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Abstract 

Objective  Youth-onset type 2 diabetes (T2D) is physiologically distinct from adult-onset, but it is not clear 
how the two diseases differ at a molecular level. In utero exposure to maternal type 2 diabetes (T2D) is known to be 
a specific risk factor for youth-onset T2D. DNA methylation (DNAm) changes associated with T2D but which dif-
fer between youth- and adult-onset might delineate the impacts of T2D development at different ages and could 
also determine the contribution of exposure to in utero diabetes.

Methods  We performed an epigenome-wide analysis of DNAm on whole blood from 218 youth with T2D and 77 
normoglycemic controls from the iCARE (improving renal Complications in Adolescents with type 2 diabetes 
through REsearch) cohort. Associations were tested using multiple linear regression models while adjusting for mater-
nal diabetes, sex, age, BMI, smoking status, second-hand smoking exposure, cell-type proportions and genetic 
ancestry.

Results  We identified 3830 differentially methylated sites associated with youth T2D onset, of which 3794  were 
moderately (adjusted p-value < 0.05 and effect size estimate > 0.01) associated and 36 were strongly (adjusted 
p-value < 0.05 and effect size estimate > 0.05) associated. A total of 3725 of these sites were not previously reported 
in the EWAS Atlas as associated with T2D, adult obesity or youth obesity. Moreover, three CpGs associated with youth-
onset T2D in the PFKFB3 gene were also associated with maternal T2D exposure (FDR < 0.05 and effect size > 0.01). This 
is the first study to link PFKFB3 and T2D in youth.

Conclusion  Our findings support that T2D in youth has different impacts on DNAm than adult-onset, and sug-
gests that changes in DNAm could provide an important link between in utero exposure to maternal diabetes 
and the onset of T2D.
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Introduction
In recent decades, there has been a steady increase in the 
number of youth newly diagnosed with type 2 diabetes 
(T2D) across many countries [1]. These youth face higher 
rates of complications including diabetic kidney disease, 
the most prevalent complication, and other micro-, and 
macrovascular complications, implying differences in the 
broader health impacts of T2D early in life compared to 
later [2, 3]. While adult-onset T2D is characterized by 
the gradual progression of insulin resistance and β-cell 
dysfunction [4], youth-onset T2D is characterized by the 
rapid onset of hyperglycemia and rapid deterioration in β 
cell function, further indicating that there may be a dif-
ferent set of risk factors and mechanisms involved [1]. At 
present, these mechanisms are poorly understood and 
genetic variants only explain ~ 5–10% of T2D heritability 
[5, 6], suggesting that factors in the environment likely 
contribute to the development of T2D and its associated 
complications [7]. An established risk factor for youth-
onset T2D is exposure to diabetes during pregnancy [8, 
9]. Dysglycemia during pregnancy is associated with 
offspring obesity [10], insulin resistance [10] and car-
diovascular diseases [11]. However, the mechanistic link 
between in utero exposure to diabetes and the increased 
risk of developing youth-onset T2D in the offspring is not 
clear. A deeper understanding of the molecular mecha-
nisms underlying youth-onset T2D are needed for the 
development of environmental and intervention pro-
grams that improve clinical outcomes and prevent the 
onset of complications.

Altered DNA methylation (DNAm) associated with 
T2D in a peripheral tissue is one way we may be able to 
better understand how youth-onset T2D differs from 
adult-onset. It is also a potential mechanism linking 
early life exposures such as maternal T2D to long-term 
health outcomes in the offspring. DNAm is an epigenetic 
modification that involves the addition of a methyl group 
to the 5’ position of cytosine [12]. DNAm is associated 
with gene expression and can modify the accessibility 
of transcription factors to the promoter region of genes 
[13]. Typically, the methylation of a promoter is associ-
ated with transcriptional silencing, while demethylation 
is associated with transcriptional activation [13, 14]. 
DNAm  patterns are associated with a number of envi-
ronmental exposures, including prenatal exposure to 
maternal obesity [15] and dysglycemia [16].

To date, there have been no epigenome-wide investiga-
tions specifically involving youth with T2D despite the 
unique pathophysiology, natural history, and significant 
increase in incidence over the last decade. Since the ini-
tial description of youth-onset T2D [17], there have been 
investigations into the unique aspects of pathophysiol-
ogy [4] and risk factors associated with the development 

of T2D [2, 18]. However, we do not know how youth-
onset T2D specifically affects DNAm, nor do we know 
how much of the DNAm signature of youth-onset T2D 
is influenced by in utero exposure to maternal diabetes. 
Therefore, our objective was to identify altered DNAm in 
youth with T2D from the improving renal Complications 
in Adolescents with type 2 diabetes through REsearch 
(iCARE) cohort, and determine whether any of those dif-
ferences were associated with in utero diabetes exposure 
using an epigenome-wide approach. We identified 36 dif-
ferentially methylated sites that were strongly associated 
with T2D, only three of which had been previously asso-
ciated with T2D in adults as reported in the EWAS Atlas. 
We also found three sites that were associated with both 
youth-onset T2D and exposure to intrauterine maternal 
diabetes. Enrichment analysis provided insight into the 
biological pathways and processes associated with dif-
ferentially methylated sites, and we found that DNAm 
changes in whole blood are enriched in insulin signal-
ing pathways. The findings of this study could contribute 
new knowledge about the unique molecular mechanisms 
underlying the health impacts of youth-onset T2D and 
aid in the development of interventions.

Materials and methods
iCARE cohort
This study was a cross-sectional analysis of a subset of 
the iCARE (improving renal Complications in Ado-
lescents with type 2 diabetes through REsearch) lon-
gitudinal cohort study. The study was approved by the 
University of Manitoba Research Ethics Board (HS13255/ 
B2021:079). The iCARE cohort is Canada’s largest pro-
spective observational cohort study of youth living with 
T2D, who were between 10 and 18  years of age at the 
baseline research visit. The cohort was established to 
identify the biological, psychological and social determi-
nants of kidney complications in children diagnosed with 
T2D, and the study methodology has previously been 
published [19]. Initially established in Manitoba, Canada, 
seven additional Canadian centers were added in 2016. 
In brief, youth were eligible if they had a clinical diagno-
sis of type 2 diabetes based on Canadian national clini-
cal practice guidelines [20], which are aligned with the 
American Diabetes Association Criteria, and were nega-
tive for autoantibodies. Youth were excluded from the 
study if they had another form of diabetes (medication 
induced, surgical), were currently treated with medica-
tions which were expected to affect metabolism (steroids, 
antipsychotics), were pregnant, or had a history of can-
cer or immunosuppressive therapy. Whole blood sam-
ples were collected from enrolled and consenting iCARE 
participants at the baseline visit of the study. Approxi-
mately 62% of the entire iCARE cohort consented to and 
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had whole blood for epigenetic analysis collected. Whole 
blood DNAm  was assessed from 319 individuals using 
the Illumina Infinium Human Methylation EPIC Bead-
Chip after DNA extraction using QIAamp DNA blood 
minikit (Qiagen, USA) and bisulfite conversion using the 
Zymo EZDNA methylation kit (Zymo, USA).

Quality control and normalization
Red and Green channel intensity values from 319 sam-
ples and 1,051,815 probes from the two color Illumina 
Infinium Human EPIC BeadChip microarray were parsed 
from IDAT files into R programming language using the 
minfi package [21]. Detection p-values were calculated 
for each probe by comparing total signal from methyl-
ated and unmethylated probes for each position to the 
background signal level from negative control probes. No 
samples were excluded by mean detection p-value < 0.05. 
Probe intensity levels (866,091 CpG loci) were normal-
ized for background signal with normal-exponential out-
of-band normalization using preprocessNoob from minfi. 
A total of 2504 probes were excluded from analysis due 
to low detection p-values (p-value < 0.01 in any sample). 
Next, 78,355 genomic probes with bead counts < 3 in at 
least three samples, 7651 CpG loci in the sex chromo-
somes, 27,071 CpG loci commonly affected by a known 
single nucleotide polymorphism (SNP), and 36,636 CpG 
loci with cross-reactive probes were excluded in that 
order leaving 705,247 CpG loci for analysis. Cross-reac-
tive probes were obtained by combining the findings of 
Chen et  al. 2014 [22], McCartney et  al. 2016 [23], and 
Pidsley et  al. 2016 [24]. Probe-type variance was cor-
rected for using BMIQ from the watermelon package [25, 
26]. One sample was repeated 4 times as technical rep-
licates to track during normalization steps—at the end 
of normalization, the replicates had correlations > 0.99. 
Of these four replicates, one was randomly chosen and 
the rest were excluded from downstream analysis, leav-
ing 316 samples and 705,247 CpG loci. Beta values were 
calculated as described [27].

Cell‑type deconvolution
Cell-type proportions of whole blood from each par-
ticipant were estimated using a flow-sorted blood tissue 
reference set from ExperimentHub [28] and estimate-
CellCounts2 function from the FlowSorted.Blood.EPIC 
package. Cell-type proportion predictions are closed 
compositional data which is not compatible with linear 
regressions and so we used the compositions R package to 
transform cell-type proportion information with isomet-
ric log-ratio using the clr() function from which robust 
principal components were extracted using prcomp() 
[29]. These orthogonal measures were included in the 

linear regression to account for cell-type proportion dif-
ferences in DNAm.

Genotyping
Genotype data were measured on Infinium Global 
Screening Array-24. Genotype data was exported into 
MAP and PED files for analysis in plink [30]. 23,387 vari-
ants with overlapping coordinates were excluded. 14,584 
variants with call rates lower than 95% were excluded. 
348,033 variants with minor allele frequencies less than 
0.01 were excluded. 389 variants not following Hardy–
Weinberg (p-value  < 0.00001) in control samples were 
excluded. All samples had call rates above 95%. 301,090 
variants in linkage disequilibrium, as calculated by win-
dow size of 50 and r2 threshold of 0.2, were excluded. Five 
principal components were extracted from the remaining 
117,896 variants using EIGENSTRAT [31] to obtain con-
tinuous, orthogonal measures of genetic variance to be 
included in the linear regression model.

EWAS statistical analyses
To identify differentially methylated CpGs associated 
with youth-onset type 2 diabetes, we performed lin-
ear regression for each of the 704,709 CpG sites with 
youth-onset type 2 diabetes status as the main variable 
and adjustment for maternal diabetes, age, sex, BMI, 
smoking, second-hand smoking, four cell-type prin-
cipal components (PCs), five genotype PCs, and batch 
effects (BeadChip number and BeadChip position) using 
the limma package [32]. 295 individuals had complete 
data for all of those covariates and were included in the 
analysis. Benjamini–Hochberg [33] was used to correct 
for multiple tests with significance set at FDR < 0.05, and 
we used two effect size cut-offs: a less stringent 1% and a 
more stringent 5%. Bias and inflation of epigenome-wide 
association analysis test statistics were addressed by a 
Bayesian estimation of the empirical null distribution as 
implemented in bacon [34]. Briefly, a three-component 
normal mixture is fit into the test statistic distribution, 
one to capture the empirical null distribution, and other 
two capture true positive and negative associations. Dif-
ferentially methylated regions (DMR) were identified 
using the combp() function from the missMethyl R pack-
age, and significant DMRs were identified using a spa-
tially adjusted p-value < 0.05 and a minimum number of 
probes per DMR of two [35].

To test the association of youth-onset type 2 diabe-
tes-associated CpG sites to maternal diabetes exposure 
(defined as the presence of type 2 diabetes or gestational 
diabetes during pregnancy), we performed a linear regres-
sion for each of the 3830 CpG sites significantly associ-
ated with youth-onset type 2 diabetes at the lower cutoff 
of FDR < 0.05 and effect size > 1% with maternal diabetes 
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exposure as the main variable and adjusted for age, sex, 
BMI, smoking, second-hand smoking, four cell-type pro-
portions, five genotype PCs, and batch effects (BeadChip 
number and BeadChip position) using the limma package 
[32].

Sensitivity analysis
To ensure that the results are not stratified by ethnicity or 
smoking status, which were unbalanced between groups 
in our study, we performed sensitivity analyses for each of 
those variables. In both cases, we repeated the same linear 
regression used for the main analysis in a subset of indi-
viduals; [1] exclusively the First Nation subset to determine 
whether our findings were consistent in a single ethnic 
group, and [2] on the subset of the cohort who smoked to 
determine whether our findings were consistent in a group 
without differences in smoking status. Participants were 
given the opportunity to list up to three ethnicities, all par-
ticipants that self-identified as either First Nation or Metis 
were included in the First Nations subset, and smoking was 
recorded by self-report. We calculated the 95% confidence 
interval for each site in both analyses, and if the effect size 
plus or minus the confidence intervals were consistent 
between the full model and the subset, we identified that 
site as consistent in the sensitivity analysis.

Enrichment analyses
To identify biological processes and traits associated with 
the identified genes, we performed enrichment analysis. 
The background 704,709 CpGs were mapped to Entrez 
gene IDs using the missMethyl R package [35]. The 3830 
differentially methylated sites and 1802 DMR sites were 
tested for enrichment for all gene sets in all terms in the 
Gene Ontology database [36] and all pathways in the 
KEGG database [37]. A Wallenius’ noncentral hypergeo-
metric test was applied to account for the bias caused by 
CpGs mapping to multiple genes and genes containing 
multiple CpGs. Gene ontology results of biological pro-
cesses were reported for each of the two tests, and the top 
10 gene sets were ordered by increasing p-value.

Epigenetic age analysis
Epigenetic age was calculated from unnormalized data 
using the established eAge calculator [38]. We calculate 
epigenetic age acceleration as the residuals of a regression 
between epigenetic and chronological ages, and tested for 
group differences using t tests.

Results
The improving renal complications in adolescents 
with type 2 diabetes through research (iCARE) cohort
316 youth participants (ages 12–24, mean 15  years of 
age) in the iCARE cohort were recruited from nine 

pediatric sites across Canada [19]. For the current study, 
218 iCARE participants diagnosed with T2D accord-
ing to the Diabetes Canada criteria [39] prior to 18 years 
of age under current treatment at any of the nine pedi-
atric sites were identified along with 77 youth matched 
for ethnicity and BMI, all of whom had complete data 
(Table 1). The cohort is predominantly indigenous youth 
(85%). Youth with T2D had higher BMI (mean WHO 
BMI Z-score difference = 0.5, p-value = 3.47 × 10–4) and 
had a higher exposure rate to maternal diabetes (61% vs. 
34%, p-value = 2.47 × 10–4) compared with controls.

Youth with youth‑onset T2D displayed altered DNA 
methylation patterns
To identify DNAm  changes specific to youth-onset T2D, 
DNAm  levels at 704,709 sites across the human genome 
were compared between youth with T2D and controls. 
Comparison of DNAm levels was done using multiple 
linear regression using presence of youth T2D as the 
main variable with adjustment for maternal diabetes, 
age, sex, BMI, smoking, second-hand smoking, cell-type 
proportions, genetic ancestry, and batch effects (Bead-
Chip number and BeadChip position) (Additional file 1: 
Fig.  1). 3830 differentially methylated sites were identi-
fied between youth with youth-onset T2D and controls 

Table 1  Characteristics of iCARE cohort participants

* For age and BMI, t-test was used. Chi-square was used for the rest of the 
variables

Total
(N = 295)

Case
(N = 218)

Control
(N = 77)

P-value*

Sex

Female 190 (64%) 150 (69%) 40 (52%) 6.45 × 10–3

Male 105 (36%) 68 (31%) 37 (48%)

Ethnicity

Indigenous 251 (85%) 181 (83%) 70 (91%) 7.67 × 10–2

Non-Indigenous 44 (15%) 37 (17%) 7 (9%)

Age (years)

Mean (SD) 15 (± 3.0) 16 (± 2.8) 14 (± 3.2) 1.31 × 10–5

WHO BMI (Z-score)

Mean (SD) 2.3 (± 1.0) 2.4 (± 0.93) 1.9 (± 1.2) 3.47 × 10–4

Smoking status

No 242 (82%) 169 (78%) 73 (95%) 2.28 × 10–3

Occasional 12 (4%) 11 (5%) 1 (1%)

Yes 41 (14%) 38 (17%) 3 (4%)

Maternal diabetes status

Gestational Diabetes 55 (19%) 42 (19%) 13 (17%) 2.47 × 10–4

Normoglycemic 135 (46%) 84 (39%) 51 (66%)

Pre-Gestational Diabe-
tes (T2D)

105 (36%) 92 (42%) 13 (17%)

Diabetes duration (years)

Mean (SD) 3.2 (± 2.7) 3.2 (± 2.7) NA (± NA)
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at FDR < 0.05 and ≥ 1% difference in DNAm  (Fig.  1A, 
Additional file  2: Supplementary Table  1), and 36 of 
these sites had difference in DNAm  ≥ 5% between the 
groups (Table 2, Additional file 1: Supplementary Fig. 2). 
Epigenome-wide association analyses are prone to bias 
and inflation due to the larger number of expected true 
associations, and we calculated an inflation factor of 
1.30 (Additional file  1: Supplementary Fig.  1). We used 
the BACON package to estimate the empirical null dis-
tribution and account for bias and inflation. This analy-
sis identified 39,493 differentially methylated sites at 
FDR < 0.05 and ≥ 1% change in DNAm , with DNAm  
changes ≥ 5% in 41 of these sites (Additional file    1: 

Supplementary Fig. 2). These results include all 3830 dif-
ferentially methylated sites prior to bias correction, so we 
continued with our non-BACON-corrected analyses. We 
also performed differentially methylated region analysis 
(DMR), and identified 516 DMRs containing 1802 sites 
in total (Fig.  1C). 17 of these sites had a difference in 
DNAm methylation ≥ 5% between the groups (Additional 
file  3: Supplementary Table 2). There were 728 common 
sites between individual CpG analysis and DMR analysis 
(Fig. 1D).

To determine which of our findings had previously 
been associated with T2D, we leveraged the EWAS Atlas 
database [40]. The CpG IDs of the 3830 CpGs with > 1% 

Fig. 1  3830 CpG sites are differentially DNAm methylate in PBMCs of participants with youth-onset type 2 diabetes. A Difference in DNAm  
(y-axis) against the genomic location (x-axis) in 704,709 sites across the human genome in youth with T2D and controls. Sites that did not have 
significant association were colored gray. 3794 CpG sites (blue) were found to have moderate association to childhood-onset type 2 diabetes 
(adjusted p-value < 0.05 and effect size estimate ≥ 0.01). 36 CpG sites (red) were found to be strongly associated with youth-onset type 2 diabetes 
(adjusted p-value < 0.05 and effect size estimate ≥ 0.05). Associations were tested using multiple linear regression models from limma, using own 
diabetes as the main variable while adjusting for maternal diabetes, sex, age, BMI, smoking status, second-hand smoking exposure, cell-type 
proportions, and genetic ancestry. B Overlaps between sites identified in this study and those previously associated with disease per EWAS 
Atlas. Out of 3830 differentially methylated sites, 3725 sites had not previously been significantly associated with any disease, while the rest were 
associated with at least one of T2D, obesity, or child obesity. C 1802 individual sites were identified as part of DMRs, and D 1739 of these sites 
were not previously statistically associated with any disease while the rest were associated with T2D or obesity. E There were 728 common sites 
between individual site analysis and DMR analysis
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Table 2  Thirty-six DNAm sites associated (FDR < 0.05 and effect size > 0.05) with youth-onset type 2 diabetes in peripheral blood 
(n = 295)

* Control—T2D

CpG Chr Position UCSC RefGene 
Name

Gene Position Relation to 
Island

Adjusted 
p-value

Effect Size* EWAS Atlas 
Previous 
Association

mQTL

cg20150640 1 23,697,656 C1orf213;ZNF436 3’UTR;Body;1stExon;TSS1500 S_Shore 4.10E−02 5.04E−02 No Yes

cg19693031 1 145,441,552 TXNIP 3’UTR​ OpenSea 1.50E−10 -1.13E−01 Walaszczyk 
et al., 2018, 
Soriano-
Tárraga 
et al., 2016, 
Kulkarni 
et al., 2015

No

cg12538074 1 153,716,514 INTS3 Body OpenSea 4.15E−04 6.25E−02 No No

cg04915160 3 32,087,236 OpenSea 4.79E−02 5.95E−02 No No

cg25799109 3 57,102,900 ARHGEF3;SPATA12 5’UTR​ OpenSea 1.91E−02 5.23E−02 No No

cg17758563 6 16,323,116 ATXN1 Body N_Shelf 1.68E−05 5.15E−02 No No

cg07710211 6 42,900,123 CNPY3 Body S_Shelf 5.31E−03 7.04E−02 No Yes

cg16809457 6 90,399,677 MDN1 Body OpenSea 1.30E−04 5.41E−02 No No

cg11991942 7 220,911 FAM20C Body S_Shore 3.89E−02 5.51E−02 No Yes

cg04816311 7 1,066,650 C7orf50 Body N_Shore 5.50E−06 7.13E−02 Meeks et al. 
2019, Car-
dona et al., 
2019

No

cg25332918 7 158,766,061 N_Shore 2.11E−02 8.12E−02 Weng et al., 
2018

Yes

cg18581998 9 136,335,884 CACFD1 3’UTR​ OpenSea 1.10E−03 5.80E−02 No No

cg06132598 9 138,899,436 NACC2 3’UTR​ OpenSea 1.46E−02 8.44E−02 No No

cg07216976 10 116,581,248 FAM160B1 TSS1500 N_Shore 6.02E−03 -5.18E−02 No No

cg15068842 11 60,677,810 N_Shelf 1.39E−03 5.10E−02 No No

cg10052504 11 121,243,886 OpenSea 2.20E−02 5.87E−02 No Yes

cg26996569 12 121,829,743 OpenSea 1.19E−03 1.07E−01 No No

cg24288706 12 122,287,927 HPD Body OpenSea 4.72E−02 6.09E−02 No No

cg21860329 13 42,265,546 VWA8 Body OpenSea 4.54E−04 -6.21E−02 No No

cg26548185 13 111,464,743 Island 6.78E−03 5.37E−02 No No

cg12944343 14 93,698,416 OpenSea 4.43E−02 5.43E−02 No Yes

cg07107661 14 97,877,297 OpenSea 1.42E−02 5.26E−02 No No

cg10149159 15 80,189,934 MTHFS TSS1500;Body S_Shore 2.19E−02 -6.53E−02 No No

cg09530217 15 101,728,353 CHSY1 Body OpenSea 5.90E−03 5.45E−02 No No

cg00658411 16 4,467,558 CORO7 TSS1500 S_Shore 3.42E−02 5.79E−02 No Yes

cg01928516 17 2,208,377 SMG6;SRR TSS1500;5’UTR​ S_Shore 1.47E−05 5.45E−02 No No

cg17146917 17 4,674,194 TM4SF5 TSS1500 OpenSea 4.40E−03 5.06E−02 No No

cg25164957 17 7,236,973 S_Shelf 4.15E−02 5.02E−02 No No

cg25393494 17 17,109,936 PLD6 TSS1500 Island 1.83E−05 7.69E−02 No Yes

cg24578857 17 17,110,207 PLD6 TSS1500 Island 5.01E−03 5.58E−02 No Yes

cg15244183 18 11,143 LOC102723376 TSS1500 N_Shore 3.58E−02 7.17E−02 No No

cg21240131 18 43,715,467 OpenSea 2.40E−02 5.03E−02 No No

cg06381803 19 46,119,475 EML2 Body Island 2.69E−03 6.35E−02 No No

cg18704705 20 47,364,640 PREX1 Body OpenSea 3.91E−02 6.46E−02 No No

cg13619283 20 47,364,643 PREX1 Body OpenSea 3.49E−02 6.75E−02 No No

cg14929076 20 55,041,057 N_Shelf 1.12E−03 5.23E−02 No Yes
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DNAm  change were input to the atlas. We found that 
3725 sites were not previously reported as associated 
with T2D, adult obesity, or youth obesity (Fig. 1B). CpGs 
that had > 5% DNAm  change and were not associated 
with the “type 2 diabetes” trait in the EWAS Atlas were 
labelled as not previously associated (Table  2). For sites 
that had difference in DNAm  ≥ 5% between the groups 
and were previously associated with T2D, adult obesity 
or youth obesity, we examined chromatin information 
of lymphoblastoid cells from GM12878 using the Ucsc-
Track() function from the gviz R package (Additional 
file 1: Supplementary Fig. 4).

Since shared genetic variation between mother and 
child could increase risk of T2D and also alter DNAm 
patterns, we tested whether the identified 36 individual 
sites and 17 DMRs with high effect sizes were associated 
with methylation trait quantitative loci (mQTL), using 
the mQTLdb [41]. Ten out of the 36 individual sites were 
associated with an mQTL (p-value < 1E−14 and effect 
size > 0.02%), and none of DMR sites were associated 
with an mQTL.

Sensitivity tests
Given that both ethnicity and cigarette smoking are 
known to have strong effects on DNAm  levels and the 
iCARE cohort includes multiple ethnic groups, as well 
as a mixture of smokers and non-smokers, we per-
formed sub-analyses to ensure the results were not influ-
enced by ethnicity or smoking status. The same 704,709 
DNAm  sites were analyzed using the same regression 

and covariates in two subsets: 251 participants from the 
self-declared First Nation subset (Additional file 4: Sup-
plementary Table  3) or 242 non-smokers. Effect size 
measures from this regression were compared with effect 
size measures from the whole cohort analysis, and if the 
95% confidence intervals were in the same direction in 
the sub-analysis as in the full cohort, we considered the 
site to be consistent (Fig. 2A). Out of 3830, only five had 
an inconsistent direction of change in DNAm  in the eth-
nicity sub-analysis, and three differentially methylated 
sites had inconsistent direction of change in DNAm  in 
the smoking sub-analysis (Fig.  2B), indicating that our 
findings are robust to these potential confounders.

Enrichment analysis
The 3830 differentially methylated sites and 1802 DMR 
sites were investigated for enrichment for gene ontol-
ogy sets and pathways in the KEGG using a Wallenius’ 
noncentral hypergeometric test. The top results in the 
biological processes highlighted DNAm  changes in 
sugar and protein catabolic and metabolic processes 
(Additional file  5: Supplementary Table  4 and Addi-
tional file  6: Supplementary Table  5). Similar results 
were observed in the KEGG pathway enrichment, glyc-
erophospholipid, riboflavin, and nicotinate and nicoti-
namide metabolism (Additional file  7: Supplementary 
Table  6 and Additional file  8: Supplementary Table  7). 
Interestingly, in our individual sites analysis, DNAm 
methylation changes are also enriched in the insulin 
signaling pathway (unadjusted  p-value = 7.03 × 10–3) 

Fig. 2  Epigenome-wide association sensitivity test of ethnicity and smoking status in the iCARE cohort. Red crosses represent CpGs 
with inconsistent direction of change between the whole cohort and the subset cohort. A Only five out of 3830 CpGs (FDR < 0.05 and effect 
size > 0.01) were found to have an inconsistent direction of change between the whole cohort and First Nation subset EWAS. B Only 
three out of 3830 CpGs (FDR < 0.05 and effect size > 0.01) were found to have inconsistent direction of change between the whole cohort 
and non-smoking subset
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and vasopressin-regulated water reabsorption path-
way (unadjusted  p-value = 7.43 × 10–3); however, after 
adjusting for multiple testing, only the Apelin signaling 
pathway remained significant (Additional file  7: Supple-
mentary Table 6).

Epigenetic age analyses
As a measure of overall change in DNAm  which may 
not be identified at individual sites or DMRs, we tested 
whether youth-onset T2D or exposure to maternal dia-
betes accelerated biological aging as measured by two 
epigenetic clocks. Neither own diabetes nor exposure to 
intrauterine maternal diabetes altered epigenetic age at 
the time of blood draw using either the Horvath or Skin-
Blood epigenetic clocks (Additional file 1: Supplementary 
Fig. 5). 

Association of childhood‑onset T2D DNAm patterns 
with exposure to intrauterine maternal diabetes
Exposure to intrauterine maternal diabetes has been pre-
viously identified as a risk factor for youth-onset T2D, 
and previously was associated with DNAm  changes. 
Therefore, we investigated whether any of the sites we 
identified as associated with youth-onset T2D were also 
associated with exposure to intrauterine maternal diabe-
tes. The cohort was split into two groups: youths exposed 
to intrauterine maternal diabetes (including gestational 
and pre-gestational diabetes) and youths exposed to a 
normoglycemic intrauterine environment. DNAm meth-
ylation at the 3830 differentially methylated sites associ-
ated with youth-onset T2D were compared between the 
two groups using a multiple linear regression with adjust-
ment for age, sex, smoking, second-hand smoking, four 
cell-type PCs, five genetic PCs, and batch effects (Addi-
tional file 1: Supplementary Fig. 6). Three sites were asso-
ciated with exposure to intrauterine maternal diabetes 
(FDR < 0.05 and ≥ 1% change in DNAm, Table 3, Fig. 3A) 
in the PFKB3 gene, at 1500 bp upstream (-2.41% change 
in DNAm, FDR = 1.65 × 10–2), 200  bp upstream (-2.29% 
change in DNAm, FDR = 1.65 × 10–2), and within the 
gene body (-3.34% change in DNAm, FDR = 1.65 × 10–2) 
the PFKFB3 gene (Fig.  3B–D). None of these sites have 
previously been associated with an mQTL (Table 3).

Discussion
To the best of our knowledge, this is the first epigenome-
wide study to investigate associations between DNAm 
and youth-onset T2D with the goal of isolating changes 
associated with the unique pathophysiology of this dis-
ease, and to see whether maternal diabetes exposure in 
utero primes these diabetes-associated DNAm differ-
ences. We identified 3830 individual sites and 516 differ-
entially methylated regions in peripheral blood with > 1% 
difference in DNAm  between youth with and with-
out T2D, of which 36 sites and 17 DMRs displayed > 5% 
difference. Of these, three sites in PFKFB3 were also 
associated with exposure to intrauterine maternal dia-
betes, potentially implicating DNAm changes with the 
transmission of T2D risk by maternal diabetes [9]. The 
majority of the DNAm changes we identified had not 
previously been reported as associated T2D and could 
provide insight into the aggressiveness of complications 
and early onset of youth-onset T2D. Overall, our findings 
suggested that DNAm  could be a biomarker for youth-
onset T2D, and that maternal diabetes exposure in com-
bination with own diabetes demonstrated synergistic 
effects on DNAm at PFKFB3.

Comparing our results with previous findings from 
epigenome-wide association analyses on adult-onset T2D 
recorded in the EWAS Atlas [40], the majority of our sites 
were not associated with T2D, obesity or youth obesity. 
This provides additional credence to the concept that 
youth-onset T2D is different from adult-onset T2D [1]. In 
the 36 sites that had > 5% DNAm  change, two were pre-
viously associated with adult-onset T2D; TXNIP [42–44], 
and a predicted open reading frame C7orf50 [45, 46]. By 
contrast, another study that also examined TXNIP and 
C7or50 found no association between DNAm  at those 
genes and T2D [47], but this could be due to limited sam-
ple size (101 individuals with T2D in the discovery stage 
of the study and 66 individuals in their replication stage). 
Note that we did not perform a meta-analysis of exist-
ing T2D studies to determine whether any of our sites 
demonstrated similar effect sizes but did not meet sta-
tistical significance in other studies. However, given that 
the EWAS Atlas reported only 5.5% (2/36) of our large 
effect sites and 2.7% (105/3830) of our medium effect size 
sites as previously statistically associated with T2D or 

Table 3  Altered DNAm  in youth with type 2 diabetes associated with intrauterine maternal diabetes exposure

CpG Chromosome Position UCSC RefGene name Gene position Relation to Island Adjusted p-value Change in 
DNAm  (%)

mQTL

cg06002198 10 6,187,994 PFKFB3;PFKFB3 TSS1500;Body S_Shore 0.0165 − 2.41 No

cg03889890 10 6,188,223 PFKFB3;PFKFB3 TSS200;Body S_Shore 0.0165 − 2.30 No

cg18262201 10 6,187,854 PFKFB3 Body Island 0.0165 − 3.34 No
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T2D-related traits across 23 studies, our results support 
that the effects on blood DNAm of youth-onset T2D are 
very different from adult-onset.

Three differentially methylated sites in youth-onset 
T2D were also associated with exposure to intrauterine 
maternal diabetes in a dose dependent manner, all in 
PFKFB3. These sites showed decreased DNAm  in youth 
of mothers with T2D which was even lower in youth who 
had T2D themselves, suggesting that in utero exposure 
to diabetes might change the DNAm  profile for those 
sites which are then further altered if the youth develop 
T2D. Pancreatic β-cells are non-regenerative and when 
injured, they activate the HIF1α/PFKFB3 injury regen-
eration metabolic pathway [48]. This pathway ensures 
the survival of the injured pancreatic cells, but forces the 
cells to rely on glycolysis for ATP production, making 
them less responsive to glucose for insulin production. 
PFKFB3 protein is predominantly expressed in endothe-
lial cells and plays an important role in glycolysis [49], 
and expression of PFKFB3 was increased in β-cell nuclei 
of rats and humans with T2D [48]. In a previous study, 

PFKFB3 had been linked previously to type 1 diabetes; 
compared to nondiabetic, type 1 diabetes individuals had 
a larger proportion of β-cells that expressed PFKFB3 [50]. 
Combined with our results, these findings suggest that 
in utero exposure to maternal diabetes could affect the 
expression of PFKFB3, either in  β-cells themselves or in 
other tissues, which in return affects the responsiveness 
to glucose. We acknowledge that blood-based DNAm  
may not always directly reflect DNAm methylation in 
other cell and tissue systems such as the β-cell [51]. 
Given the inaccessibility of β-cell tissue as a biomarker, 
blood-based DNAm can nonetheless still provide useful 
information about systemic changes related to conditions 
such as diabetes that could be utilized as a biomarker. 
This study, as far as we know, is the first to link PFKFB3 
to T2D in youth.

Due to the cross-sectional nature of our study, we 
are unable to distinguish between DNAm changes that 
lead to youth-onset T2D and DNAm  changes caused 
by youth-onset T2D. Another limitation to our study 
is having unbalanced groups; however, our sensitivity 

Fig. 3  Three CpGs associated with youth-onset T2D are also associated with exposure to maternal diabetes. A 3 CpGs were found moderately 
associated with maternal diabetes exposure (FDR < 0.05 and effect size ≥ 0.01). B–D Exposure to intrauterine maternal diabetes and own diabetes 
had additive effects on DNAm  at the 3 CpG sites
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tests showed that ethnicity and smoking status did 
not drive our association results. Our study also did 
not disentangle the differential effects of gestational 
diabetes mellitus (GDM) versus maternal pre-gesta-
tional T2D on DNAm. We have previously shown that 
maternal pre-gestational T2D confers a greater risk of 
youth-onset T2D than GDM [9]. Future studies could 
be adequately powered to determine whether there is a 
differential impact of GDM vs maternal T2D on DNAm  
in youth living with T2D. Future prospective and lon-
gitudinal studies are also needed to test for the specific 
association between DNAm  changes such as we have 
identified and development of T2D complications.

In Canada, First Nations youth account for a higher 
relative number of T2D diagnoses compared to the gen-
eral population [52]. The majority of individuals in the 
iCARE cohort study are of First Nations background 
[19]. We showed here that maternal diabetes alone 
has long lasting influences on DNAm methylation pat-
terns in youth living with T2D. T2D in youth is asso-
ciated with poverty and lower socioeconomic status 
[53]. Colonization has profoundly altered the health of 
indigenous peoples resulting in the biological manifes-
tation of chronic disease. Many additional environmen-
tal exposures such as purposeful starvation, nutrition, 
stress and trauma have effects on the epigenome that 
merit consideration in understanding the development 
of T2D in First Nations youth [54–56].

Overall, our results show that DNAm  patterns 
associated with youth-onset T2D differ greatly from 
adult-onset. We also showed that in utero exposure to 
maternal diabetes is associated with DNAm  changes 
that are linked to youth-onset T2D. This study provides 
some insight to the unique molecular pathways which are 
disrupted by youth-onset T2D and could potentially aid 
in the development of intervention programs aimed at 
preventing the serious and unique health effects of early 
development of T2D.
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