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Abstract 

Background In high-grade ovarian cancer (HGOC), determination of homologous recombination deficiency (HRD) 
status is commonly used in routine practice to predict response to platinum-based therapy or poly (ADP-ribose) poly-
merase inhibitors (PARPi). Here we tested the hypothesis that BRCA loss of function (LOF) due to epigenetic or genetic 
aberrations is a better predictor for the clinical outcome than HRD. One hundred thirty-one HGOC tissues were tested 
for BRCA  DNA-methylation, BRCA  mutations, HRD and BRCA1 mRNA expression, followed by a comprehensive survival 
analysis.

Results BRCA1-methylation was detected in 11% of the tumors, exclusively in BRCA1-wild-type (wt) HGOCs. BRCA1-
methylated tumors (BRCA1-meth) had HRD-scores similar to those of BRCA -mutated (mut) tumors, and higher com-
pared to unmethylated-BRCA -wt tumors (BRCA -wt-unmeth; P < 0.001). Platinum-refractory or -resistant HGOCs at first 
recurrence were all BRCA -unmeth cancers. Only one of the BRCA-mut cancers had a platinum-resistant recurrence. 
Thus, 99% of relapses in cancers with epigenetic or genetic BRCA -alterations were platinum-sensitive. Multivariate 
analysis confirmed BRCA-LOF as an independent predictor of progression-free survival (PFS) and overall survival (OS), 
whereas HRD-status had no predictive value for PFS and OS. Patients with BRCA -wt-unmeth cancers had the worst 
outcome compared to patients with cancers harboring epigenetic or genetic BRCA -alterations (PFS: P = 0.007; OS: 
P = 0.022). Most importantly, the BRCA -wt-unmeth subfraction of HRD-positive HGOCs exhibited the same poor sur-
vival as the entire HRD-negative cohort.

Conclusion In HGOC BRCA  mutational status together with BRCA1-methylation exhibit the best predictive power 
for favorable clinical outcome and thus high sensitivity to platinum-based therapy, whereas BRCA -unrelated HRD 
positivity was not associated with improved platinum sensitivity.
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Background
Epithelial ovarian cancer (EOC) is the eighth most 
common cancer in women and is the leading cause of 
death from gynecologic cancers [1, 2]. Most EOCs are 
diagnosed at an advanced stage (FIGO-stage III–IV), of 
which approximately 85% are HGOC.

Treatment options for EOC have evolved significantly 
in recent years with the use of targeted therapies, such 
as antiangiogenic agents and PARPi [3–6]. Homologous 
recombination repair (HRR) deficiency (HRD) is con-
sidered to be a predictive biomarker for platinum and 
PARPi therapy response in HGOC [7, 8]. A well-recog-
nized intrinsic biomarker of PARPi response in EOC 
is platinum sensitivity, thus leading to the approval 
of olaparib, niraparib and rucaparib monotherapy 
as maintenance therapy in platinum-sensitive recur-
rent EOC [9–11]. HRD occurs in about half of HGOC 
as shown by pathway analyses or clinical trials [12, 
13]. The main causes of HRD are germline or somatic 
mutations in the BRCA1 and BRCA2 genes (13–20%), 
but also other genes of the HRR-pathway (e.g. PALB2, 
RAD51C/D) and a number of currently unknown fac-
tors [12, 14–18]. Identification of additional mecha-
nisms leading to HRD may increase the number of 
patients who might benefit from PARPi-therapy. 
BRCA1 DNA-methylation, another mechanism of 
BRCA1-inactivation, has been reported in 5–12% in 
OCs [12, 19–23]. To date, BRCA -methylation determi-
nation is not separately performed in routine analysis. 
Kalachand et  al. recently described in a meta-analysis 
including data from 2636 OC patients across 15 stud-
ies that BRCA1-methylated (BRCA1-meth) OC showed 
similar clinicopathological features as BRCA1-mut OC 
in terms of high grade and young age at diagnosis, but 
unlike BRCA-mutated (BRCA-mut) cancers, BRCA1-
meth OC was not associated with improved survival 
[24]. Recently, we described that BRCA1/2 mRNA 
expression has been shown to be of clinical significance 
in OC [25]. Here, we investigated BRCA loss of func-
tion (LOF) via epigenetic or genetic aberrations in rela-
tion to HRD and BRCA1 mRNA expression to gain a 
better understanding of the clinical significance of 
BRCA-LOF emphasizing also BRCA1 promotor meth-
ylation for platinum sensitivity and its impact on the 
prognosis of OC patients.

Methods
Patients and samples
EOC tissue samples from 131 patients obtained dur-
ing primary debulking (n = 123) or biopsy prior to 
neoadjuvant chemotherapy (n = 8) were collected and 
processed at the Department of Obstetrics and Gyne-
cology, Medical University of Innsbruck (MUI) between 
1989 and 2021. Staging was performed according to the 
International Federation of Gynecology and Obstet-
rics (FIGO) classification system. Only patients who 
received platinum-based first-line chemotherapy were 
eligible for this study; a total of 54 patients received 
bevacizumab maintenance therapy; PARPi were not yet 
approved for routine use at that time. All patients were 
monitored within the outpatient follow-up program of 
our department. Clinical, pathological and follow-up 
data were stored in a database according to the pri-
vacy policy of our hospital. The study was approved by 
the Ethics Committee of the MUI (reference numbers: 
AN2015-0038 346/4.17; 1054/2019) and conducted fol-
lowing the Declaration of Helsinki. An overview of the 
molecular analyses performed on the patient samples 
and the corresponding case numbers is shown in Sup-
plementary Fig. 1.

DNA‑isolation
Genomic DNA was isolated from pulverized, quick-
frozen specimens (n = 131) using the DNeasy Tissue Kit 
(Qiagen, Hilden, Germany).

BRCA ‑methylation analysis
Bisulfite-modification of all 131 tumor DNA samples 
was performed using the EZ DNA-Methylation-Gold-Kit 
(Zymo Research, CA, USA) according to the manufac-
turer’s instructions. Primers and probes for BRCA1- and 
BRCA2 promoter-methylation analysis were used as 
previously described [26]. MethyLight-analysis was per-
formed and the percentage of methylated reference 
(PMR) values was calculated, as previously reported [25], 
using a BRCA1 PMR > 10 as the cut-off for promoter-
hypermethylation, as described by Weisenberger et  al. 
[26]. PMR-values were adjusted for the proportion of 
tumor cells (this proportion was calculated within each 
sample based on the variant allele frequencies (VAF) of 
SNPs in regions of LOH in neoplastic cells).

Keywords Ovarian cancer, BRCA1, BRCA2, DNA-methylation, Homologous recombination deficiency (HRD), Platinum 
sensitivity, PARP inhibitor therapy
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BRCA ‑mutation analysis
Targeted NGS was conducted for all 131 tumor samples 
using the TruSight Cancer Sequencing Panel (Illumina, 
San Diego, USA) on the Illumina MiSeq®- and the Next-
Seq-system (Illumina, CA, USA). Mutation analysis was 
performed using SeqNext® Software (JSI medical sys-
tems GmbH, Ettenheim, Germany). Variants with a VAF 
of at least 10% were classified according to the consensus 
recommendations of the American College of Medical 
Genetics [27].

Array analysis
The DNA from 120 tumor samples was analyzed using 
the Global Screening Array (Illumina) according to the 
manufacturer’s protocol. To determine the tumor cell 
proportion, data were analyzed with Illumina GenomeS-
tudio 2.0 and NxClinical (Bionano, San Diego, CA, USA, 
SNP-FASST2-Segmentation Algorithms). For the deter-
mination of tumor cell proportion, regions of copy num-
ber neutral loss of heterozygosity (LOH) were selected 
and the tumor cell proportion (aberrant cell fraction) was 
calculated based on the variant allele frequency of the 
SNPs. For the determination of the HRD-score, regions 
of LOH, allelic imbalance and copy number variations 
were quantified.

HRD‑assessment
HRD-data were available for 120 patients analyzed in this 
study. For HRD-quantification, a LOH-score and an Ane-
uploidy-Normalized-Telomeric-Imbalance (ANTI)-Score 
were used, based on the LOH-score published by Framp-
ton et  al. and using a modification of the Telomeric-
Allelic-Imbalance (TAI)-score by Birkbak et  al. [28, 29]. 
Both variables were equally weighted and integrated into 
a common HRD-score with a diagnostic cut-off value 
of ≥ 1.77 to discriminate between HRD-positive (HR-
deficient) and HRD-negative (HR-proficient) tumors 
[30]. To determine genome-wide copy number variation 
and allelic variation, the DNA was analyzed by the Global 
Screening Array (Illumina) according to the manufac-
turer’s protocol, and data analysis was performed using 
Illumina GenomeStudio 2.0 and NxClinical (Bionano, 
SNP-FASST2-Segmentation Algorithms) software. This 
HRD-test has been validated by paired analyses using 
Myriad MyChoice DX (Myriad Genetics). A correlation-
coefficient of 0.86 was revealed between the respective 
scores, with 100% agreement in the classification of sam-
ples as HRD-positive and HRD-negative [30].

BRCA1 mRNA expression analysis
RNA-isolation, reverse-transcription  and quantitative 
real-time PCR were performed as previously described 

[25]. Primers and probe for BRCA1 were purchased from 
Applied Biosystems (Foster City, CA, USA, Applied Bio-
systems Assay ID: Hs01556193_m1). BRCA1-mRNA 
expression was adjusted to tumor cell proportion (n = 63).

Statistics
Comparisons between two continuous variables were 
made using the Mann–Whitney test and between more 
continuous variables using the Kruskal–Wallis test. The 
Chi-square test was used to test for differences in cate-
gorical variables. Survival analysis was performed using 
Kaplan–Meier curves and the log-rank test. Cox-regres-
sion analysis was used for multivariate survival analy-
sis (all variables from in the univariate analysis which 
revealed P values < 0.2 were included in the multivariate 
analysis). For analyses of BRCA1 DNA methylation in 
relation to platinum sensitivity, progression-free patients 
who were lost to follow-up within 6 months after the last 
platinum treatment (n = 9) were excluded. All statistical 
analyses were performed using SPSS (version 29.0; SPSS 
Inc., Chicago, IL, USA).

Results
BRCA1 methylation status in relation to BRCA mutations 
and clinical pathological characteristics
Analysis of BRCA1- and BRCA2-methylation in 131 
HGOC tissue samples revealed BRCA1-methylation in 
11% (14/131) of the tumors. No BRCA2-methylation was 
observed in any of the samples. Furthermore, in none 
of the BRCA1-mut cancers a BRCA1 promotor meth-
ylation was identified, suggesting that epigenetic silenc-
ing of BRCA1 and BRCA1-mutations may be mutually 
exclusive. BRCA1-methylation was almost exclusively 
found in 19% of BRCA -wild-type (wt) tumors (13/70), 
whereas only one BRCA2-mut tumor was BRCA1-meth 
(Table  1). Furthermore, 83% (10/12) of BRCA1-meth 
tumors were positively associated with HRD-positivity, 
whereas BRCA-wt-unmethylated (BRCA-wt-unmeth) 
tumors were predominantly HRD-negative (73%; 41/56) 
(P < 0.001). For completeness, in general, HRD-positive 
scores were detected in 63% of the samples analyzed 
(76/120) and in 98% of BRCA -mut tumors (51/52). 
The respective HRD-scores of the different molecular 
subgroups are depicted in Fig.  1A. Notably, the HRD-
scores did not differ between BRCA1-meth (median 
HRD-score = 2.65) and BRCA1-mut tumors (median 
HRD-score = 2.73). Furthermore, lower BRCA1 mRNA 
expression was observed in BRCA1-meth or BRCA1-mut 
tumors in comparison to BRCA1–wt tumors. (Fig.  1B; 
P = 0.005, P = 0.031). 

BRCA-LOF by epigenetic or genetic aberrations was 
associated with younger age (P = 0.007), but with no 
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other classic clinicopathological features as shown in 
Table 1.

BRCA‑LOF by epigenetic or genetic aberrations 
and platinum sensitivity
Platinum sensitivity was defined by the interval between 
the last platinum administration and the first recur-
rence: disease progression within six months was 

considered platinum-resistant and after six months plat-
inum-sensitive. Referring selectively to the BRCA -meth-
ylation and  -mutational status, 71 of 72 cancers with 
epigenetic (n = 12) or genetic (n = 59) BRCA -aberrations 
were found to be platinum-sensitive (positive predictive 
value (PPV) = 99%; P < 0.001), and 92% (11/12) of HGOC 
patients classified as platinum-resistant had BRCA-wt-
unmeth tumors, whereby it should be noted that none of 

Table 1 Associations of BRCA  DNA-methylation and clinicopathological and genetic features

The significance level (P) was determined by Chi Square analysis

Bold values indicate P-values < 0.05; the numbers in italics represent the specific data for BRCA1 and BRCA2 mutations
§ BRCA1 DNA methylation; BRCA2 DNA methylation was not detected

FIGO International Federation of Gynecology and Obstetrics; HGEOC high-grade endometrioid ovarian cancer; HGSOC high-grade serous ovarian cancer; HRD 
homologous recombination deficiency; LOF loss of function; n.a. not available

Variable BRCA ‑methylation§ BRCA‑LOF by epigenetic or 
genetic aberrations

Total No Yes P value No Yes P value

Age  ≤ 59.8 years 66 57 9 0.271 21 45 0.007
 > 59.8 years 65 60 5 36 29

FIGO stage I/II 15 14 1 0.592 5 10 0.398

III/IV 116 103 13 52 64

Tumor grade 2 54 50 4 0,309 25 29 0.590

3 77 67 10 32 45

Residual disease Macroscopically tumor-free or < 1 cm 91 83 8 0.244 44 47 0.080

Any tumor residual (> 1 cm) 38 32 6 12 26

n.a 2 – – – –

Histology HGSOC 114 102 12 0.877 50 64 0.835

HGEOC 17 15 2 7 10

BRCA  genetic aberrations Wild-type 70 57 13 0.002 57 13  < 0.001
Mutation (BRCA1; BRCA2) 61 (45; 16) 60 (45; 15) 1 (0; 1) 0 61 (45;16)

HRD Low (< 1.77) 44 42 2 0.092 41 3  < 0.001
High (> 1.77) 76 65 11 15 61

Fig. 1 BRCA1 DNA-methylation in relation to BRCA -mutations, HRD and BRCA1 mRNA expression. (A) HRD-scores in different OC subgroups 
according to BRCA  epigenetic or genetic aberrations (n = 120). HRD-score threshold was defined as ≥ 1.77 (red line). The HRD-scores above this 
threshold were considered HRD-positive (HR-deficient) and values below the threshold were considered HRD-negative (HR-proficient). Note: The 
BRCA2-mut-meth tumor is included in the BRCA-mut group. (B) BRCA1 mRNA expression in relation to BRCA1 epigenetic or genetic aberrations (n = 63) 
Note: BRCA2-mut tumors are included in the BRCA1-wt group, the BRCA2-mut-meth tumor is included in the BRCA1-meth group 
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the platinum-resistant cancers showed BRCA1-methyla-
tion. We also analyzed this separately in HGOC-patients 
with residual disease after primary surgery (n = 35) in 
order to obtain better comparability and a more precise 
estimation of platinum-responsiveness. Again, 24 out 
of 25 tumors with epigenetic (n = 5) or genetic (n = 19) 
BRCA -aberrations were classified as platinum-sensitive 
(PPV = 96%; P = 0.001) and 83% (5/6) of HGOC patients 
with assumed platinum-resistant cancers had BRCA-wt-
unmeth tumors.

However, based on the common diagnostic approach 
combining the BRCA-mutational and HRD-status, 80 
of 84 BRCA -mut and/or HRD-positive tumors were 
platinum-sensitive (PPV = 95%; P = 0.011) and only 64% 
(7/11) of patients considered as platinum-resistant had 
BRCA -wt, HRD-negative tumors. In patients with resid-
ual disease, 25 of 27 BRCA -mut and/or HRD-positive 
tumors were platinum-sensitive (PPV = 93%; P = 0.005) 
and 67% (4/6) of cancers defined as platinum-resistant 
were BRCA -wt, HRD-negative. When considering HRD-
status alone, the PPV for platinum-sensitive recurrent 
disease was 91% (20/22) in cases with residual disease.

BRCA‑LOF by epigenetic or genetic aberrations 
and survival
Univariate survival analysis revealed that patients with 
tumors harboring BRCA-LOF had a favorable pro-
gression-free survival (PFS) and overall survival (OS) 
(median-PFS: 2.7  years, 95% CI 1.5–3.9; median-OS: 
7.8  years, 95% CI 6.0–9.6) compared to patients with 
BRCA-wt-unmeth cancer (median-PFS: 1.8  years, 95% 
CI 1.1–2.4; median-OS: 5.4  years, 95% CI 3.5–7.3) as 
shown in Table 2 and Figs. 2A and 2B (PFS: P = 0.011; OS: 
P = 0.047). This was also confirmed in the multivariate 
analysis (Table 3A; PFS: HR 0.5, 95% CI 0.3–0.8, P = 0.007 
and OS: HR 0.6, 95% CI 0.3–0.9, P = 0.022).

Interestingly, the subfraction of patients with HRD-
positive tumors which are unrelated to BRCA-LOF 
(HRD-pos. BRCA-wt-unmeth) representing 20% 
(15/76) of all HRD-positive tumors; with a median-
PFS of 1.8  years, (95% CI 1.4–2.2) and a median-OS of 
6.6  years, (95% CI 0.2–13.1) did not differ in survival 
from patients with HRD-negative BRCA-wt-unmeth 
tumors (median-PFS: 1.8 years, 95% CI 0.5–3.0; median-
OS: 5.4 years, 95% CI 3.2–7.6) (Table 2; Fig. 2C, D), nor 
did they differ from patients of the entire HRD-negative 
cohort (median-PFS: 2.1 years, 95% CI 1.0–3.3, P = 0.533; 
median-OS: 5.4 years, 95% CI 3.3–7.5, P = 0.743; Fig. 2E, 
F). Survival analysis of these patients with HRD-positive 
tumors unrelated to BRCA-LOF in relation to BRCA-
LOF tumors, revealed a significantly worse PFS (Fig. 2C; 
P = 0.048), but no difference in OS (Fig. 2D; P = 0.131).

Neither HRD- nor BRCA  mutational status as usually 
determined in routine practice had any predictive value 
in our cohort (Table 2; Table 3B).

A subgroup analysis revealed that superior survival 
in patients with tumors harboring BRCA-LOF was only 
observed in patients without the addition of bevacizumab 
to chemotherapy as a maintenance-therapy (median-PFS: 
2.5 years, 95% CI 0.5–4.5, median-OS: 7.8 years, 95% CI 
5.8–9.7) compared to patients with BRCA -wt-unmeth 
HGOC (median-PFS: 1.3 years, 95% CI 0.8–1.9; median-
OS: 3.9  years, 95% CI 0.0–8.5) (Table  2; PFS and OS 
each P = 0.030). This survival advantage disappeared in 
patients treated with bevacizumab (Table 2). These find-
ings were confirmed in the multivariate analyses shown 
in Table 3C for PFS (HR 0.4, 95% CI 0.2–0.8, P = 0.007) 
and OS (HR 0.5, 95% CI 0.3–0.9, P = 0.012).

Discussion
Based on data from The Cancer Genome Atlas (TCGA), 
Yang et al. showed loss of BRCA1 mRNA expression by 
BRCA1-methylation in 10% (33/316) of HGSOC and no 
promoter-hypermethylation of BRCA2 [23]. This was 
confirmed by Abkevich et  al. [22] and is also consistent 
with our results. According to our data, BRCA1-meth-
ylation appears to affect the DNA HRR-mechanism to 
the same extent as pathogenic mutations of both BRCA 
-genes, substantiated by an almost identical extent of 
genome-wide scarring (HRD-score) in both cancer 
subgroups. This is in agreement with the findings of 
Kalachand et al. [24].

In recent years, the prognostic and predictive signifi-
cance of BRCA1-methylation in OC has been the sub-
ject of intense debate. A decade ago, TCGA-data on 
OC-patients treated with platinum-based chemotherapy 
showed a significant OS superiority in BRCA -mut com-
pared to BRCA-wt cancers, but this was not the case for 
BRCA1-wt-meth cancers, which behaved like BRCA-wt 
cancers [12].

A recent meta-analysis with data from 2,636 OC 
patients showed that BRCA1-methylation was not associ-
ated with increased survival [24]. However, in our work 
we focus on BRCA-LOF due to epigenetic or genetic 
aberrations and compared this combined assessment 
with clinicopathological features and the determination 
of HRD-status to predict clinical outcome. BRCA-LOF 
was detected predominantly in tumors from younger 
patients, but there was no association between BRCA1 
methylation and age. It would appear that the status of 
the BRCA  mutation is the primary driver of this effect, 
with germline BRCA  mutations potentially associated 
with this finding. In terms of survival, it is noteworthy 
that the subfraction of patients with tumors exhibiting 
HRD-positivity unrelated to BRCA-LOF had the same 
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poor survival as patients with HRD-negative cancers. 
Overall, our data show that from the generally expected 
50% HRD-positive HGOCs, only the group of BRCA-
LOF cancers, consisting of BRCA -mut or BRCA1-meth 
cancers represent those with exceptionally high sensitiv-
ity to platinum-based chemotherapy.

Interestingly the proportion of patients with platinum-
resistant recurrence among BRCA1/2 mutant cases in 

our cohort is very low compared to the literature -Alsop 
et al. report a percentage of 14.9% of platinum-resistant 
patients with BRCA1/2 mutations [31]. Multifactorial 
causes such as BRCA  mutation type and prevalence, sur-
gical radicality, the interval between surgery and the start 
of chemotherapy, chemotherapy dose density, the use 
of combination chemotherapy or chemo-monotherapy 
could explain this difference.

Table 2 Univariate survival analysis in 131 HGOC-patients

The significance level (P) was determined by log-rank test

Bold values indicate P values < 0.05; subgroup analyses are shown in italics

CI confidence interval; FIGO International Federation of Gynecology and Obstetrics; HGEOC high-grade endometrioid ovarian cancer; HGSOC high-grade serous 
ovarian cancer; HR homologous recombination; HRD homologous recombination deficiency; LOF loss of function; n.r. not reached; wt wild-type

Variable Progression‑free survival Overall survival

events/total Median, years (95% 
CI)

P value events/total Median, years (95% 
CI)

P-value

Age  < 60.0 years 46//66 2.4 (1.6–3.2) 0.682 34/66 6.9 (5.0–8.8) 0.487

 > 60.0 years 39/65 2.2 (1.3–3.1) 32/65 5.8 (2.8–8.8)

FIGO stage I/II 5/15 n.r 0.005 5/15 9.8 (4.9–14.6) 0.075

III/IV 80/116 2.0 (1.5–2.4) 61/116 6.4 (4.6–8.1)

Tumor grade 2 35/54 1.9 (1.2–2.6) 0.562 32/54 6.4 (2.9–9.9) 0.556

3 50/77 2.5 (1.7–3.3) 34/77 6.5 (5.1–8.0)

Residual disease Macroscopically tumor-
free or < 1 cm

53/91 2.7 (2.2–3.2)  < 0.001 33/91 7.8 (5.5–10.1)  < 0.001

Any tumor residual
(> 1 cm)

31/38 1.5 (1.1–1.9) 32/38 3.0 (1.6–4.3)

Histology HGSOC 74/114 2.0 (1.4–2.5) 0.222 56/114 6.3 (4.8–7.8) 0.133

HGEOC 11/17 3.1 (2.2–4.1) 10/17 8.9 (7.0–10.9)

BRCA  genetic aberra-
tions

No 45/70 1.8 (0.9–2.8) 0.085 35/70 5.7 (3.9–7.6) 0.113

Yes 40/61 2.5 (1.5–3.5) 31/61 7.8 (5.6–9.9)

HRD status Negative (HR-profi-
cient)

29/44 2.1 (1.0–3.3) 0.273 23/44 5.4 (3.3–7.5) 0.250

Positive (HR-deficient) 49/76 2.4 (1.6–3.2) 36/76 6.9 (5.2–8.5)

 Subgroup BRCA-
unmeth

Negative (HR-proficient) 27/42 2.1 (0.9–3.4) 0.372 21/42 5.4 (3.1–7.7) 0.328

Positive (HR-deficient) 44/65 2.2 (1.5–2.9) 32/65 6.9 (5.0–8.7)

 Subgroup BRCA-meth Negative (HR-proficient) 2/2 1.3 (n.r.) 0.639 2/2 4.9 (n.r.) 0.999

Positive (HR-deficient) 5/11 3.1 (0.0–6.7) 4/11 3.4 (n.r.)

 Subgroup BRCA-wt-
unmeth

Negative (HR-proficient) 27/41 1.8 (0.5–3.0) 0.680 21/41 5.4 (3.2–7.6) 0.879

Positive (HR-deficient) 11/15 1.8 (1.4–2.2) 8/15 6.6 (0.2–13.1)

BRCA-LOF by epige-
netic or genetic aber-
rations

No (wt, unmeth) 39/57 1.8 (1.1–2.4) 0.011 30/57 5.4 (3.5–7.3) 0.047
Yes (mut or meth) 46/74 2.7 (1.5–3.9) 36/74 7.8 (6.0–9.6)

 Subgroup HRD nega-
tive (HR-proficient)

No (wt, unmeth) 27/41 1.8 (0.5–3.0) 0.332 21/41 5.4 (3.2–7.6) 0.436

Yes (mut or meth) 2/3 5.0 (0.0–11.0) 2/3 7.8 (3.2–12.4)

 Subgroup HRD posi-
tive (HR-deficient)

No (wt, unmeth) 11/15 1.8 (1.4–2.2) 0.098 8/15 6.6 (0.2–13.1) 0.159

Yes (mut or meth) 38/61 2.5 (1.4–3.6) 28/61 7.8 (5.8–9.8)

 Subgroup no main-
tenance therapy with 
bevacizumab

No (wt, unmeth) 21/31 1.3 (0.8–1.9) 0.030 24/31 3.9 (0.0–8.5) 0.030
Yes (mut or meth) 29/46 2.5 (0.5–4.5) 29/46 7.8 (5.8–9.7)

 Subgroup mainte-
nance therapy with 
bevacizumab

No (wt, unmeth) 18/26 2.5 (1.9–3.0) 0.057 6/26 6.6 (n.r.) 0.615

Yes (mut or meth) 17/28 3.0 (1.6–4.4) 7/28 6.4 (1.5–11.3)
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Fig. 2 BRCA-LOF by epigenetic or genetic aberrations and survival. (A) Analysis of progression-free survival (PFS) and (B) overall survival 
(OS). Subgroup analyses of HRD-positive BRCA -wt-unmeth HGOC for (C) PFS and (D) OS compared with HRD-negative BRCA -wt-unmeth 
and with BRCA-LOF HGOC and for (E) PFS and (F) OS compared with the entire HRD-negative cohort
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Platinum-sensitivity of cancers is closely related to their 
sensitivity to PARPi and is therefore considered to be an 
intrinsic biomarker for PARPi-efficacy. Overlapping gene 
dependencies for carboplatin- and PARPi-response have 
been previously described by Coehlo et  al. [32]. There-
fore, we are tempted to speculate that the combined 
assessment of epigenetic or genetic BRCA-inactivation 
may also be an important surrogate to reliably predict 
PARPi response. However, this hypothesis must be evalu-
ated in separate clinical trials of PARPi therapy.

In our survival analyses, the BRCA-LOF due to epige-
netic or genetic BRCA-inactivation was a more powerful 
predictor of HGOC-outcome than HRD-testing. Patients 
with BRCA -wt-unmeth tumors had the most unfavora-
ble clinical outcome, regardless of HRD-status, presum-
ably due to impaired platinum-sensitivity. The fact that 
none of platinum-resistant cancers in our investigations 
showed BRCA1-methylation supports this hypothesis.

Interestingly, we also observed that in the group of 
patients receiving bevacizumab maintenance-therapy, 
the survival disadvantage in patients with BRCA-wt-
unmeth tumors disappeared. It may be assumed that this 
group of patients with less platinum sensitive tumors will 
derive the greatest benefit from antiangiogenic therapy.

In a recent post-hoc exploratory biomarker analysis 
of pre- and post-platinum samples from ARIEL2-study 

(a single-arm, open-label, phase-2 trial testing effi-
cacy of the PARPi rucaparib in recurrent HGOC), 
Swisher et  al. described that high-level methyla-
tion of the BRCA1-promoter measured by quantita-
tive methylation-sensitive digital droplet polymerase 
chain reaction (MS-ddPCR) was a strong biomarker 
of rucaparib-sensitivity, with similar power as BRCA 
-mutations [33]. Also Kondrashova et  al. identified 
homozygous or hemizygous BRCA1 methylation as a 
predictor for rucaparib clinical response using HGSOC 
patient-derived xenografts (PDX) and archival tumor 
and pre-treatment biopsy samples from 23 patients 
from ARIEL2-study [34]. Blanc-Durand et  al. recently 
showed that OCs with high BRCA1-hypermethylation 
were very likely to exhibit high genomic instability 
scores as an indicator of HRD which is in line with our 
observations [35]. They identified BRCA1-methylation 
in 19% of BRCA-wt tumors and concluded that these 
patients would therefore be good candidates for PARPi-
treatment. They proposed to differentiate between 
biallelic BRCA1-promoter methylation (high-methyl-
ation; ≥ 70%) leading to a homozygous gene silencing 
and a monoallelic methylation with incomplete silenc-
ing of BRCA1 (low-methylation; 30–69%). Despite this 
distinction, these authors did not find a statistically sig-
nificant difference in PFS.

Table 3 Multivariate analysis in HGOC patients

Clinicopathological features and (A) BRCA-LOF by epigenetic or genetic aberrations and (B) BRCA  mutational status in 131 patients. (C) Clinicopathological features 
and BRCA-LOF in the subgroup of 77 patients without maintenance therapy with bevacizumab

The significance level was determined by Cox regression analysis

Bold values indicate P values < 0.05

CI confidence interval; FIGO International Federation of Gynecology and Obstetrics; HGEOC high-grade endometrioid ovarian cancer; HGSOC high-grade serous 
ovarian cancer; HR hazard ratio; HRD homologous recombination deficiency; LOF loss of function

Variable Progression‑free survival Overall survival

HR of progression 
(95% CI)

P-value HR of death (95% CI) P value

A

FIGO stage I/II versus III/IV 2.5 (1.0–6.3) 0.048 1.6 (0.6–4.1) 0.310

Residual disease no versus yes 2.2 (1.4–3.5)  < 0.001 2.5 (1.5–4.2)  < 0.001
Histology HGSOC versus HGEOC – – 0.7 (0.3–1.3) 0.257

BRCA-LOF no versus yes 0.5 (0.3–0.8) 0.007 0.6 (0.3–0.9) 0.022
B

FIGO stage I/II versus III/IV 2.6 (1.0–6.6) 0.041 1.6 (0.6–4.1) 0.320
Residual disease no versus yes 2.0 (1.3–3.2) 0.002 2.3 (1.4–3.9) 0.001
Histology HGSOC versus HGEOC – – 0.7 (0.3–1.4) 0.301

BRCA  genetic aberrations no versus yes 0.7 (0.4–1.1) 0.099 0.7 (0.4–1.1) 0.152

C

FIGO stage I/II versus III/IV 2.1 (0.8–6.1) 0.154 1.5 (0.6–4.0) 0.374

Residual disease no versus yes 2.3 (1.3–4.2) 0.007 2.1 (1.2–3.7) 0.012
Histology HGSOC versus HGEOC – – 0.6 (0.3–1.2) 0.149

BRCA-LOF no versus yes 0.4 (0.2–0.8) 0.007 0.5 (0.3–0.9) 0.012
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In our analysis, we did not use a cutoff to dichotomize 
our small cohort of 14 methylated cancers into high and 
low BRCA1 DNA methylation categories. But the median 
adjusted PMR-value among these BRCA1 methylated 
specimens was quite high at 70.6, with a minimum PMR-
value of 32.7 (data not shown). However, we could show 
in our cohort that BRCA1-methylation lead to a signifi-
cant loss of BRCA1 mRNA-expression and consequently 
to a BRCA-LOF, the primary end-point of our study.

It should be noted that the number of cases included 
in our study represents a limitation together with the 
fact that none of the included patients was treated with 
PARPi. Therefore, further validation in a larger cohort, 
preferably in patients with HGOC treated with first-line 
PARPi maintenance, would be beneficial.

Conclusion
There is a high risk that parts of the clinically relevant 
subgroup of BRCA1-meth OC will remain unrecognized 
if only HRD-testing is performed in addition to BRCA  
mutation analysis. Distinguishing this subgroup is par-
ticularly important because completely BRCA -unrelated 
HRD-positive cancers have been shown to lack high sen-
sitivity to platinum-based chemotherapy and probably 
also to PARPi treatment. Therefore, we strongly advocate 
the additional determination of BRCA1 methylation sta-
tus to BRCA  mutation status and HRD status in HGOC 
for a more accurate prediction of sensitivity to platinum 
and, presumably, to PARPi.

Further retrospective validation of a joint determina-
tion of BRCA  loss by epigenetic or genetic aberrations 
in HGOC patients treated with first-line PARPi mainte-
nance therapy is urgently warranted. This could validate 
our further hypothesis that the beneficial effect of PARPi 
maintenance therapy in HRD-positive BRCA -wt HGOCs 
shown in large randomized phase III clinical trials is pre-
dominantly due to the BRCA1-meth subfraction of the 
tumors.
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