004 4.7E−06 − − − − 0.0

cg09709951

 Model 1 0.0053 0.0013 3.5E−05  + + + ? 0.0

 Model 2 0.0055 0.0013 2.8E−05  + + + ? 0.0

 Model 3 0.0059 0.0013 1.2E−05  + + + ? 0.0

 Sensitivity 1 0.0062 0.0014 5.9E−06  + + + ? 0.0

 Sensitivity 2 0.0063 0.0014 6.6E−06  + + + ? 0.0

cg03999434

 Model 1 − 0.0015 0,0004 6.8E−05 − − − − 45.6

 Model 2 − 0.0017 0.0004 2.0E−05 − − − − 37.2

 Model 3 − 0.0017 0.0004 2.2E−05 − − − − 36.6

 Sensitivity 1 − 0.0018 0.0004 7.1E−06 − − − − 28.9

 Sensitivity 2 − 0.0016 0.0004 7.1E−05 − − − − 34.0
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DNase in hypersensitive sites, 15 chromatin states, and 5 
histone marks in specific tissues and cells.

Results
Cohort characteristics
The characteristics of the participating cohorts are sum-
marized in Table 1. Additionally, HELIX individual sub-
cohort’s descriptive data are provided in Table  S2. Our 
study population consisted of 1138 children from the 
HELIX study, 732 children from the G21 cohort, 892 
children from the ALSPAC cohort, and 390 children from 
the GenR Study, resulting in a total of 3152 participants.

The average age was between 5 and 11  years overall. 
Most of the children were of white European ancestry 
(95%). The distribution of UPFs intake varied across the 
study cohorts. UPF intake contributed on average 24% 
in HELIX and 36% in GenR to the total food consump-
tion in servings, and 34% in G21 and 61% in ALSPAC to 
total energy intake. Mothers were on average 30 years old 
at the time of pregnancy in all cohorts and their early-
pregnancy BMI ranged from ~ 22  kg/m2 in ALSPAC 
to ~ 25  kg/m2 in HELIX, G21, and GenR. We observed 
the lowest percentage of highly educated mothers in 
ALSPAC (23%) and the highest in HELIX (51%). Mater-
nal smoking during pregnancy ranged from 12% in GenR 
to 20% in G21. All cohorts have complete case data 

except for G21, where there is a 10.8% of missing data on 
fruit and vegetable intake.

Epigenome‑wide association study meta‑analysis
The percentage of probes excluded in each cohort ranged 
between 3 and 10% (Table S3). The lambdas (measure of 
p-value inflation) of different models in each cohort and 
in the meta-analysis ranged from 0.97 to 1.01 (Table S4).

No CpG reached the FDR significance threshold in 
association with UPF intake (see Manhattan plot Figure 
S1). However, as reported in Table 2, four CpGs reached 
the suggestive significance level (p-value <  10–5) with low 
heterogeneity between cohorts  (I2 < 50%) and consistent 
direction of effect. These results are also consistent with 
the random-effect model, as shown in Table S5.

Two of these suggestive CpGs were annotated to genes: 
(cg14665028, annotated to NHEJ1 on chromosome 2 
and cg00339913 annotated to PHYHIP on chromosome 
8), while the other two were in an intergenic region: 
cg18968409 on chromosome 2 and cg24730307 on chro-
mosome 22. Forest plots for the associations of these 4 
CpGs with UPF intake across the 4 cohorts are presented 
in Fig. S2.

No statistically significant (FDR-adjusted P > 0.05) or 
suggestive (p-value <  10–5) DMRs were found.

Table 3 Genomic context and biological exposures and traits previously associated with suggestive CpGs

a Expression Quantitative Trait Methylation (eQTMs) associated with each CpGs, derived from the HELIX eQTM blood database
b Reported associations in the EWAS catalog [37]. All are in children, except when indicated otherwise
c Reported associations with biological traits documented in the EWAS atlas [63]

CpG ID (UPF 
association)

Chromosome Position Relation 
to island

Gene region Nearest gene eQTM a EWAS catalog 
(tissue exposure 
direction) b

Ewas atlas (biological 
traits) c

cg14665028 ( +) 2 220,024,924 Island 5’UTR NHEJ1 0 Buccal cells tissue 
versus blood [95]

No results

cg18968409 ( +) 2 34,633,637 Open Sea 0 Whole blood: age 
(−) [74]

Adults: hepatocellular 
carcinoma HCC ( +) 
[78]

cg00339913 (−) 8 22,085,227 Open Sea Body PHYHIP 0 Whole blood: age 
(−) [74]

Papillary thyroid carci‑
noma (−) [77]

cg03041696 (−) 14 21,094,001 S Shore 0 Whole blood: age 
(−) [74]

Mother–newborns: 
alcohol consumption 
( +) [96]

cg24730307 ( +) 22 24,405,009 N Shelf 0 Buccal cells tissue vs 
blood [95]

No results

cg09709951 ( +) 12 54,017,699 N Shelf 5’UTR ATF7 2 (ATF) Whole blood: age 
( +)[74] sex ( +)[74] 
Adults: juice con‑
sumption (−) [75]

SETD1B‑neurode‑
velopment‑related 
syndrome ( +) [73]

cg03999434 (−) 12 1,639,034 Island 0 Whole blood: age 
( +)[74] sex (−) [74] 
Liver: adult liver ver‑
sus foetus (−) [76]

Adults: asthma (−) [97] 
air pollution (−) [98] 
Children: age (−) [99]
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Sensitivity analysis
First, when restricting the meta-analysis to children of 
European ancestry (n = 3007), most estimates remained 
similar, although the magnitude was slightly stronger for 
cg18968409 (effect size). Three additional CpGs passed 
the indicative threshold of p <  10–5: cg09709951, anno-
tated to ATF7, cg03999434 (intergenic) and cg03041696 
(intergenic) (Table  2). Secondly, when further adjust-
ing for fruit and vegetable intake, we found suggestively 
significant associations for 4 CpGs, two of them previ-
ously detected in model 3 ((cg18968409 and cg09709951 
(ATF7)) and two CpGs identified in the ethnicity sensi-
tivity analyses (cg03999434 and cg03041696). There-
fore, additionally to the 4 CpGs identified in model 3, 
we detected 3 additional CpGs in the two sensitivity 
analyses. Forest plots of these 3 additional CpGs are also 
included in Figure S2.

In leave-one-out analyses, estimates remained fairly 
consistent and there was no strong evidence that a spe-
cific cohort disproportionately influenced findings 
(Table S6).

Genomic and biological context
Table  3 shows genomic characteristics of the 7 sug-
gestion CpGs and previously identified associations 
of DNAm with other exposures or traits in various age 
populations. Focusing on the genomic context, out of 
7 CpGs, only 3 were annotated to a gene, of which only 
one (cg09709951) was associated with two transcript 
clusters: TC12002893.hg.1 and TC12001553.hg.1, which 
encode for the nearby ATF7 gene. As for the biological 
context, according to the EWAS catalog, 5 of the 7 iden-
tified CpGs had previously been reported in relation to 
ageing from birth to adolescence [74]. Moreover, natural 

juice consumption has been inversely associated with 
methylation at cg09709951 in adult studies [75], while 
UPF is associated with higher methylation at this site in 
our study, including when adjusting for fruit and veg-
etable intake. Lower methylation levels in the liver have 
been observed at cg03999434 (transcript: long non-cod-
ing RNA, RP3-340I3.1) in foetus compared to adults [76]. 
In the EWAS atlas, lower methylation at cg00339913 and 
higher methylation at cg18968409 have been associated 
with different carcinomas in adults [77, 78]. Also, higher 
methylation at cg09709951 has been found to be related 
to neurodevelopmental disorder related to SETD1B gene 
in children [73]. The directions of these associations with 
methylation correspond to a higher UPF intake in our 
study.

When searching EWAS of diet at any life stages, we did 
not find our suggestive CpGs (p-value < 1 ×  10–5) to be 
reported in existing studies (Table S7). However, 16 of the 
CpGs reported in these studies were associated with UPF 
at a nominal p-value (p < 0.05) in our analyses (Table S8).

Functional enrichment analyses
We found some enriched pathways in the protein com-
plex set of Consensus Path (Table 4). Three of the identi-
fied pathways are related to thyroid hormone, two others 
related to cancer and one related to LKB1 gene, which 
encodes a serine/threonine kinase protein that regulates 
cell polarity and energy metabolism and functions as a 
tumour suppressor [79].

We did not find any enriched GO or KEGG terms that 
surpassed the FDR significance threshold; however, a list 
of the top enriched terms with a nominal p value < 0.05 is 
shown in Table S9. The first three nominal enriched GO 
terms are related to transcription processes, followed by 

Table 4 Protein complex gene sets annotated to CpGs associated with UPF with a p value <  10–4

a Term from complex gene sets from ConsensusPathDB[66]
b Number of genes of UPF‑related CpGs overlapping with the genes annotated to the ConsensusPathDB term
c Total number of genes in the ConsensusPathDB term

TERMa Nb DEc P FDR

Regulation of apoptosis by parathyroid hormone‑related protein 2 21 < 0.001 0.002

LKB1 signalling events (PID) 2 43 0.001 0.005

Thyroid hormones production and their peripheral downstream signalling 
effects

2 74 0.002 0.010

Fragile X syndrome 2 119 0.002 0.010

Thyroid hormone signalling pathway 2 121 0.004 0.015

Transcriptional deregulation in cancer 2 192 0.010 0.031

MicroRNAs in cancer‑‑Homo sapiens (human) (KEGG) 2 310 0.025 0.061

PI3K‑Akt signalling pathway 2 340 0.030 0.061

PI3K‑Akt signalling pathway 2 354 0.032 0.061

Transcriptional Regulation by TP53 2 361 0.034 0.061
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transaminase-related terms, which are involved in the 
GABA catabolism, an inhibitory neurotransmitter [80]. 
In KEGG, we identified pathways related to thyroid hor-
mone signalling, DNA repair, and cancer, the latter align-
ing with previous associations found with carcinomas. 
Some nominal KEGG enriched terms are also related to 
amino acid metabolism and energy metabolism which is 
related to gut microbiota and also is involved in GABA 
metabolism.

No specific enriched tissue or cell type for any chroma-
tin states was found significant (Table S11).

Discussion
In this exploratory study, we report the first meta-EWAS 
of UPF intake and DNA methylation in blood in chil-
dren in middle childhood (5–11 years). No CpG reached 
the FDR significance threshold in association with UPF 
intake; however, we found 7 suggestive CpGs (p <  10–5) 
associated with UPF consumption. The functional analy-
sis reveals some enriched pathways involved in thyroid 
and liver function.

Biological interpretation and association with health 
outcomes
We observed higher methylation levels at cg09709951 
(ATF7) associated with UPF intake, whereas the litera-
ture reports lower methylation with juice consumption 
in adults [75]. Our results align that quality of the diet 
might modulate methylation at this CpG, with a lower 
diet quality associated with higher methylation, although 
fruit juice is not similar to fruit in terms of fibre content 
and glycaemic load, and on its health effects. Moreover, 
higher methylation of this CpG has been associated with 
a neurodevelopmental disorder in children [81]. Finally, 
ATF7 encodes a stress-responsive chromatin regulator 
that plays a role in various biological processes including 
innate immunological memory, adipocyte differentiation, 
and telomerase regulation [82]. Some studies have shown 
that ATF7 ablation prevents diet-induced obesity and 
insulin resistance [82].

Maternal characteristics have also been associated 
with some of the suggestive CpGs; for instance, maternal 
alcohol consumption has been associated with a higher 
methylation at cg03041696 [74] (opposite direction with 
UPF), while lower methylation of cg00339913 (PHYHIP) 
has been associated with higher maternal BMI and over-
weight [20], following the same direction as UPF con-
sumption. Our analyses were adjusted for maternal and 
child BMI; therefore, the differential methylation at this 
CpG previously observed with maternal BMI might be at 
least partly explained by consumption of UPF in the diet.

Some of our results point towards implications of 
UPF-related CpGs in liver function pathways. First, 

higher methylation at cg18968409 linked to higher UPF 
intake was also observed in the presence of hepatocel-
lular carcinoma [78]. Second, cg03999434 is reported to 
be less methylated in the liver in the foetus compared to 
adults [76] and methylation is also expected to increase 
in blood at this CpG from birth to adulthood, whereas 
UPF is associated with lower methylation levels in our 
study. Additionally, pathway analyses revealed a protein 
complex near the LKB1 gene, which in the liver tissue 
is involved in the glycogenesis pathway. In adults, UPF 
intake has been related to adverse liver outcomes, in 
particular non-alcoholic fatty liver disease [83], cirrho-
sis, and severe liver disease [84]. Studies in children are 
needed to investigate if this starts in early life, particu-
larly with subclinical biomarkers such as liver enzymes.

We found that UPF intake was associated with higher 
methylation of cg14665028, located at the promoter of 
NHEJ1 gene. This gene is one of the main genes involved 
in the non-homologous end-joining (NHEJ) pathway, the 
major double-strand breaks (DSB) repair mechanisms in 
normal cells [85]. This gene has been associated with a 
negative correlation with DNAm in tumour tissues [85], 
and an increase in DNA damage has been described in 
mice fed with high-fat diet and knockout in NHEJ path-
way [86].

UPF consumption was inversely associated with meth-
ylation at cg00339913, located at the gene body of PHY-
HIP, also named PAHX-AP1, a brain specific protein 
mainly related to early postnatal maturation of visual 
function [87]. Lower methylation at this CpGs has been 
associated with presence of papillary thyroid carcinoma 
in non-neoplastic adjacent tissue in comparison to PTC 
tissue [77].

UPF intake and health outcomes
Despite conducting our EWAS on a very large multi-
cohort population, the identified associations between 
UPF intake and DNA methylation in our study are of 
weak magnitude. UPF intake is associated with a range of 
health outcomes [8], some of them related to the UPF-
related CpGs and pathways identified here, in particu-
lar thyroid and liver function. For instance, studies have 
reported that some food additives are related to thyroid 
hormone dysregulation [88] and an increased risk of 
subclinical thyroid dysfunction [88]. A recent report on 
the HELIX data showed that metabolites associated with 
UPF intake were associated with C-peptide levels in chil-
dren, a well-known marker of β-cell function and insu-
lin resistance. However, a wide range of non-methylation 
mechanisms that include the gut microbiome, oxidative 
stress, and inflammation are likely to be more affected 
by UPF intake and by the contaminants (acrylamide, 
etc.) and additives (emulsifiers, sweeteners, etc.) that 



Page 12 of 15Llauradó‑Pont et al. Clinical Epigenetics            (2025) 17:3 

they contain. Although UPFs are typically high in at least 
one nutrient of concern (saturated fat, salt, added sugar), 
Nova classification classifies UPFs based on the extent of 
food processing and not on nutrient profiles [89].

Limitations and strengths
This study provides initial evidence for the possible asso-
ciation of UPF consumption with DNA methylation in 
children. However, these results should be interpreted 
considering both the limitations and strengths of the 
study.

A first limitation is the cross-sectional design, which 
limits causal inference of the observed associations.

However, we carefully selected potential confounders 
and provide estimates at various levels of adjustment to 
reduce the likelihood of confounding. Additionally, our 
results are confined to the ’middle childhood’ period 
(5–11  years) [90] and are not generalizable to younger 
ages or to adolescents. Moreover, it is important to 
acknowledge that both dietary and methylation patterns 
are likely to evolve from the age of 5 to 11 and that the 
association between UPF consumption and DNA meth-
ylation may vary across different ages.

Secondly, the definition of the exposure as percentage 
of UPF of the total dietary intake was defined differently 
across cohorts: proportion in servings in HELIX and 
GenR, and proportion of energy intake in ALSPAC and 
Gen XXI. Despite these definition differences between 
studies (a limitation inherent to any meta-analysis), the 
top hits CpGs were all associated with UPF in the same 
direction and with a similar magnitude across cohorts. 
Moreover, it should be noted that UPF intake calcu-
lated using the same definition in HELIX was associated 
with metabolites associated with insulin resistance and 
inversely related with a Mediterranean diet index [14].

In addition, our study considers geographical spe-
cificities and some foods were classified as UPF in some 
cohorts, but not in others. In particular, bread is most 
commonly purchased in supermarkets (cooked from 
ready-made industrial frozen dough, sliced packaged 
bread) in the UK and was therefore classified as ultra-
processed in the ALSPAC study, whereas in the other 
countries involved in this study (Portugal, Spain, France, 
Lithuania, Greece and the Netherlands), fresh bread is 
most commonly consumed and therefore not classified as 
UPF [91].

Our results report methylation levels in whole blood. 
However, since DNA methylation is tissue specific, our 
findings in whole blood may not reflect DNA meth-
ylation levels in other tissues, where such associations 
may be more evident. For instance, gastrointestinal 
tissue, responsible for food digestion nutrient extrac-
tion, absorption, and waste excretion, could be a more 

appropriate tissue to provide a more relevant context 
[92]. Considering that UPF have been linked to meta-
bolic biomarkers [14] and that the microbiome contains 
genomic information shaped by factors such as age and 
diet [20], it would be of interest to detect associations 
between diet and UPF within the gastrointestinal tissue 
DNA methylation. This may also be true for the liver tis-
sue—as methylation may be related to some pathways 
such as gluconeogenesis [93]—the thyroid or the adipose 
tissue [94].

Despite the effort to combine various well character-
ized European children cohorts to increase power, the 
magnitude of the associations between DNA methylation 
and UPF consumption observed was small. A possible 
explanation is that the life-long cumulative exposure to 
UPF is shorter compared to adults, which might explain 
the lower number of CpGs related to diet in previous 
EWASs conducted in children too [29, 30]. This absence 
of clear results also likely comes partly from the inaccu-
racy of dietary assessment preventing the discovery of 
larger effects. Well-designed intervention studies that 
aim at reducing UPF intake and increase diet quality are 
needed to identify more robust effects of diet on DNA 
methylation, in particular if this is measured in relevant 
tissues beyond blood.

Conclusions
This study constitutes the first meta-EWAS evaluat-
ing the association between child UPF consumption 
and differential DNA methylation in blood in over 3000 
school-aged children across Europe. We found suggestive 
changes in methylation at 7 CpGs. Future research with 
larger sample sizes, more detailed dietary intake estima-
tion, and additional epigenetic time points will help to 
clarify the epigenetic signature of UPF intake.
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