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Abstract 

Background: Examining immunity-related DNA methylation alterations in blood could help elucidate the role of the 
immune response in lung cancer etiology and aid in discovering factors that are key to lung cancer development and 
progression. In a nested, matched case–control study, we estimated methylation-derived NLR (mdNLR) and quanti-
fied DNA methylation levels at loci previously linked with circulating concentrations of C-reactive protein (CRP). We 
examined associations between these measures and lung cancer risk and survival.

Results: Using conditional logistic regression and further adjusting for BMI, batch effects, and a smoking-based 
methylation score, we observed a 47% increased risk of non-small cell lung cancer (NSCLC) for one standard deviation 
(SD) increase in mdNLR (n = 150 pairs; OR: 1.47, 95% CI 1.08, 2.02). Using a similar model, the estimated CRP Scores 
were inversely associated with risk of NSCLC (e.g., Score 1 OR: 0.57, 95% CI: 0.40, 0.81). Using Cox proportional hazards 
models adjusting for age, sex, smoking status, methylation-predicted pack-years, BMI, batch effect, and stage, we 
observed a 28% increased risk of dying from lung cancer (n = 145 deaths in 205 cases; HR: 1.28, 95% CI: 1.09, 1.50) for 
one SD increase in mdNLR.

Conclusions: Our study demonstrates that immunity status measured with DNA methylation markers is associated 
with lung cancer a decade or more prior to cancer diagnosis. A better understanding of immunity-associated methyl-
ation-based biomarkers in lung cancer development could provide insight into critical pathways.
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Background
Lung cancer is the leading cause of cancer death in the 
USA, projected to account for 21.7% of all cancer deaths 
in 2021 [1]. A large percentage of lung cancer patients 
are diagnosed at an advanced stage [2] and five-year rela-
tive survival rates for those patients are between 3 and 
6% [3]. Thus, early detection remains a key strategy to 
improve survival. However, the currently recommended 
strategy for lung cancer screening—low-dose computed 

tomography (LDCT) for persons 50 to 80 years old with 
at least a 20 pack-year smoking history and currently 
smoke or have quit within the past 15  years—is expen-
sive and has a high false positive rate [4, 5]. Modifying 
the current lung cancer screening strategy by perform-
ing risk stratification could help prioritize LDCT screen-
ing and optimize secondary prevention. We propose that 
immune system markers could be incorporated into such 
risk stratification tools to help identify persons at higher 
risk of lung cancer to target for screening.

While smoking is the most important risk factor for 
lung cancer in the population, there is growing evidence 
that the immune system, in response to or independ-
ent of smoking, plays an important role in lung cancer 
development, acting potentially through the genesis of 
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chronic inflammation [6]. For instance, an aggregated 
genome-wide association studies (GWASs) analysis of 
lung cancer risk found a direct causal effect of BMI on 
small cell lung cancer and an inverse effect on lung 
adenocarcinoma, suggesting the complexity of the role 
BMI and chronic inflammation plays in lung cancer sub-
types [7]. Furthermore, it is plausible that inflammatory 
profiles prior to lung cancer diagnosis are associated 
with lung cancer-specific survival. Markers of systemic 
inflammation, including elevated levels of C-reactive pro-
tein (CRP) and the peripheral blood neutrophil-to-lym-
phocyte ratio (NLR), also have been identified as robust 
markers of cancer-associated inflammation [8, 9]. Ele-
vated CRP levels [8], elevated serum levels of pro-inflam-
matory cytokines [10–12],  increased neutrophil counts 
and decreased lymphocyte counts [13, 14], and poly-
morphisms in inflammation-related genes [15–18] have 
been associated with increased lung cancer risk. These 
inflammatory measures have also been associated with 
poor survival of lung cancer patients in several retrospec-
tive and a few prospective studies [19–21]. In addition, 
both experimental and epidemiologic studies support 
a role for chronic inflammation as a hallmark of cancer 
development and progression [8, 22–25]. We posit that 
a better understanding of the role of inflammation in 
lung cancer etiology could be gained by examining DNA 
methylation alterations in blood that are associated with 
the systemic immune response.

In the current study, we first predicted peripheral 
blood leukocyte composition and a neutrophil to lym-
phocyte index using validated DNA methylation markers 
(mdNLR), then quantified DNA methylation levels at loci 
previously linked with circulating concentrations of CRP, 
and calculated methylation-derived immune cell ratios by 
using an expanded deconvolution library. We evaluated 
the associations of these potential markers with lung can-
cer risk and lung cancer-specific survival. To address this 
question, we used pre-diagnostic blood samples of cases 
and controls obtained from the CLUE I/II cohorts. Our 
analyses controlled for self-reported smoking and meth-
ylation-predicted cumulative smoking in order to better 
focus our examinations on the DNA methylation marks 
that are informative of the immune response profile [26].

Results
Population characteristics
Characteristics of the 208 lung cancer cases and their 208 
matched controls included in this analysis are presented 
in Table 1. Over 99% of the majority of participants were 
White. The median time between blood draw and lung 
cancer diagnosis was 14 years. The median age at blood 
draw in 1989 was 59 and 57 years in cases and controls, 

respectively. Overall, 55% of cases and controls were 
women and 11% were never smokers (Table 1).

Methylation‑derived mdNLR index, leukocyte proportions, 
and lung cancer risk
We observed a 47% increased risk of non-small cell lung 
cancer (NSCLC) for one standard deviation increase in 
mdNLR (n = 150 pairs; OR: 1.47 [1.08, 2.02]). However, 
higher mdNLR values were not statistically associated 
with overall risk of lung cancer in our study. This asso-
ciation was comparable for NSCLC cases diagnosed 
within 10  years and beyond 10  years after blood draw. 
No stable associations could be estimated for small cell 
lung cancer (SCLC). After multiple comparison adjust-
ments, monocyte/lymphocyte ratio showed a border-
line significant 65% increased risk of NSCLC for each 
standard deviation increase (n = 150 pairs; OR: 1.65, 
adjusted CI: [0.99, 2.76]). In addition, immune cell ratios 
for CD4/CD8, NLR, B cell/lymphocyte, T cell/lympho-
cyte, Neu + Mono/lymphocyte, Eos/lymphocyte, CD4nv/
lymphocyte, B cell/CD8, CD8/Treg, Bnv/Bmem, CD4nv/
CD4mem, CD8nv/CD8mem, and Treg > 0 vs. Treg = 0 
were not statistically significantly associated with lung 
cancer risk overall or by histologic types (Table 2).

Methylation‑derived CRP scores and lung cancer risk
CRP Score 1 was built using 54 CpG sites that were previ-
ously associated with inflammatory markers, while CRP 
Score 2 and 3 were each built with a subset of these 54 
CpGs that were putative cell-specific or cell type invari-
ant, respectively. Using data from a previously published 
pancreatic cancer dataset [27], all three scores were 
moderately correlated with log CRP and log IL-6 levels 
(Table  3). In this nested case–control study, we found 
all three CRP Scores inversely associated with risk of 
NSCLC after additionally adjusting for methylation-pre-
dicted pack-years (n = 150 pairs; Score 1 OR: 0.57 [0.40, 
0.81]; Score 2 OR: 0.62 [0.45, 0.84]; Score 3 OR: 0.65 [0.44, 
0.95]). We also found statistically significant inverse asso-
ciation between CRP Score 1 and risk of NSCLC among 
cases diagnosed within 10  years and beyond 10  years, 
and between CRP Score 2 for NSCLC cases diagnosed 
within 10  years of blood draw (Table  4). CRP Scores 1, 
2, and 3 were not associated with lung cancer risk when 
taking into account the matching factors and only adjust-
ing for BMI and four surrogate variables for batch effects 
(n = 208 pairs; Score 1 OR: 0.96 [0.77, 1.21]; Score 2 OR: 
0.89 [0.71, 1.11]; Score 3 OR: 1.11 [0.89, 1.40]). However, 
when additionally adjusting for methylation-predicted 
pack-years, inverse associations with total lung cancer 
risk were observed for Score 1 (OR: 0.76 [0.59, 0.99]) and 
Score 2 (OR: 0.77 [0.61, 0.98]). We also observed a 33% 
decreased risk of lung cancer for one standard deviation 
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increase in CRP Score 1 (OR: 0.67 [0.47, 0.97]) among 
those with time to diagnosis over 10 years.

Survival analysis
We examined whether the mdNLR, methylation-derived 
immune cell ratios, and CRP Scores were associated with 
risk of dying of lung cancer among lung cancer cases 
(Table 5, Fig. 1).

We observed a 47% increased risk of dying for 
one standard deviation of mdNLR for NSCLC cases 
(n = 149 cases; HR: 1.47 [1.20, 1.81]). Among the 
NSCLC cases whose mdNLR was from <  = 10  years 
before their diagnosis, we found a 73% increased risk of 
dying for a one standard deviation increase in mdNLR 
(HR: 1.73 [1.19, 2.51]). In comparison, the risk of dying 
for a one standard deviation increase in mdNLR was 
lower among the NSCLC cases whose mdNLR was 
from 10 to 25 years prior to diagnosis (HR: 1.39 [1.05, 
1.85]). Lastly, we observed a 28% increased risk of dying 

from lung cancer for one standard deviation increase 
in mdNLR (n = 205 cases deleted 3 cases with person-
year = 0 or > 25 years; HR: 1.28 [1.09, 1.50]).

Immune cell ratios for CD4/CD8, NLR, B cell/lym-
phocyte, T cell/lymphocyte, Mono/lymphocyte, Eos/
lymphocyte, CD4nv/lymphocyte, B cell/CD8, CD8/
Treg, Bnv/Bmem, CD4nv/CD4mem, CD8nv/CD8mem, 
and Treg (> 0 vs = 0) were not associated with lung 
cancer-specific death, except for a 48% increased risk 
for one standard deviation increase in Neu + Mono/
lymphocyte ratio among the NSCLC cases (HR: 1.48 
[1.04, 2.11]) and a borderline significant 29% increased 
risk of dying from lung cancer (HR: 1.29, adjusted CI: 
[1.00, 1.67]) for one standard deviation increase in 
Neu + Mono/lymphocyte ratio after multiple compari-
son adjustments. Furthermore, the three CRP Scores 
were not associated with lung cancer-specific death.

Table 1 Baseline characteristics of lung cancer cases and matched controls nested in CLUE I/II

Controls Cases

All lung cancers Non‑small cell lung cancer Small cell lung cancer

N 208 208 150 29

Median age (range, years) 56 [28, 81] 59 [30, 83] 58 [36, 83] 53 [30, 71]

Median time before diagnosis (range, years) 14 [0, 29] 14 [0, 28] 12 [2, 29]

Sex

 Male 95 (45.7%) 95 (45.7%) 61 (40.7%) 16 (55.2%)

 Female 113 (54.3%) 113 (54.3%) 89 (59.3%) 13 (44.8%)

Race

 White 208 (100%) 205 (98.6%) 149 (99.3%) 28 (96.6%)

 Black 0 (0%) 3 (1.4%) 1 (0.7%) 1 (3.4%)

Cigarette smoking status

 Never smoker 22 (10.6%) 22 (10.6%) 15 (10.0%) 1 (3.4%)

 Ever smoker 80 (38.5%) 80 (38.5%) 56 (37.3%) 10 (34.5%)

 Current smoker 106 (51.0%) 106 (51.0%) 79 (52.7%) 18 (62.1%)

Median cigarette smoking Intensity (range, cig/
day)

20 [0, 80] 20 [0, 80] 20 [0, 70] 20 [0, 80]

Cigar or pipe smoking

Never 176 (84.6%) 178 (85.6%) 132 (88.0%) 25 (86.2%)

Ever 28 (13.5%) 26 (12.5%) 15 (10.0%) 4 (13.8%)

Current 4 (1.9%) 4 (1.9%) 3 (2.0%) 0 (0%)

Median BMI, kg/m2 (range) 25.8 [18.0, 40.9] 25.6 [15.5, 42.6] 25.4 [15.5, 42.6] 25.6 [18.3, 34.7]

mdNLR mean (SD) 1.74 (0.976) 1.86 (1.32) 1.85 (1.19) 1.65 (1.07)

mdNLR median (range) 1.58 [0.13, 6.42] 1.59 [0.28, 11.90] 1.56 [0.28, 9.45] 1.44 [0.39, 4.81]

CRP score 1 mean (SD) 0.02 (1.01) − 0.02 (0.99) − 0.04 (0.97) 0.47 (1.08)

CRP score 1 median (range) 0.06 [− 2.42, 2.99] − 0.03 [− 3.26, 2.94] − 0.03 [− 3.26, 2.94] 0.41 [− 1.93, 2.16]

CRP score 2 mean (SD) 0.04 (1.03) − 0.04 (0.98) − 0.06 (0.95) 0.36 (1.17)

CRP score 2 median (range) 0.01 [− 3.35, 3.93] − 0.10 [− 2.68, 3.10] − 0.11 [− 2.68, 3.10] 0.24 [− 2.34, 3.10]

CRP score 3 mean (SD) − 0.06 (0.98) 0.06 (1.02) 0.09 (1.03) 0.32 (0.97)

CRP score 3 median (range) − 0.09 [− 2.43, 2.51] 0.08 [− 2.34, 2.95] 0.10 [− 2.34, 2.95] 0.38 [− 2.19, 1.97]
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Table 2 Association between methylation-predicted immune cell profiles and risk of total lung cancer and NSCLC risk, overall and 
stratified by time to diagnosis, case–control study nested in the CLUE I/II cohort

Bold OR and CI values indicate statistical significance. Underline OR and CI values indicate borderline statistical significance after multiple comparison adjustment
a 208 cases and 208 controls matched on age at blood draw, sex, smoking status, and model further adjusting for BMI, surrogate variables for batch effects, and a 
methylation-predicted pack-years smoked
b 150 cases and 150 controls matched on age at blood draw, sex, smoking status, and model further adjusting for BMI, surrogate variables for batch effects, and a 
methylation-predicted pack-years smoked
c OR results reported per 1 unit SD increase (mdNLR SD: 1.16; CD4/CD8 ratio SD: 2.07; BL ratio SD: 0.0526; TL ratio SD: 0.0802; ML ratio SD: 0.118; NM/L ratio SD: 1.22; 
EL ratio SD: 0.0722; CD4nv/L ratio SD: 0.0915; B/CD8 ratio SD: 3.07; CD8/Treg ratio SD: 115; Bnv/Bmem ratio SD: 109; CD4nv/CD4mem ratio SD: 0.429; CD8nv/CD8mem 
ratio SD: 2.05) and OR results reported for Treg > 0 versus 0; Bonferroni-adjusted CI reported for all except mdNLR (a prior hypothesis)

All lung  cancersa

OR (95% CI)
Non‑small cell lung  cancerb

OR (95% CI)

mdNLRc 1.11 (0.89, 1.38) 1.47 (1.08, 2.02)

 Time to diagnosis ≤ 10 years 0.97 (0.69, 1.35) 1.41 (0.90, 2.20)

 Time to diagnosis > 10 years 1.22 (0.91, 1.64) 1.57 (0.98, 2.49)

CD4/CD8  Ratioc 1.17 (0.80, 1.72) 1.16 (0.74, 1.82)

 Time to diagnosis ≤ 10 years 0.94 (0.56, 1.57) 0.79 (0.38, 1.66)

 Time to diagnosis > 10 years 1.47 (0.82, 2.62) 1.72 (0.77, 3.85)

B cell/lymphocyte  ratioc 1.07 (0.73, 1.57) 0.94 (0.58, 1.52)

 Time to diagnosis ≤ 10 years 1.16 (0.63, 2.14) 0.91 (0.42, 1.97)

 Time to diagnosis > 10 years 0.98 (0.60, 1.59) 0.93 (0.50, 1.71)

T cell/lymphocyte  ratioc 1.06 (0.72, 1.56) 0.94 (0.60, 1.48)

 Time to diagnosis ≤ 10 years 1.11 (0.62, 1.98) 1.03 (0.49, 2.16)

 Time to diagnosis > 10 years 1.05 (0.63, 1.76) 0.88 (0.48, 1.62)

Monocyte/lymphocyte  ratioc 1.15 (0.78, 1.69) 1.65 (0.99, 2.76)

 Time to diagnosis ≤ 10 years 1.18 (0.66, 2.11) 1.62 (0.75, 3.51)

 Time to diagnosis > 10 years 1.16 (0.69, 1.94) 1.81 (0.86, 3.80)

(Neutrophil + monocyte)/lymphocyte  ratioc 1.13 (0.79, 1.61) 1.46 (0.87, 2.44)

 Time to diagnosis ≤ 10 years 0.96 (0.59, 1.56) 1.32 (0.67, 2.60)

 Time to diagnosis > 10 years 1.26 (0.78, 2.04) 1.62 (0.80, 3.29)

Eosinophil/lymphocyte  ratioc 0.94 (0.64, 1.38) 0.89 (0.53, 1.49)

 Time to diagnosis ≤ 10 years 0.81 (0.44, 1.49) 1.21 (0.48, 3.08)

 Time to diagnosis > 10 years 1.01 (0.64, 1.59) 0.73 (0.36, 1.48)

CD4 naïve/lymphocyte  ratioc 1.22 (0.83, 1.80) 1.36 (0.84, 2.20)

 Time to diagnosis ≤ 10 years 1.47 (0.72, 2.99) 1.70 (0.74, 3.93)

 Time to diagnosis > 10 years 1.11 (0.68, 1.80) 1.19 (0.67, 2.12)

B cell/CD8  ratioc 0.97 (0.68, 1.38) 1.00 (0.66, 1.52)

 Time to diagnosis ≤ 10 years 1.06 (0.61, 1.83) 1.11 (0.58, 2.11)

 Time to diagnosis > 10 years 0.85 (0.45, 1.62) 0.90 (0.44, 1.83)

CD8/treg  ratioc 0.81 (0.55, 1.19) 0.73 (0.45, 1.18)

 Time to diagnosis ≤ 10 years 0.86 (0.47, 1.59) 0.72 (0.33, 1.56)

 Time to diagnosis > 10 years 0.78 (0.45, 1.35) 0.68 (0.33, 1.38)

Treg > 0 versus Treg =  0c 1.05 (0.74, 1.50) 1.07 (0.70, 1.63)

 Time to diagnosis ≤ 10 years 0.95 (0.53, 1.70) 1.12 (0.55, 2.27)

 Time to diagnosis > 10 years 1.10 (0.70, 1.73) 1.06 (0.61, 1.83)

B cell naïve/B cell memory  ratioc 0.85 (0.58, 1.25) 0.87 (0.57, 1.32)

 Time to diagnosis ≤ 10 years 0.65 (0.24, 1.76) 0.65 (0.21, 2.01)

 Time to diagnosis > 10 years 0.93 (0.56, 1.56) 0.96 (0.56, 1.66)

CD4 naïve/CD4 memory  ratioc 1.04 (0.73, 1.48) 1.59 (0.81, 3.13)

 Time to diagnosis ≤ 10 years 0.98 (0.59, 1.64) 2.67 (0.65, 11.01)

 Time to diagnosis > 10 years 1.18 (0.60, 2.32) 1.34 (0.58, 3.10)

CD8 naïve/CD8 memory  ratioc 0.99 (0.72, 1.37) 1.01 (0.53, 1.92)

 Time to diagnosis ≤ 10 years 0.66 (0.15, 2.81) 0.74 (0.17, 3.15)

 Time to diagnosis > 10 years 1.04 (0.71, 1.53) 1.73 (0.36, 8.38)
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Discussion
Our study prospectively assessed predicted immune cell 
profiles using DNA methylation markers and examined 
associations between previously identified DNA meth-
ylation markers of inflammation and lung cancer risk and 

survival. Using pre-diagnostic blood samples of lung can-
cer cases and controls who participated in the CLUE I/II 
cohorts [23], pre-diagnosis mdNLR was associated with 
increased risk of NSCLC, and among cases, with total 
lung cancer and NSCLC lung cancer-specific death. In 

Table 3 Correlations between methylation-based CRP scores and circulating log-CRP level, log-IL6 level, peripheral blood leukocyte 
types, BMI, and smoking score residual among controls only

a Correlations with log-CRP level and log-IL6 level were tested with a pancreatic cancer dataset[43]
b CpG Score 1 is built using 54 CpG sites
c CpG Score 2 is built using the top 10 highly cell-specific CpG sites
d CpG Score 3 is built using the 10 modestly cell-specific CpG sites
e We calculated a pack-years methylation score to represent pack-years smoked associated methylation alterations. This score correlates with gene expression changes 
that are affected by smoking

Score  1b Score  2c Score  3d

Spearman (p value) Spearman (p value) Spearman (p value)

Pancreatic cancer study (controls only)

 Log-CRP  levela 0.284 (4.27e−06) 0.247 (6.96e−05) 0.297 (1.56e−06)

 Log-IL6  levela 0.213 (7.53e−04) 0.158 (1.32e−02) 0.203 (1.33e−03)

CLUE I/II (controls only)

 CD4T 0.425 (1.65e−10) 0.359 (1.00e−07) 0.212 (2.13e−03)

 CD8T 0.504 (8.78e−15) 0.461 (2.34e−12) 0.390 (5.74e−09)

 NK 0.062 (3.70e−01) 0.175 (1.17e−02) 0.026 (7.09e−01)

 B cell 0.103 (1.38e−01) 0.069 (3.23e−01) − 0.027 (6.99e−01)

 Neutrophils − 0.467 (1.19e−12) − 0.422 (2.24e−10) − 0.264 (1.17e−04)

 Monocytes − 0.292 (1.92e−05) − 0.330 (1.17e−06) − 0.288 (2.38e−05)

 mdNLR − 0.488 (7.66e−14) − 0.449 (1.01e−11) − 0.281 (3.96e−05)

 BMI 0.025 (7.22e−01) 0.070 (3.12e−01) − 0.063 (3.68e−01)

 Methylation-predicted pack-years  residuale 0.475 (4.46e−13) 0.375 (2.43e−08) 0.632 (1.42e−24)

Table 4 Association between methylation-based CRP scores and risk of total lung cancer and NSCLC risk, overall and stratified by time 
to diagnosis, CLUE I/II cohort

Bold OR and CI values indicate statistical significance
a 208 cases and 208 controls matched for age at blood draw, sex, smoking status, and model further adjusting for BMI, surrogate variables for batch effects, and a 
methylation-predicted pack-years smoked
b 150 cases and 150 controls matched for age at blood draw, sex, smoking status, and model further adjusting for BMI, surrogate variables for batch effects, and a 
methylation-predicted pack-years smoked. The matched pairs were kept within each stratum
c CpG Score 1 is built using 54 CpG sites and OR results reported per 1 unit of SD of CpG Score 1 (SD 1)
d CpG Score 2 is built using the top 10 highly cell-specific CpG sites and OR results reported per 1 unit of SD of CpG Score 2 (SD 1)
e CpG Score 3 is built using the 10 modestly cell-specific CpG sites and OR results reported per 1 unit of SD of CpG Score 3 (SD 1)

All lung  cancersa

OR (95% CI)
Non‑small cell lung  cancerb

OR (95% CI)

CRP Score  1c 0.76 (0.59, 0.99) 0.57 (0.40, 0.81)
 Time to diagnosis ≤ 10 years 0.84 (0.56, 1.26) 0.57 (0.33, 0.97)
 Time to diagnosis > 10 years 0.67 (0.47, 0.97) 0.53 (0.32, 0.88)

CRP Score  2d 0.77 (0.61, 0.98) 0.62 (0.45, 0.84)
 Time to diagnosis ≤ 10 years 0.79 (0.54, 1.17) 0.49 (0.28, 0.85)
 Time to diagnosis > 10 years 0.73 (0.53, 1.02) 0.68 (0.46, 1.00)

CRP Score  3e 0.79 (0.58, 1.07) 0.65 (0.44, 0.95)
 Time to diagnosis ≤ 10 years 0.87 (0.53, 1.42) 0.64 (0.35, 1.18)

 Time to diagnosis > 10 years 0.73 (0.49, 1.09) 0.62 (0.36, 1.05)
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Table 5 Association between immune cell ratios and methylation-based CRP scores and lung cancer-specific mortality among lung 
cancer cases, CLUE I/II cohort

All lung  cancersa

HR (95% CI)
Non‑small cell lung  cancerb

HR (95% CI)

mdNLRc 1.28 (1.09, 1.50) 1.47 (1.20, 1.81)
 Time to diagnosis ≤ 10 years 1.34 (1.01, 1.76) 1.73 (1.19, 2.51)
 Time to diagnosis > 10 years 1.20 (0.98, 1.48) 1.39 (1.05, 1.85)

CD4/CD8  ratioc 1.02 (0.76, 1.36) 1.07 (0.78, 1.48)

 Time to diagnosis ≤ 10 years 1.28 (0.79, 2.07) 1.29 (0.70, 2.38)

 Time to diagnosis > 10 years 0.96 (0.65, 1.41) 1.03 (0.66, 1.62)

B cell/lymphocyte  ratioc 0.97 (0.73, 1.30) 1.06 (0.74, 1.51)

 Time to diagnosis ≤ 10 years 0.87 (0.50, 1.50) 0.99 (0.52, 1.89)

 Time to diagnosis > 10 years 1.11 (0.75, 1.63) 1.18 (0.75, 1.85)

T cell/lymphocyte  ratioc 1.01 (0.78, 1.31) 0.95 (0.69, 1.31)

 Time to diagnosis ≤ 10 years 1.01 (0.62, 1.64) 0.94 (0.53, 1.68)

 Time to diagnosis > 10 years 1.05 (0.69, 1.60) 0.91 (0.54, 1.52)

Monocyte/Lymphocyte  Ratioc 1.16 (0.87, 1.55) 1.21 (0.85, 1.72)

 Time to diagnosis ≤ 10 years 1.45 (0.87, 2.43) 1.52 (0.80, 2.89)

 Time to diagnosis > 10 years 1.25 (0.80, 1.96) 1.54 (0.84, 2.84)

(Neutrophil + monocyte)/lymphocyte  ratioc 1.29 (1.00, 1.67) 1.48 (1.04, 2.11)
 Time to diagnosis ≤ 10 years 1.36 (0.87, 2.13) 1.76 (0.95, 3.24)

 Time to diagnosis > 10 years 1.22 (0.86, 1.74) 1.41 (0.87, 2.29)

Eosinophil/lymphocyte  ratioc 1.01 (0.76, 1.35) 0.86 (0.60, 1.23)

 Time to diagnosis ≤ 10 years 1.55 (0.93, 2.59) 1.40 (0.74, 2.67)

 Time to diagnosis > 10 years 0.98 (0.67, 1.44) 0.77 (0.49, 1.21)

CD4 naïve/lymphocyte  ratioc 0.92 (0.67, 1.27) 0.95 (0.65, 1.40)

 Time to diagnosis ≤ 10 years 0.92 (0.53, 1.59) 0.73 (0.35, 1.53)

 Time to diagnosis > 10 years 0.91 (0.60, 1.38) 0.99 (0.61, 1.60)

B cell/CD8  ratioc 1.03 (0.82, 1.29) 1.07 (0.83, 1.38)

 Time to diagnosis ≤ 10 years 1.01 (0.69, 1.49) 1.04 (0.64, 1.69)

 Time to diagnosis > 10 years 1.05 (0.71, 1.55) 1.20 (0.74, 1.95)

CD8/treg  ratioc 0.92 (0.67, 1.27) 0.92 (0.63, 1.35)

 Time to diagnosis ≤ 10 years 0.73 (0.42, 1.26) 0.63 (0.30, 1.32)

 Time to diagnosis > 10 years 1.03 (0.66, 1.62) 1.09 (0.63, 1.88)

Treg > 0 versus treg =  0c 0.96 (0.72, 1.28) 0.91 (0.64, 1.30)

 Time to diagnosis ≤ 10 years 1.27 (0.76, 2.13) 1.37 (0.70, 2.69)

 Time to diagnosis > 10 years 0.85 (0.58, 1.25) 0.75 (0.45, 1.26)

B cell naïve/B cell memory  Ratioc 1.09 (0.84, 1.41) 1.23 (0.89, 1.70)

 Time to diagnosis ≤ 10 years 1.31 (0.86, 1.99) 1.66 (0.74, 3.71)

 Time to diagnosis > 10 years 1.03 (0.75, 1.42) 1.19 (0.73, 1.93)

CD4 naïve/CD4 memory  ratioc 0.97 (0.70, 1.34) 1.03 (0.70, 1.52)

 Time to diagnosis ≤ 10 years 0.91 (0.53, 1.57) 0.71 (0.32, 1.59)

 Time to diagnosis > 10 years 1.00 (0.64, 1.57) 1.17 (0.70, 1.96)

CD8 naïve/CD8 memory  ratioc 0.96 (0.70, 1.32) 1.10 (0.77, 1.57)

 Time to diagnosis ≤ 10 years 1.09 (0.63, 1.88) 1.19 (0.59, 2.42)

 Time to diagnosis > 10 years 0.92 (0.61, 1.40) 1.05 (0.67, 1.65)

CRP Score  1cd 0.92 (0.67, 1.26) 0.88 (0.60, 1.30)

 Time to diagnosis ≤ 10 years 1.00 (0.57, 1.75) 1.22 (0.67, 2.22)

 Time to diagnosis > 10 years 1.04 (0.67, 1.63) 0.82 (0.46, 1.46)

CRP Score  2cd 0.86 (0.65, 1.13) 0.98 (0.69, 1.41)

 Time to diagnosis ≤ 10 years 0.76 (0.47, 1.23) 1.11 (0.61, 2.03)

 Time to diagnosis > 10 years 1.10 (0.73, 1.66) 0.93 (0.55, 1.56)
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addition, we built a series of methylation-derived CRP 
scores to capture individual systemic inflammatory pro-
files years before lung cancer diagnosis; these scores were 
inversely associated with risk of lung cancer, especially 
for NSCLC after adjusting for methylation-predicted 
pack-years smoked, but not with lung cancer-specific 
mortality.

Studies on NLR (calculated from measured WBC dif-
ferentials) and lung cancer risk and survival typically 
measure pre-treatment NLR at diagnosis or up to 30 days 
prior to treatment [28–30]. Unlike prior studies, we were 
able to assess individual systemic inflammation pro-
files many years prior to diagnosis by using methylation 

markers of inflammation. Our study is not directly com-
parable to prior studies since we measured mdNLR using 
blood samples from subjects with a median of 14  years 
prior to lung cancer diagnosis. In addition, most cases 
in our study were diagnosed before the widespread use 
of immunotherapy. To our knowledge, only one other 
cohort, the multicenter β-Carotene and Retinol Efficacy 
Trial (CARET), examined pre-diagnosis mdNLR and 
lung cancer risk and survival using blood drawn years 
prior to diagnosis (median 4.7 years) [31, 32]. CARET, a 
study of heavy smokers, reported a 21% increased risk of 
lung cancer per one unit increase in mdNLR (OR: 1.21 
[1.01, 1.45]), a 30% increased risk of NSCLC for one unit 
increase in mdNLR (OR: 1.30 [1.03, 1.63], and no asso-
ciation between higher pre-diagnosis mdNLR and risk 
of developing SCLC (OR: 1.06 [0.77, 1.47]) [31]. Like in 
CARET, in CLUE I/II we observed a 47% increased risk of 
NSCLC for a one standard deviation increase in mdNLR 
(n = 150 pairs; OR: 1.47 [1.08, 2.02]), but in contrast to 
CARET, we found no statistically significant association 
for overall lung cancer risk.

CARET researchers recently reported that pre-diag-
nosis mdNLR was positively associated with increased 
mortality for SCLC cases, but not for other case types 
[32]. In comparison, we observed a positive association 
between pre-diagnosis mdNLR and lung cancer-specific 
and NSCLC-specific mortality. In the case of SCLC, the 
number of cases was too limited for us to estimate sta-
ble associations (N = 29). Taken together, the CLUE and 
CARET results suggest that a systemic inflammatory 
profile marked by elevated NLR could indicate a lesser 
ability to mount a robust immune response to a develop-
ing lung cancer and/or a more favorable environment for 

Bold HR and CI values indicate statistical significance. Underline HR and CI values indicate borderline statistical significance after multiple comparison adjustment
a 205 cases (3 cases with person-year = 0 or > 25 years were removed from the analytical dataset) Model adjusted for age at blood draw, sex, smoking status, BMI, 
surrogate variables for batch effects, and a pack-year-based smoking methylation score. The results for Inflammation Scores additional adjust for cell proportions. BMI 
was removed from model when stratified by BMI. Group person-year: all lung cancer cases = 421.3; cases with time to diagnosis ≤ 10 years = 104.3; cases with time to 
diagnosis > 10 years = 316.9; cases with BMI < 25 kg/m2 = 184.3; cases with BMI ≥ 25 kg/m2 = 236.9
b 149 cases (1 case with person-year =  >25 years were removed from the analytical dataset) Model adjusted for age at blood draw, sex, smoking status, BMI, surrogate 
variables for batch effects, and methylation-predicted pack-years smoked. The results for Inflammation Scores additional adjust for cell proportions. BMI was removed 
from model when stratified by BMI. Group person-year for all non-small cell lung cancer (NSCLC) cases = 337.6; NSCLC cases with time to diagnosis ≤ 10 years = 84.4; 
NSCLC cases with time to diagnosis > 10 years = 253.2; NSCLC cases with BMI < 25 kg/m2 = 141.4; NSCLC cases with BMI ≥ 25 kg/m2 = 196.2
c HR results reported per 1 unit of SD increase among all cases (mdNLR SD: 1.86; CD4/CD8 ratio SD: 2.14; BL ratio SD: 0.0534; TL ratio SD: 0.0844; ML ratio SD: 0.125; 
NM/L ratio SD: 1.38; EL ratio SD: 0.079; CD4nv/L ratio SD: 0.0920; B/CD8 ratio SD: 2.21; CD8/Treg ratio SD: 112; Bnv/Bmem ratio SD: 81.3; CD4nv/CD4mem ratio SD: 
0.335; CD8nv/CD8mem ratio SD: 1.64; CpG Score 1 SD: 0.979; CpG Score 2 SD: 0.945; CpG Score 3 SD: 1.02) and HR results reported for Treg > 0 versus Treg = 0 among 
all cases; Bonferroni-adjusted CI reported for all except mdNLR and CRP Scores 1–3 (a prior hypotheses)
d CpG Scores 1, 2, and 3 are built using 54 CpG sites, the top 10 highly cell-specific CpG sites, and the 10 modestly cell-specific CpG sites, respectively

Table 5 (continued)

All lung  cancersa

HR (95% CI)
Non‑small cell lung  cancerb

HR (95% CI)

CRP Score  3cd 1.05 (0.76, 1.47) 1.07 (0.73, 1.59)

 Time to diagnosis ≤ 10 years 1.01 (0.56, 1.81) 1.01 (0.46, 2.22)

 Time to diagnosis > 10 years 1.16 (0.74, 1.83) 1.22 (0.69, 2.16)

Fig. 1 Survival curves for lung cancer-specific mortality 
among lung cancer cases in the mdNLR high and low groups 
(> or ≤ 75% quartiles). Plot adjusted for age, sex, smoking status, 
methylation-predicted pack-years smoked, BMI, stage, and batch 
effects
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cancer progression. Differences in findings between the 
two studies could stem from differences in study popu-
lations. The CARET cohort is exclusively heavy smokers, 
including a subgroup exposed to asbestos. In compari-
son, our analysis in the CLUE I/II cohorts included never, 
ever, and current smokers. Furthermore, our study popu-
lation had a lower mdNLR in the lung cancer cases (mean 
1.86 and SD 1.32) than in CARET (mdNLR mean 2.18 
and SD 1.46).

Using a newly expanded deconvolution library, we were 
able to parse apart the granulocyte subtypes (neutrophils, 
eosinophils, and basophils) and investigate the balance 
between naïve and memory cell compartments for lung 
cancer. Previous research has identified the monocyte/
lymphocyte (or lymphocyte/monocyte) ratio as an inde-
pendent prognostic factor in NSCLC, demonstrating sig-
nificant association with overall survival in patients with 
NSCLC [33–35]. In comparison, our exploratory analyses 
of immune cell ratios suggest that one standard devia-
tion increase in the monocyte/lymphocyte ratio could 
potentially indicate increased risk of NSCLC after addi-
tionally adjusting for methylation-predicted pack-years. 
In addition, we found an increased risk of dying from 
lung cancer associated with an increase in Neu + Mono/
lymphocyte ratio among the NSCLC cases after multiple 
comparison adjustments.

We also investigated three CRP Scores that we built 
from 54 CpG sites that had been strongly associated with 
CRP in previous studies. We found these methylation-
predicted CRP Scores to be moderately correlated with 
log-CRP and log-IL6 in the controls of a previously pub-
lished pancreatic cancer dataset [27]. CRP is a systemic 
marker of chronic inflammation and has been reported 
as a risk factor for cancer development [36]. Previous 
studies of pre-diagnostic circulating CRP concentra-
tion and lung cancer risk (7 cohorts [10, 11, 19, 37–39] 
and 3 nested case–control studies [8, 12, 40]) have con-
sistently found a moderate positive association between 
pre-diagnostic CRP concentrations and lung cancer 
risk. In our study, CRP Scores were not associated with 
lung risk when taking into account the matching factors, 
BMI, and batch effects. However, we observed an inverse 
association when additionally adjusting for methylation-
predicted pack-year. Our results suggest that when strict 
control of smoking is applied, our CRP Score is likely 
capturing the unique individual immune response that is 
not driven by smoking.

Furthermore, these results provide preliminary evi-
dence supporting the hypothesis that systemic inflamma-
tion not driven by smoking could have a protective effect 
on individuals. While smoking is by far the most impor-
tant risk factor for lung cancer, our DNA methylation-
based CRP Scores provide the opportunity to examine 

inflammatory measures not related to smoking that 
could play a role in modulating cancer risk years prior 
to diagnosis. Lastly, our experience with the CRP Scores 
suggests that measuring methylation-derived inflamma-
tory responses using pre-diagnostic samples provides the 
opportunity to capture informative individual systemic 
inflammatory profiles years prior to diagnosis, potentially 
shedding light on risk factors key to lung cancer develop-
ment and progression, e.g., underlying genetics, exposure 
to environmental risk factors, and behavior risk factors.

Like other observational studies, our study included 
a limited number of NSCLC and SCLC cases. The rela-
tively small sample size of SCLC cases (N = 29) impacted 
our ability to observe associations for this subtype (SCLC 
comprises about 15% of lung cancer cases in the USA). In 
our survival analysis, we adjusted for stage and restricted 
our analysis to samples whose time between blood draw 
and date of lung cancer diagnosis was less than 25 years; 
however, our survival analysis did not have access to 
post-diagnosis smoking status information. Our study is 
also limited by a lack of replication dataset and reduced 
generalizability. (Study population is mainly White and 
with very few cases in never smokers.) The CRP Scores 
we built should be investigated in other populations to 
ensure that what we observed did not arise due to chance.

Conclusions
Our study suggests that elevated pre-diagnosis mdNLR 
and a lower non-smoking-related systemic inflammatory 
profile before diagnosis are associated with higher can-
cer risk and poorer lung cancer-specific survival. These 
relationships were especially evident for NSCLC. As 
the most common subtype of lung cancer, most NSCLC 
cases are diagnosed with locally advanced or metastatic 
disease. Our prospective results support future evalua-
tion of whether DNA methylation-based inflammatory 
measures could enhance lung cancer risk stratification to 
improve targeted lung cancer screening.

Methods
Study Population
This nested case–control study selected cases and con-
trols from individuals who participated and provided 
blood in both CLUE I and CLUE II [26]. The CLUE I 
cohort was developed to identify serologic precursors 
of cancer and was conducted in Washington County, 
Maryland, in the fall of 1974. A blood sample was col-
lected from 25,620 volunteers at the time of participation 
[41, 42]. The CLUE II cohort was conducted from May 
through October 1989. During this time, 32,894 par-
ticipants donated a blood sample which was collected 
in tubes containing heparin and kept chilled until cen-
trifuged, aliquoted into plasma, erythrocytes, and buffy 
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coat, and frozen at 70 °C [43]. In CLUE II, the baseline for 
this study, health information was collected at the time 
of blood draw, including attained education, cigarette 
smoking status, cigarette smoking dose, cigar/pipe smok-
ing status, and self-reported weight and height.

Incident lung cancer cases were ascertained from link-
age to the Washington County cancer registry (before 
1992 to the present) and the Maryland Cancer Registry 
(since 1992 when it began to the present). We ascer-
tained 241 incident lung cancer cases who participated in 
CLUE I and were diagnosed after the day of blood draw 
in CLUE II through January 2018. Cases were character-
ized with respect to histology. We used incidence den-
sity sampling to select one control matched to each case 
on age, sex, smoking status and intensity (cig/day), and 
cigar/pipe smoking status. Death from lung cancer as the 
underlying cause was obtained from death certificates. 
The Institutional Review Board at the Johns Hopkins 
Bloomberg School of Public Health and the Tufts Univer-
sity Health Sciences Campus Institutional Review Board 
approved this study.

DNA methylation measurements
Extracted DNA was bisulfite-treated using the EZ DNA 
Methylation Kit (Zymo), and DNA methylation was 
measured with the 850  K Illumina Infinium Methyla-
tionEPIC BeadChip Arrays (Illumina, Inc., CA, USA). 
All samples and all array experiments were performed 
blinded to case–control status. Details on DNA meth-
ylation measurements, data preprocessing processing, 
and quality control assessment/screening are provided 
in the Additional file  1. The 850  K methylation micro-
array has been validated from a biological and technical 
standpoint. Reproducibility of results from 850  K Illu-
mina array has been previously shown to be very high 
(r = 0.997) [44]. DNA volume and quality were suffi-
cient for 208 of the cases and 222 controls totaling 208 
matched pairs.

Estimation of peripheral blood leukocyte composition
Peripheral blood leukocyte subtypes proportions, includ-
ing myeloid lineage sub-types [neutrophils (Neu), eosin-
ophils (Eos), basophils (Bas), and monocytes (Mono)] 
and lymphoid lineage subtypes [B lymphocytes naïve 
(Bnv), B lymphocytes memory (Bmem), T helper lym-
phocytes naïve (CD4nv), T helper lymphocytes memory 
(CD4mem), T regulatory cells (Treg), T cytotoxic lym-
phocytes naïve (CD8nv), T cytotoxic lymphocytes mem-
ory (CD8mem), and natural killer lymphocytes (NK)], 
were estimated using a newly expanded reference-based 
deconvolution library EPIC IDOL-Ext [45]. This library 
used the IDOL methodology [46] to optimize the cur-
rently available six-cell reference library [47] in order 

to deconvolve the proportions of 12 leukocyte subtypes 
in peripheral blood. This EPIC IDOL-Ext library (Bio-
conductor package FlowSorted.BloodExtended.EPIC) 
was validated using flow cytometry gold standard data 
and substantiated by including publicly available data 
from > 100,000 samples [45].

Methylation‑Derived Neutrophil Lymphocyte Ratio 
(mdNLR)
The peripheral blood neutrophil-to-lymphocyte ratio 
(NLR) is a cytological marker of both inflammation and 
poor outcomes in cancer patients [48–52]. We used a 
DNA methylation-derived NLR (mdNLR) index to pre-
dict the common clinical NLR parameter using a pre-
viously described approach [9]. This index is based on 
normal isolated leukocyte reference DNA methylation 
libraries and established reference-based cell mixture 
deconvolution algorithms [9, 53].

Inflammation‑associated CpG score
We used 54 CpG sites that have been strongly associated 
with C-reactive protein (CRP) [54, 55] to build three CRP 
Scores. We selected these 54 CpGs (remaining 4 were not 
on the 850 K array that we used) from the 58 CpGs iden-
tified by Ligthart and colleagues [54] for their association 
with serum CRP level (listed in Table 3) using 450 K DNA 
methylation data. Forty-five of these 58 CpG sites were 
validated to have the same direction of protein–methyla-
tion associations by Myte et al. [55]. These CpGs, while 
identified based on their CRP association, have also been 
shown to be associated with other inflammatory media-
tors [54–56]. To compute CRP Score 1, we multiplied the 
beta value at each selected CpG site with the effect size 
estimates reported by Ligthart et al. These estimated beta 
coefficients represented the change in DNA methylation 
per one unit increase in log CRP. In the CRP Score 1 for-
mula, we weighted the beta coefficients estimated by Lig-
thart et al. with their corresponding standard errors.

Bij is the beta value for the ith participant at the jth CpG 
site. ∆j is the beta coefficients reported by Ligthart et al. 
for the jth CpG site. SEj is the SE reported by Ligthart 
et al. for the jth CpG site.

Since most of the estimated beta coefficients are nega-
tive, CRP Score 1 ranged between − 0.059 and -0.026 in 
these participants. A score closer to zero indicated higher 
CRP levels. Based on CRP Score 1, we computed two 
additional CRP Scores, one cell (leukocyte)-type invari-
ant (CRP Score 2) and one cell-specific (CRP Score 3). 
Among the 54 inflammation (CRP)-associated CpGs, we 

CRP Scorei =

∑
Bij ×

�j

SEj
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identified putative cell-type invariant and cell-specific 
CpGs by conducting ANOVA using the dataset described 
in Salas and Koestler et  al. [47] and publicly available 
on the Gene Expression Omnibus (GSE110555). The 
dataset used for this ANOVA consisted of EPIC meth-
ylation data profiled in purified leukocyte cell popula-
tion isolated from different healthy adults.  Specifically, 
methylation signatures were available for CD4 + T cells, 
CD8 + T cells, NK cells, B cells, monocytes, and neutro-
phils.  One-way ANOVA models were fit independently 
to each of the 54 CRP-associated CpGs treating methyla-
tion as the dependent variable and cell type as the inde-
pendent variable. We tested the null hypothesis that the 
mean methylation beta-value is the same across the cell 
types.  The F-statistic, corresponding p value, and maxi-
mum absolute pairwise difference in the mean methyla-
tion beta value across cell types were calculated for each 
of the 54 CpGs. We then selected subgroups of CpG sites 
that had the top 10 smallest or top 10 largest F-statistic 
value to build the two additional CRP Scores. CRP Score 
2 consists of putative cell-specific CpGs with high F-sta-
tistics, e.g., those exhibiting a difference in mean meth-
ylation beta-values between at least two of the six cell 
types. CRP Score 3 is made of cell-type invariant CpGs 
with low F-statistics, e.g., CpGs for which there did not 
appear to be a substantial difference in mean methylation 
beta-values across the normal six leukocyte subtypes. 
Score 2 ranged between − 0.0002 and 0.0046, while Score 
3 ranged between − 0.025 and − 0.016. In the regression 
analyses, we used a standardized version of CRP Scores 
1, 2, and 3 (mean = 0, sd = 1) for easier interpretation of 
results and allowing us to compare the results for each of 
the scores.

Statistical analyses
All statistical analyses were performed in R (version 
3.5.1). We estimated mdNLR as described above, used an 
independent pancreatic cancer dataset [27] to estimate 
the correlation between estimated values of CRP Scores 
1–3 with the log CRP and log IL-6 levels, and tested a 
series of a priori hypotheses concerning the mdNLR and 
CRP Scores. In addition, we also conducted exploratory 
analyses to generate novel hypotheses regarding the role 
of methylation-derived leukocyte proportions in lung 
cancer. Immune cell ratios (e.g., CD4/CD8, Neu/lym-
phocyte, B cell/lymphocyte, T cell/lymphocyte, Mono/
lymphocyte, Neu + Mono/lymphocyte, Eos/lympho-
cyte, CD4nv/lymphocyte, B cell/CD8, CD8/Treg, Bnv/
Bmem, CD4nv/CD4mem, and CD8nv/CDmem) were 
calculated for each sample by taking the ratio of its pre-
dicted cell proportions described above and tested as 
continuous variables. The presence of Treg was tested 

as a dichotomous variable. Given the need for multiple 
comparison adjustment, Bonferroni adjustment (family-
wise error rate = 0.0013) was conducted for all explora-
tory analyses.

We used conditional logistic regression to examine the 
association between DNA methylation-based inflamma-
tory measures (CRP Scores 1–3 and continuous mdNLR) 
and lung cancer risk. Models were fit with age, sex, and 
smoking status (never, former, current) as matching fac-
tors and were adjusted for potential confounding fac-
tors, including body mass index (BMI), batch effect, and 
previously described methylation-predicted pack-years 
smoked [57]. These analyses did not additionally adjust 
for methylation-derived cell proportions given how these 
proportions correlated with methylation-based inflam-
matory measures (Table  3). We repeated these analyses 
by lung cancer histology (NSCLC, SCLC), length of time 
between blood draw and diagnosis (< = 10, > 10  years), 
and BMI (< 25, ≥ 25 kg/m2).

Among the lung cancer cases, we examined the asso-
ciation between these same pre-diagnostic DNA meth-
ylation-based inflammatory measures (CRP Scores 1–3 
and continuous mdNLR) and risk of lung cancer-specific 
death using a series of multivariable Cox proportional 
hazard regression adjusting for age, gender, smoking 
status, BMI, stage at diagnosis (three strata: stage 1 & 2, 
stage 3 & 4, and missing), cell proportion, batch effects, 
and methylation-predicted pack-years smoked. The pro-
portional hazards assumption was checked by conduct-
ing global tests of correlating the set of scaled Schoenfeld 
residuals with time for each covariate. We excluded three 
lung cancer cases whose date of diagnosis and date of 
death were the same, or whose time between blood 
draw and date of lung cancer diagnosis was longer than 
25  years. Cases were followed until their date of death 
from lung cancer, death from another cause, or the end of 
follow up in 2018, whichever came first.
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