
Hsiao et al. Clinical Epigenetics          (2024) 16:137  
https://doi.org/10.1186/s13148-024-01751-6

RESEARCH Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/.

Clinical Epigenetics

Epigenomic biomarkers insights in PBMCs 
for prognostic assessment of ECMO-treated 
cardiogenic shock patients
Yi‑Jing Hsiao1,2, Su‑Chien Chiang3, Chih‑Hsien Wang4†, Nai‑Hsin Chi4, Hsi‑Yu Yu4, Tsai‑Hsia Hong5, 
Hsuan‑Yu Chen6, Chien‑Yu Lin6, Shuenn‑Wen Kuo4, Kang‑Yi Su1,7, Wen‑Je Ko4, Li‑Ming Hsu4, Chih‑An Lin1, 
Chiou‑Ling Cheng1, Yan‑Ming Chen1, Yih‑Sharng Chen4† and Sung‑Liang Yu1,7,8,9,10* 

Abstract 

Objective As the global use of extracorporeal membrane oxygenation (ECMO) treatment increases, survival rates 
have not correspondingly improved, emphasizing the need for refined patient selection to optimize resource alloca‑
tion. Currently, prognostic markers at the molecular level are limited.

Methods Thirty‑four cardiogenic shock (CS) patients were prospectively enrolled, and peripheral blood mononuclear 
cells (PBMCs) were collected at the initiation of ECMO (t0), two‑hour post‑installation (t2), and upon removal of ECMO 
(tr). The PBMCs were analyzed by comprehensive epigenomic assays. Using the Wilcoxon signed‑rank test and least 
absolute shrinkage and selection operator (LASSO) regression, 485,577 DNA methylation features were analyzed 
and selected from the t0 and tr datasets. A random forest classifier was developed using the t0 dataset and evaluated 
on the t2 dataset. Two models based on DNA methylation features were constructed and assessed using receiver 
operating characteristic (ROC) curves and Kaplan–Meier survival analyses.

Results The ten‑feature and four‑feature models for predicting in‑hospital mortality attained area under the curve 
(AUC) values of 0.78 and 0.72, respectively, with LASSO alpha values of 0.2 and 0.25. In contrast, clinical evaluation sys‑
tems, including ICU scoring systems and the survival after venoarterial ECMO (SAVE) score, did not achieve statistical 
significance. Moreover, our models showed significant associations with in‑hospital survival (p < 0.05, log‑rank test).

Conclusions This study identifies DNA methylation features in PBMCs as potent prognostic markers for ECMO‑
treated CS patients. Demonstrating significant predictive accuracy for in‑hospital mortality, these markers offer a sub‑
stantial advancement in patient stratification and might improve treatment outcomes.
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Introduction
Cardiogenic shock (CS) is characterized by acute hypop-
erfusion resulting from reduced cardiac output, com-
monly triggered by acute myocardial infarction (AMI), 
fulminant myocarditis, or dilated cardiomyopathy 
(DCMP) [1]. Venoarterial extracorporeal membrane oxy-
genation (VA-ECMO) utilizes peripheral vascular access, 
employing a pump to divert venous blood to a membrane 
oxygenator and then perfuse it back into the periph-
eral arteries, thereby providing partial cardiopulmonary 
bypass to support patients with cardiogenic shock due to 
myocardial infarction, cardiomyopathy, and other con-
ditions, significantly enhancing survival probability [2]. 
Patients undergoing extracorporeal cardiopulmonary 
resuscitation (ECPR) have demonstrated a roughly 20% 
increase in survival rates at hospital discharge compared 
to those receiving conventional cardiopulmonary resus-
citation (CPR) [3]. Despite these benefits, ECMO treat-
ment is limited by potential neurological impairments 
and high mortality rates; survival rates for CS patients 
with ECPR remain low [4, 5]. Meta-analyses suggest that 
in-hospital survival for CS patients is generally between 
30 and 45% [6–8]. Therefore, accurately identifying 
patients who are likely to respond to ECMO is crucial 
for enhancing outcomes and minimizing unnecessary 
treatments.

Establishing prognostic biomarkers at the early phase 
under ECMO support is an emerging urgency to help 
clinicians accurately making medical decisions and con-
ducting management. The currently used important 
prognostic indicators for patient survival include age, 
ECMO supporting time, renal failure, obesity, and lac-
tate, but the correlations between these parameters and 
survival are still controversial across various studies [7, 
8]. For refractory cardiogenic shock patients receiving 
ECMO, the survival after venoarterial-ECMO (SAVE) 
scoring system is an available tool to predict survival [6]. 
The parameters include acute cardiogenic shock diagno-
sis, pre-ECMO organ failure, blood pressure, pulse pres-
sure, etc. Predicting survival for cardiogenic shock (CS) 
patients receiving ECMO based on their physiological 
and clinical characteristics is established among previous 
studies, yet these parameters are not without limitations 
[6, 9, 10]. One significant challenge is the retrospec-
tive scoring of variables collected at the time of ECMO 
installation, which may not align with real-time deci-
sion-making processes [6]. It is essential to identify bio-
markers or sets of variables that can accurately classify a 
patient’s responsiveness to ECMO support. In our previ-
ous research, IL-10 was identified as a promising marker 
potentially predictive of outcomes at the time of ECMO 
initiation for CS patients [11]. Although the area under 
the curve (AUC) for IL-10 exceeded 0.9, its basal levels 

varied significantly between patients with acute myocar-
dial infarction (AMI) and those with dilated cardiomyo-
pathy (DCMP) [11].

To address the complexity inherent in varying diseases, 
a generalized additive and linear model was developed. 
This model integrates dynamic changes in lymphocytes 
and interleukins measured in the early stages of ECMO 
installation [12]. However, the challenge of collecting and 
monitoring multiple variables at various time points dur-
ing ECMO support remains a significant concern. Pre-
operative gene expression profiles in PBMCs have shown 
an average prediction accuracy of 93% for early improve-
ment in organ function among advanced heart failure 
patients receiving mechanical circulatory support [13]. 
To date, only a limited number of studies have success-
fully demonstrated the identification of viable biomarkers 
using a genomic approach.

DNA methylation, which reflects genetic, environmen-
tal influences and age, holds promise as a biomarker in 
all-cause mortality, cancers, and various complex dis-
ease, including cardiovascular disease (CVD) [14, 15]. 
Previous studies demonstrated the potential of epi-
genetic biomarker in clinical applications. The meth-
ylation biomarkers derived from circulating cell-free 
DNA and monocyte-related profiles could differentiate 
between types of acute coronary syndrome and associ-
ate with CVD risk, respectively [16, 17]. The accumulat-
ing evidence implies the potential of epigenetic profiles 
in the development of prognostic markers for CS patients 
receiving ECMO.

Herein, our objective is to develop a prognostic model 
for cardiogenic shock (CS) patients to predict outcomes 
following ECMO resuscitation. In this study, compre-
hensive epigenomic analysis was conducted on PBMCs 
collected at various time points: initial (0  h), 2-h post-
installation, and at the removal of ECMO. We developed 
a machine learning model using selected DNA methyla-
tion features to enhance prognostic significance.

Methods
Study population and sample preparation
This study was approved by the Research Ethics Com-
mittee of National Taiwan University Hospital with the 
approval reference number 200911043R. Trial regis-
tration: ClinicalTrials.gov, NCT01089036. Registered 
March 17, 2010—Prospectively registered, https:// clini 
caltr ials. gov/ study/ NCT01 089036. The inclusion crite-
ria encompassed cardiogenic shock (CS) patients aged 
≥ 18 years requiring ECMO support, while exclusion cri-
teria included preexisting multiple organ failure (MOF), 
sepsis, severe brain insult prior to ECMO support, and 
lack of signed consent for study enrollment. Patients 
experiencing circulatory collapse or requiring inotrope 

https://clinicaltrials.gov/study/NCT01089036
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support exceeding 40 inotropic equivalents were consid-
ered for ECMO therapy. The ECMO system was estab-
lished using a femoral venoarterial route (Medtronic Inc., 
Minneapolis, MN) [3]. A total of 34 patients received 
ECMO treatment between July 21, 2010, and May 14, 
2012. Prior studies suggest that the average duration of 
ECMO support is approximately 7  days, which we use 
as the primary outcome [18, 19]. Therefore, the primary 
outcome is set as one of our enrollment criteria for the 
epigenomic assay to ensure an even number of cases are 
enrolled.

In this study, 17 patients who survived more than 7-day 
post-ECMO installation were classified as early success, 
while those who did not survive or succumbed to MOF 
within 7 days were classified as failure. After continuous 
follow-up, the endpoint outcome was measured based on 
mortality. Patients who died during hospitalization were 
categorized as non-survivors (n = 22), whereas those dis-
charged alive were classified as survivors (n = 12). Pre-
existing medical histories, comorbidities, demographic 
parameters, and risk scoring systems were collected and 
evaluated.

Blood was collected from all 34 patients at 0 h and 2 h 
after ECMO installation, and from 14 patients who suc-
cessfully concluded ECMO support. Blood samples were 
collected using BD Vacutainer® Brand BD CPT™ Mono-
nuclear Cell Preparation Tubes (BD Diagnostics, La Jolla, 
CA) containing sodium heparin, a separation gel, and a 
density gradient fluid for isolating mononuclear cells. 
Isolated PBMCs were stored in liquid nitrogen until 
analysis. DNA were extracted from each sample using the 
AllPrep DNA Micro Kit (Qiagen, Hilden, Germany) for 
DNA methylation analyses.

Genome‑wide DNA methylation assays
Genome-wide DNA methylation of PBMCs was assessed 
using the Illumina HumanMethylation450 BeadChip, 
which includes 485,577 methylation probes offering sin-
gle-nucleotide resolution, following the manufacturer 
instructions (Illumina, San Diego, CA). It covers approxi-
mately 99% of RefSeq genes, enabling comprehensive 
and detailed epigenetic profiling across the entire human 
genome. Data were subsequently uploaded to the GEO 
database (GSE182609).

Statistical analysis and model selection
Initial filtering of methylation probes was based on the 
Human Methylation450 BeadChip annotation file, with 
only probes annotated in the UCSC_RefGene being fur-
ther analyzed. The Wilcoxon Signed-Rank Test assessed 
methylation level differences pre- and post-ECMO sup-
port. For classified model development, we utilized 
the least absolute shrinkage and selection operator 

(LASSO) regression for feature selection, leveraging 
its regularization properties to mitigate overfitting by 
penalizing the coefficients of less significant predictors. 
The degree of regularization is controlled by adjusting 
the alpha value. Subsequently, a random forest classifier 
was applied to enhance model accuracy and robustness 
by integrating predictions from multiple decision trees 
constructed on randomly selected subsets of the data. 
To optimize the utility of our limited training dataset 
(t0) and enhance the robustness of our model, leave-
one-out cross-validation (LOOCV) was employed dur-
ing the training phase. The classifiers’ performance was 
further evaluated on the t2 dataset using the receiver 
operating characteristic (ROC) curve and the area 
under the curve (AUC). Survival curves for the pre-
dicted groups were generated using the Kaplan–Meier 
method and compared using the log-rank test. All anal-
yses were conducted using Python or GraphPad Prism 
version 9. A p-value < 0.05 was considered significant.

Results
Prospective patient collection and grouping
The duration of ECMO support is associated with 
mortality [18]. Accordingly, we prospectively enrolled 
34 patients, classifying them into success and failure 
groups based on their early survival and outcomes 
within 7  days. The same 34 patients were also cat-
egorized as survivors or non-survivors based on the 
in-hospital mortality. The baseline clinical characteris-
tics, demographic statistics, preexisting ailments, and 
pre- and post-ECMO variables for the success/failure 
groups are detailed in Supplementary Table  1, while 
those for the survivor/non-survivor groups are pro-
vided in Table 1.

Clinical assessments in predicting outcomes within 7 days 
and in‑hospital mortality
Various risk assessments, including acute physiology and 
chronic health evaluation II (APACHE II), logistic organ 
dysfunction score (LODS), multiple organs dysfunction 
score (MODS), and sequential organ failure assessment 
scores (SOFA) and SAVE, were utilized to predict out-
comes within our cohort. For outcomes within 7  days, 
both APACHE II and LODS demonstrated significant 
predictive power in distinguishing between success and 
failure groups, achieving area under the curve (AUC) 
values of 0.76 and 0.73, respectively (p < 0.05) (Fig.  1a). 
However, MODS, SAVE, and SOFA scores showed poor 
predictive performance (p > 0.05) (Fig.  1b). Additionally, 
none of these scores significantly predicted in-hospital 
mortality (Fig. 1c).
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Table 1 Comparison of demographic and clinical characteristics of cardiogenic extracorporeal membrane oxygenation patients 
grouping by survivor and non‑survivor

Variablea All Survivor Non‑survivor p‑value
N = 34 N = 12 N = 22

Baseline variables

Age* 52.4 (45.7, 59.3) 52.0 (47.6, 56.7) 52.4 (42.4, 59.2) 0.880

Gender 0.714

Male 24 (71%) 8 (67%) 16 (73%)

Female 10 (29%) 4 (33%) 6 (27%)

BMI (kg/m2)* 24.0 (21.9, 28.1) 24.0 (22.7, 25.6) 24.0 (20.7, 28.8) 0.989

Preexisting comorbidity

Coronary heart disease 19 (56%) 7 (58%) 12 (55%) 1.000

Diabetes mellitus 26 (77%) 12 (100%) 14 (64%) 0.030

Dialysis 29 (85%) 12 (100%) 17 (77%) 0.137

Hypertension 19 (56%) 8 (67%) 11 (50%) 0.476

Smoking 28 (82%) 10 (83%) 18 (82%) 1.000

NYHA scale 0.263

I 18 (53%) 9 (75%) 9 (41%)

II 3 (9%) 1 (8%) 2 (9%)

III 8 (24%) 1 (8%) 7 (32%)

IV 5 (29%) 1 (8%) 4 (18%)

Primary diagnosis 0.379

Acute myocardial infarction 15 (44%) 5 (42%) 10 (45%)

Dilated cardiomyopathy 9 (26%) 2 (17%) 7 (32%)

Acute myocarditis 6 (18%) 4 (33%) 2 (9%)

Arrhythmia 2 (6%) 1 (8%) 1 (5%)

Dissection of aortic aneurysm 2 (6%) 0 (0%) 2 (9%)

Pre and during ECMO parameters

Glasgow coma scale 1.000

Severe, 3–8 12 (35%) 4 (33%) 8 (36%)

Moderate, 9–12 4 (12%) 1 (8%) 3 (14%)

Minor, 13–15 18 (53%) 7 (58%) 11 (50%)

Bicarbonate infusion 19 (56%) 8 (67%) 11 (50%) 0.476

Action dialysis 13 (38%) 6 (50%) 7 (32%) 0.462

Action reperfusion 14 (41%) 3 (25%) 11 (50%) 0.275

BSA dose  (m2)* 1.7 (1.5, 1.9) 1.7 (1.6, 1.8) 1.7 (1.5, 1.9) 0.645

Total bilirubin (µmol/L)* 36.4 (35.5, 36.9) 36.4 (35.7, 36.9) 36.5 (35.5, 36.9) 0.524

Heart Rate (beats/min)* 120 (89, 135) 124 (115, 143) 110 (87, 126) 0.062

Respiratory Rate (breath/min)* 16 (12, 20) 18 (16, 22) 14 (12, 18) 0.176

Pre-ECMO blood pressure*

SBP (mm Hg) 91 (82, 106) 102 (93, 122) 88 (78, 95) 0.065

DBP (mm Hg) 55 (45, 65) 65 (50, 68) 53 (45, 58) 0.518

CVP (mm Hg) 15 (12, 18) 12 (12, 15) 15 (13, 18) 0.290

Pre-ECMO ventilator settings*

PaO2/FiO2 110 (57, 270) 96 (60, 161) 128 (57, 282) 0.318

FiO2 (%) a 82.1 (24.2) 83.8 (23.5) 81.1 (25.2) 0.763

Pre-ECMO blood gas*

pH 7.3 (7.2, 7.5) 7.4 (7.2, 7.4) 7.3 (7.2, 7.5) 0.859

PaCO2 (mmHg) 33.0 (27.5, 43.7) 35.0 (31.4, 47.0) 31.7 (27.4, 43.7) 0.553

PaO2 (mmHg) 88 (57, 157) 81 (60, 91) 106 (57, 177) 0.505

HCO3 (mmol/L) 18.9 (13.7, 24.0) 20.4 (13.8, 24.4) 18.0 (13.0, 21.4) 0.362
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Filtering the epigenetic features for model development
To develop a biomarker capable of predicting the hospi-
tal mortality for CS patients receiving ECMO support, 
we profiled the epigenomics of PBMCs collected at three 
key stages: at the initiation of ECMO (t0), two-hour post-
initiation (t2), and upon successful ECMO removal (tr). 
Samples were collected from 34 patients at 0 and 2  h 
after ECMO installation, and from 14 patients who suc-
cessfully concluded ECMO support. The datasets for 
these different time points were denoted as t0, t2, and 
tr, respectively. Figure  2a illustrates the data processing 
workflow.

A total of 485,577 methylation probes for the Human 
Methylation 450 Beadchip assay were initially screened 
according to the annotation file. Only probes with UCSC 
RefGene annotations were retained, indicating their 
association with genes, leaving 365,860 probes for further 
analysis. We hypothesized that changes in methylation 
levels among different time points could be attributed to 
environmental changes resulting from ECMO treatment. 
For instance, methylation changes following ECMO sup-
port could reflect the effects of ECMO itself. Therefore, 
features that consistently represent the epigenetic char-
acteristics of a patient across these transitions, rather 
than those that change due to ECMO, are considered 
candidates for predicting outcomes of ECMO support.

To mitigate the influence of environmental changes, 
we employed the Wilcoxon sign-rank test to evalu-
ate the methylation levels between datasets t0 and tr. 
Probes yielding a p-value greater than 0.8 were deemed 
to exhibit no significant changes across these time points. 
Consequently, a total of 40,112 probes were identified 
and retained as stable probes.

Developing a machine learning model to predict survival 
outcomes in ECMO‑supported patients using temporal 
data sets
To develop a machine learning model capable of distin-
guish between survival and non-survival groups among 
ECMO-supported patients, we utilized t0 dataset as the 
training dataset. This dataset was employed to train the 
classification model. Subsequently, t2 dataset was used 
as the test dataset to evaluate the model’s classification 
performance. This approach ensures that our model is 
tested on data representing a different time point, which 
helps in assessing its predictive accuracy and robustness. 
Moreover, our methodology was tailored to overcome 
the constraints of a small sample size. We employed 
LASSO regression to minimize overfitting and enhance 
model validity, and utilized LOOCV to ensure robust-
ness despite limited data. This approach significantly 
improved the reliability of our findings.

Feature selection using LASSO regression
LASSO regression was initially applied to the 40,112 sta-
ble probes in t0 dataset for feature selection. Figure  2b 
illustrates the mean squared error and the number of 
nonzero features associated with each alpha value, aid-
ing in the determination of the optimal LASSO shrink-
age parameter, alpha. Subsequently, selected alpha 
values of 0, 0.00001, 0.05, 0.1, 0.2, and 0.25, were tested 
to evaluate the classification performance. An alpha of 0 
implies that all stable probes were included in the model 
without feature selection, using a random forest clas-
sification approach. The number of features retained 
for each tested alpha were 40,112; 290; 27; 24; 10; and 4, 
respectively.

Data are given as n (%) or median, interquartile range (IQR)

BMI, Body mass index; BSA, body surface area; CPR, cardiopulmonary resuscitation; CVP, central venous pressure; DBP, diastolic blood pressure; ECMO, extracorporeal 
membrane oxygenation; FiO2, fraction of inspired oxygen; NYHA, New York Heart Association heart failure classification system; PaCO2, partial pressure of arterial 
carbon dioxide; PaO2, partial pressure of arterial oxygen; SBP, systolic blood pressure
* Welch two sample t test analysis; otherwise, using Fisher exact test analysis
a Mean ± standard deviation (± SD)

Table 1 (continued)

Variablea All Survivor Non‑survivor p‑value
N = 34 N = 12 N = 22

Base excess (mmol/L) − 4.8 (− 13.7, − 0.6)) − 5.4 (− 10.4, − 2.3) − 4.1 (− 13.7, − 0.6) 0.901

Na (mEq/L) 138 (133, 142) 136 (134, 141) 140 (133, 143) 0.242

K (mEq/L) 4.2 (3.9, 4.9) 4.9 (4.0, 5.2) 4.1 (3.9, 4.5) 0.139

Lactate (mmol/L) 7.5 (3.1, 12.1) 7.4 (4.9, 8.8) 7.5 (2.9, 14.4) 0.530

ECMO support parameters

Pre‑ECMO CPR 23 (68%) 9 (75%) 14 (64%) 0.705

During ECMO CPR 22 (65%) 9 (75%) 13 (59%) 0.465

Duration of ECMO (h)* 79.1 (55.6, 160.1) 143.7 (86.4, 157.3) 68.9 (39.2, 160.0) 0.682



Page 6 of 14Hsiao et al. Clinical Epigenetics          (2024) 16:137 

Table 2 lists selected features for tested alpha 0.05, 0.1, 
0.2, and 0.25, detailing the corresponding LASSO coef-
ficients and Mann–Whitney U test p-values. Notably, 
four probes, cg25974901, cg26330738, cg04937029, and 
cg07137336, were selected when alpha was set to 0.25 for 
LASSO regression. These probes correspond to the genes 
PLA2G5, PTK2B, ANKRD11, and COLEC12, respec-
tively. The p-values from the Mann–Whitney U test for 
these probes are 0.002, 0.001, < 0.001, and 0.001, respec-
tively, indicating significant differences between the 
survival and non-survival groups. Noteworthy, probes 

cg25974901 (PLA2G5) and cg26330738 (PTK2B) are 
consistently selected across all four tested alpha levels, 
underscoring their potential significance in the dataset.

Evaluation of random forest classifier performance on t0 
and t2 datasets
To assess the effectiveness of random forest classifiers, we 
trained the models using t0 dataset with different feature 
sets identified by LASSO regression. The performance 
of these models was subsequently tested using t2 data-
set. Table  3 presents the LOOCV training results using 

Fig. 1 Clinical scores in predicting outcomes for CS patients receiving ECMO treatment. a The predictive performance of APACHE II and LODS 
for the outcomes within 7 days. All p‑values for AUC are less than 0.05. b The predictive performance of MODS, SAVE and SOFA for the outcomes 
within 7 days. All p‑values for AUC are greater than 0.05. c The predictive performance of APACHE II, LODS, MODS, SAVE and SOFA for in‑hospital 
mortality. All p‑values for AUC are greater than 0.05
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Fig. 2 Model for the prediction of hospital mortality in CS patients with ECMO installation. a The workflow shows the procedure of model training 
and testing. b Results of different alphas using LASSO for feature selection. c ROC curves of model training performance for each tested alpha 
in testing cohort (t2)
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t0 dataset and the testing performance on t2 dataset. The 
LOOCV accuracy for alphas 0.1 and 0.2 reached approxi-
mately 0.912, indicating robust training performance. 
Notably, alpha 0.25 demonstrated the highest testing 
accuracy at 0.765. Figure 2c shows ROC curves, detailing 
the testing performance for each alpha, highlighting the 
predictive capabilities of the models at different levels of 
feature selection.

Given that ten features from LASSO alpha 0.20 and 
four features from alpha 0.25 demonstrated better predic-
tive accuracy on the t2 testing dataset (0.735 and 0.765, 
respectively), we sought to determine their association 
with in-hospital survival. Consequently, we conducted 
Kaplan–Meier survival analyses using these feature sets. 
The results from the classifiers at LASSO alphas of 0.20 
and 0.25 showed significant differences. The ten-feature 
classifier had a p-value of 0.0459 (Fig.  3a), while the 

four-feature classifier had a p-value of 0.0328 (Fig.  3b), 
indicating significant differences in survival between 
patients predicted to be in the survival or non-survival 
groups, as determined by the log-rank test. Collectively, 
the methylated ten-feature and four-feature sets proved 
to be superior biomarkers for predicting outcomes in CS 
patients undergoing ECMO treatment.

The development of EpiSAVE classifier
The clinical characteristics contribute predictive power 
to current scoring systems, including the SAVE score, 
whose importance and significance are well-recognized 
in the clinical setting. Therefore, we incorporated the 
SAVE score with selected methylation features and 
retrained the classifier models, naming them ’EpiSAVE.’ 
The final results show enhanced AUC values for the ROC 
curves, improving to 0.82 from 0.78 at an alpha value of 

Table 2 Selected feature probes using LASSO regression

Alpha‑LASSO coefficient (p‑value)

ProbeID 0.05 0.1 0.2 0.25 InList UCSC RefGene

cg25974901 0.049 (0.002) 0.050 (0.002) 0.036 (0.002) 0.012 (0.002) 4 PLA2G5

cg26330738 0.102 (0.001) 0.088 (0.001) 0.049 (0.001) 0.025 (0.001) 4 PTK2B

cg00207865 − 0.024 (0.001) − 0.018 (0.001) − 0.004 (0.001) – 3 KCNA2

cg01302066 0.033 (0.003) 0.023 (0.003) 0.005 (0.003) – 3 SPATA2

cg04056179 − 0.066 (0.001) − 0.053 (0.001) − 0.025 (0.001) – 3 MOBKL3

cg04937029 – 0.019 (< 0.001) 0.032 (< 0.001) 0.022 (< 0.001) 3 ANKRD11

cg06612122 0.042 (0.002) 0.046 (0.002) 0.015 (0.002) – 3 LOC644649

cg07137336 – − 0.007 (0.001) − 0.013 (0.001) <  − 0.001 (0.001) 3 COLEC12

cg18459475 0.051 (0.001) 0.042 (0.001) 0.005 (0.001) – 3 AFAP1

cg27128734 − 0.046 (0.002) − 0.029 (0.002) − 0.005 (0.002) – 3 KLK4

cg01050704 − 0.034 (0.012) − 0.020 (0.012) – – 2 MZF1;LOC100131691

cg03955175 − 0.023 (0.014) − 0.003 (0.014) – – 2 C7orf68

cg05093113 0.016 (0.003) 0.012 (0.003) – – 2 MIR645;PTPN1

cg06221172 0.008 (0.002) 0.003 (0.002) – – 2 RABL2A

cg08834922 0.021 (0.017) 0.013 (0.017) – – 2 AOC3

cg10436026 − 0.022 (0.002) − 0.006 (0.002) – – 2 SMAD9

cg10625504 0.042 (0.008) 0.021 (0.008) – – 2 DHX30

cg14313868 − 0.025 (0.010) − 0.015 (0.010) – – 2 NDC80;METTL4

cg17766560 0.014 (0.001) 0.009 (0.001) – – 2 MYO1F

cg20014942 0.008 (0.005) 0.012 (0.005) – – 2 FAM19A5

cg20162599 0.003 (0.005) 0.003 (0.005) – – 2 FERMT3

cg21863721 0.008 (0.004) 0.013 (0.004) – – 2 C6orf94;LTV1

cg24413879 − 0.034 (0.002) − 0.022 (0.002) – – 2 HMGXB4

cg00308984 – <  − 0.001 (0.006) – – 1 NHEDC1

cg01062113 − 0.005 (0.004) – – – 1 PANX1

cg05155965 − 0.013 (0.008) – – – 1 NR2F2

cg10217166 − 0.008 (0.002) – – – 1 PPM1H

cg13090402 0.007 (0.007) – – – 1 TTC15

cg16524488 0.009 (0.008) – – – 1 SLC12A7

cg16792234 − 0.002 (0.029) – – – 1 SLC25A13
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0.2, and to 0.74 from 0.72 at an alpha value of 0.25 in the 
t2 database (Supplementary Fig. 1). Survival curves show 
significant differences between two groups when using 
the EpiSAVE classifiers at alpha values of 0.2 and 0.25 
(log-rank test, p < 0.05) (Supplementary Fig.  2a and b). 
Collectively, the methylation ten-feature and four-feature 
sets combined with SAVE score show potential as prog-
nostic biomarkers for CS patients undergoing ECMO 
treatment in the real clinical setting.

Discussion
Despite the improvement in patient outcomes with 
ECMO compared to conventional CPR, in-hospital 
survival rates remain below 50% [8, 20]. Research into 
prognostic markers at the molecular level is limited, yet 
it is crucial for efficiently managing patients receiving 
ECMO and for optimizing the use of medical resources. 
To address the deficiency of reliable prognostic markers, 
this study employed machine learning models to develop 
DNA methylation features in PBMC profiles and these 
models were tested using the dataset at time point t2. We 
identified two classifiers of methylation features as inde-
pendent prognostic markers for CS patients undergoing 
ECMO treatment.

Appropriate patient identification for ECMO use pre-
sents significant challenges, as current guidelines from 
the Extracorporeal Life Support Organization (ELSO) 
for managing cardiogenic shock (CS) do not incorpo-
rate prediction tools [21, 22]. Given the complexity of 
the disease before ECMO initiation and the high risk of 

ECMO-related complications, the survival rate until hos-
pital discharge is approximately 30–45% [6, 8, 23]. The 
development of a prognostic marker to identify critically 
ill patients who could benefit from ECMO is an unmet 
medical need. The first reported model for predicting 
survival in adults with refractory cardiogenic shock (CS) 
supported by ECMO was the Survival After Venoarte-
rial-ECMO (SAVE) score, introduced in 2015 [6]. The 
parameters of the SAVE score include age, weight, blood 
pressure, and pre-ECMO organ failures, among others. 
However, a recent study indicated that its calibration 
is limited, as it tends to underestimate survival rates in 
adult patients with cardiogenic shock [22]. Several pre-
ECMO risk factors have been identified, including dia-
betes, obesity, renal insufficiency, and lactate levels [6, 
24–26]. In line with these risk factors, our study reveals 
that failure group have lower heat rates and lower blood 
bicarbonate levels. However, an unexpected correlation 
between outcomes and diabetes was observed (Table  1 
and Supplementary Table 1), which could likely be attrib-
uted to the small sample size. In advanced heart failure 
patients undergoing mechanical circulatory support, the 
transcriptome profiles of preoperative PBMCs predict 
early improvement of organ function with an average 
prediction accuracy of 93% and correlate with one-year 
survival [13]. The study identified several immune-
related candidates as the prognostic biomarkers. Further-
more, Yang et al. found that successful ECMO treatment 
in acute myocardial infarction (AMI) combined with CS 
patients exhibited a lower proportion of natural killer T 

Table 3 Classification performance

Performance LASSO alpha

0 0.00001 0.05 0.1 0.2 0.25

# of Features 40,112 290 27 24 10 4

Random forest classifier (T0 dataset, leave-one-out cross-validation)

LOOCV accuracy 0.559 ± 0.497 0.618 ± 0.486 0.853 ± 0.354 0.912 ± 0.284 0.912 ± 0.284 0.794 ± 0.404

LOOCV precision 0.559 ± 0.497 0.618 ± 0.486 0.647 ± 0.478 0.647 ± 0.478 0.647 ± 0.478 0.618 ± 0.486

LOOCV recall 0.559 ± 0.497 0.618 ± 0.486 0.647 ± 0.478 0.647 ± 0.478 0.647 ± 0.478 0.618 ± 0.486

LOOCV F1 score 0.559 ± 0.497 0.618 ± 0.486 0.647 ± 0.478 0.647 ± 0.478 0.647 ± 0.478 0.618 ± 0.486

Random forest classifier (T0 training, self-test)

Training accuracy 1 1 1 1 1 1

Training precision 1 1 1 1 1 1

Training recall 1 1 1 1 1 1

Training F1 score 1 1 1 1 1 1

Random forest classifier (T0 training, T2 testing)

Test accuracy 0.647 0.647 0.706 0.706 0.735 0.765

Test precision 0.647 0.647 0.688 0.700 0.710 0.769

Test recall 1 1 1 0.955 1 0.909

Test F1 score 0.786 0.786 0.815 0.808 0.83 0.833
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cells and identified two genes, ASB13 and CDCA7, asso-
ciated with the progression [27]. In our previous study, 
cytokine IL-10 was identified as promising biomarker at 
t0, whereas the level of IL-10 exhibited variations across 
different time points [11, 12]. In contrast, our epigenetic 
features demonstrated consistency at time points t0, t2, 

and tr. Notably, IL-10 levels above 16.58 pg/ml differenti-
ated survivors from non-survivors among AMI patients, 
and levels above 143.17 pg/ml were indicative for DCMP 
patients, demonstrating the underlying diseases of CS are 
associated with cytokines. In particular, elevated procal-
citonin and lower VEGF in the blood on the second day, 

Fig. 3 Kaplan–Meier survival analysis for ten and four‑feature models in testing dataset. a In‑hospital survival is analyzed by the ten‑feature 
classification, where features are selected based on an alpha setting of 0.20 for LASSO regression. b In‑hospital survival is analyzed 
by the four‑feature classification, where features are selected based on an alpha setting of 0.25 for LASSO regression. Significance is determined 
by the log‑rank test (p < 0.05)



Page 11 of 14Hsiao et al. Clinical Epigenetics          (2024) 16:137  

while supported by a VA-ECMO device, are significantly 
associated with an increased mortality risk [28, 29]. 
These findings suggest that protein levels in blood vary 
over time and contribute to the causes of cardiogenic 
shock. Therefore, the DNA methylation–derived epige-
netic scores for circulating protein levels were develop-
ment and that associated with incident CVD and could 
be a significant predictor of CVD risk, independent of the 
concentration of troponin I (cTnI), which is an important 
cardiac injury marker [30, 31]. Epigenetic feature is such 
a powerful marker that shows potential for broader appli-
cation across various conditions, and even can serve as a 
predictor for all-cause mortality. This is because it encap-
sulates both genetic predispositions and environmental 
influences [32, 33]. Therefore, utilizing t2 as the testing 
dataset to verify the predictive efficacy of the DNA meth-
ylation features not only underscores the robustness of 
methylation features, but also suggests that the substan-
tial utility of these features may remain consistent across 
different time frames of ECMO treatment.

Methylation on the genes Protein Tyrosine Kinase 
2 Beta (PTK2B) and Phospholipase A2, Group V 
(PLA2G5), are significant features in the predictive mod-
els across all tested alphas, indicating their substantial 
roles. Pyk2, a Ca2+ -dependent non-receptor tyrosine 
kinase, transduces signals from Ca2+ to the downstream 
mitogen-activated protein kinase signaling pathway [34]. 
PTK2B is activated in nonischemic failing human ventri-
cles and is involved in cardiac arrhythmogenesis through 
the regulation of gene expression related to Ca2+ flux in 
the Pyk2−/− mouse model [35]. Inhibiting Pyk2 activity 
has been shown to reduce infarct size and improve car-
diac function in myocardial infarction heart failure rats 
[36]. PLA2G5, a member of the superfamily of PLA2 
enzymes, is characterized by its ability to hydrolyze the 
center (sn-2) ester bond of phospholipids, generating free 
fatty acid and lysophospholipid [37]. LDL receptor-defi-
cient mice, either overexpressing or deficient in PLA2G5, 
provide in  vivo evidence that Group V secretory phos-
pholipase A2 (sPLA2-V) contributes to atherosclerosis 
[38]. Furthermore, specific PLA2G5 tagging single-nucle-
otide polymorphism (tagSNP) haplotypes have shown 
a significant association with plasma low-density lipo-
protein (LDL), total cholesterol, and oxidized LDL/LDL 
levels [39]. Collectively, these evidences suggest that the 
methylated PTK2B and PLA2G5 in PBMCs may play 
critical roles in mediating heart failure and outcomes 
beyond simply serving as markers.

To evaluate the comparability of methylation predic-
tive models, several commonly used scoring systems in 
the Intensive Care Unit (ICU) such as APACHE II [40], 
LODS [41], MODS [42], and SOFA [43] and SAVE were 

analyzed. However, none of these scores could predict 
the final in-hospital mortality. The prognostic value of 
the APACHE II score has been validated in CS patients 
treated with a percutaneous left ventricular assist 
device, achieving an AUC of 0.70 with a 95% CI of 
0.62–0.78 [44]. The LODS score was developed by ana-
lyzing data from 14,745 ICU admissions in 12 different 
countries in 1996 [41] and further validated in cardiac 
surgical patients in 2011 [45]. In our cohort, both the 
APACHE II and LODS scores demonstrated significant 
predictive power for 7-day outcomes (success/failure), 
as shown in Fig.  1a. Both ICU scoring systems, which 
rely solely on clinical characteristics, effectively predict 
early-stage mortality in CS patients receiving ECMO 
support. This suggests that clinical characteristics are 
primarily indicators of short-term outcomes. In con-
trast, molecular features in PBMCs, particularly DNA 
methylation patterns, likely reflect the underlying con-
ditions that determine long-term prognosis.

Study limitations
First, this study involves prospective single-center 
enrollment and analysis, which raises concerns about 
biased selection and unmeasured confounding factors. 
Second, the limited sample size of only 34 CS patients, 
due to difficulties in recruiting ECMO-supported CS 
patients and the absence of external validation cohorts 
pose challenges. Notably, diabetes patients exhibited 
a positive correlation with survivor/success group, a 
finding that is typically less common in larger or retro-
spective cohorts. Third, the high-dimensional features 
(485,577 probes) combined with a small sample size 
can easily lead to model overfitting. To address these 
challenges, we applied LASSO, a random forest classi-
fier and LOOCV. LASSO helps in reducing the number 
of features to a manageable size, while the random for-
est classifier, by building multiple decision trees on ran-
dom subsets of the data and aggregating their results, 
provides a robust model that improves accuracy and 
mitigates the risk of overfitting. LOOCV was employed 
to maximize the data available for model training, thus 
enhancing the robustness of our findings. These meth-
ods were implemented to improve the generalizability 
of using epigenetic markers in our study. To the best 
of our knowledge, no public epigenomic databases are 
available for validation. However, the absence of com-
parable and longitudinal databases enhances the nov-
elty and uniqueness of our study, positioning it as a 
pioneering approach in predicting and interpreting the 
outcomes of CS patients receiving ECMO.
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Conclusion
The clinical significance of this study lies in the cur-
rent lack of sufficient tools to predict the outcomes 
of patients undergoing ECMO treatment for cardio-
genic shock within the early phase of ECMO installa-
tion (within one day). Notably, the APACHE II, SAPS 
III [46], and SOFA scores, which were developed from 
databases of general internal medicine intensive care 
patients, are not applicable to ECMO patients. The 
ENCOURAGE score is specifically designed to pre-
dict 30-day mortality for acute myocardial infarction 
patients treated with ECMO [10, 47]. The SAVE-VA 
score, utilizing simple parameters, estimates the success 
rate of ECMO treatment. Bothe scores are intended for 
use before ECMO installation, not for predicting the 
outcomes of specific individuals after installation.

In this study, we utilize epigenomic biomarkers in 
conjunction with a machine learning model to pre-
dict the outcome of specific patients with cardiogenic 
shock treated with VA-ECMO during an early phase. 
The methylation features demonstrate significant pre-
dictive power for in-hospital mortality, showing supe-
rior performance compared to current clinical scores. 
By analyzing blood samples taken at the time of device 
installation and two-hour post-installation, we can dif-
ferentiate patients with high versus low probabilities of 
survival, allowing clinicians to more aggressively search 
for causes and intervene timely in patients with lower 
survival probabilities, thereby increasing the prob-
abilities of survival with ECMO treatment in clinical 
settings.
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