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Abstract 

Background: Early lung cancer detection remains a clinical challenge for standard diagnostic biopsies due to insuf-
ficient tumor morphological evidence. As epigenetic alterations precede morphological changes, expression altera-
tions of certain imprinted genes could serve as actionable diagnostic biomarkers for malignant lung lesions.

Results: Using the previously established quantitative chromogenic imprinted gene in situ hybridization (QCIGISH) 
method, elevated aberrant allelic expression of imprinted genes GNAS, GRB10, SNRPN and HM13 was observed in lung 
cancers over benign lesions and normal controls, which were pathologically confirmed among histologically stained 
normal, paracancerous and malignant tissue sections. Based on the differential imprinting signatures, a diagnostic 
grading model was built on 246 formalin-fixed and paraffin-embedded (FFPE) surgically resected lung tissue speci-
mens, tested against 30 lung cytology and small biopsy specimens, and blindly validated in an independent cohort of 
155 patients. The QCIGISH diagnostic model demonstrated 99.1% sensitivity (95% CI 97.5–100.0%) and 92.1% specific-
ity (95% CI 83.5–100.0%) in the blinded validation set. Of particular importance, QCIGISH achieved 97.1% sensitivity 
(95% CI 91.6–100.0%) for carcinoma in situ to stage IB cancers with 100% sensitivity and 91.7% specificity (95% CI 
76.0–100.0%) noted for pulmonary nodules with diameters ≤ 2 cm.

Conclusions: Our findings demonstrated the diagnostic value of epigenetic imprinting alterations as highly accurate 
translational biomarkers for a more definitive diagnosis of suspicious lung lesions.
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Background
Lung cancer is the leading contributor of cancer deaths 
[1]. Compared to late-stage lung cancer, early-stage lung 
cancer showed better prognosis and longer survival [2]. 
Low-dose computed tomography (LDCT) screening has 
made great contribution to the early discovery of lung 
cancer and reducing lung cancer mortality [3]. However, 
the presurgical diagnosis of early-stage lung cancer from 
standard diagnostic biopsies is still challenging because 
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of insufficient tumor morphological evidence to make 
a definitive pathological diagnosis [4]. Several genetic 
[5–7] and epigenetic biomarkers [8–10] have been devel-
oped for early cancer detection. However, the reliability 
and efficiency of these biomarkers have yet to be opti-
mized for clinical applications [11].

As an important epigenetic regulation in mamma-
lian embryo development, genomic imprinting plays 
important roles in cancers [12, 13]. In normal post-natal 
somatic cells, imprinted genes are “silenced”, that is 
mono-allelically expressed either from the maternal or 
paternal allele, while in cancers, some silenced imprinting 
genes’ copies could be reactivated, leading to expressions 
from both alleles. The loss of monoallelic gene regula-
tion is named loss of imprinting (LOI), and has been 
previously found in various human cancers [13–18]. In 
addition to LOI, amplifications of the activated copies of 
imprinted genes without affecting the methylation of the 
silenced copy have also been observed in multiple cancer 
cell lines [19]. In both cases, the imprinted genes could 
be expressed in two or more transcription sites instead of 
one. Therefore, the increased number of transcription site 
detections of imprinted genes in the cell nuclei could be 
used as potential cancer biomarkers. The nascent RNA or 
pre-mRNA in situ hybridization (ISH) method targeting 
the short-lived introns can be used to visualize and label 
these transcription sites [20–23], and have been widely 
applied to study the transcriptional regulations of both 
imprinted genes [24–27] and non-imprinted genes [28, 
29]. In our previous study, we have adopted this intron-
targeted labeling approach and developed an objec-
tive quantification of epigenetic imprinting alterations 
through the biallelic (BAE), multiallelic (MAE) and total 
(TE) expression measures which we termed as quantita-
tive chromogenic imprinted gene in situ hybridization 
(QCIGISH) [30]. Based on the elevated BAE, MAE and 
TE signatures observed for various cancers over benign 
lesions, we formulated a statistical malignancy predic-
tion model and identified GNAS, GRB10 and SNRPN as 
effective diagnostic biomarkers in ten different cancer 
types, including lung cancer [30]. Despite the preliminary 
model achieving 92% sensitivity and 88% specificity for 
lung cancer diagnosis, opportunities to further advance 
the diagnostic performance of QCIGISH in clinical appli-
cations need to be explored.

In this study, aiming to develop a lung cancer-specific 
diagnostic model with improved accuracy, we expanded 
the imprinted gene panel with a fourth imprinted gene 
minor histocompatibility antigen H13 (HM13). As ampli-
fication of HM13 locus has been previously reported 
in several lung cancer cell lines [19], it is very likely to 
demonstrate multiallelic expressions using our QCI-
GISH method. We conducted a differential analysis 

and statistical evaluation of the QCIGISH epigenetic 
imprinting alteration measurements obtained for the 
normal, benign and malignant lung tissue specimens. 
To pathologically confirm the relationship between epi-
genetic imprinting and carcinogenesis, we performed 
a comparative examination between the imprinting sig-
natures obtained from QCIGISH and morphological 
characteristics determined through histologic staining. 
From the alteration patterns, we developed a diagnostic 
grading model for lung tissue specimens, tested and vali-
dated the model using cytology and small biopsy speci-
mens obtained via bronchoscopy or transthoracic CNB, 
and evaluated the results in comparison with standard 
diagnostic biopsies. We particularly investigated the 
diagnostic value of epigenetic imprinting biomarkers in 
effectively providing clearer malignancy differentiation 
especially for early-stage lung cancers, with the objective 
of improving the accuracy of standard diagnostic biopsies 
for lung lesions.

Results
Patient characteristics
Clinicopathological characteristics between differ-
ent patient groups in the imprinted gene screening (30 
lung cancers and 30 benign lesions); model building and 
marker pre-selection (174 lung cancers, 51 benign lesions 
and 21 normal controls); model testing (21 lung cancers 
and 9 benign lesions) and model validation (117 lung 
cancers and 38 benign lesions) cohorts are described in 
Fig. 1 and Additional file 1: Figs. S1-2 are comparatively 
analyzed, statistically evaluated and summarized in 
Table 1 and Additional file 2: Table S1.

Evaluation of candidate imprinted gene biomarkers
To evaluate the diagnostic performance of the candidate 
imprinted gene HM13 against the GNAS, GRB10 and 
SNRPN panel, we performed a random sampling of 30 tis-
sue specimens each stratified for both benign and malig-
nant subgroups from the model building set (Fig. 1 and 
Additional file 2: Table S1). QCIGISH was applied on the 
60 samples to determine the BAE, MAE and TE measure-
ments for all four genes (Fig.  2A). Using the expression 
status of the imprinted genes GNAS, GRB10 and SNRPN, 
malignancy predictions for the samples were obtained 
using the QCIGISH binary classification model devel-
oped in our previous study [30]. The receiver operating 
characteristic (ROC) areas under the curve (AUC) of the 
BAE, MAE and TE measurements for the imprinted gene 
HM13 were individually compared to the ROC AUC of 
the binary classification model. Significantly higher AUC 
values were only observed for both MAE (p = 0.008) and 
BAE (p = 0.044) except TE (p = 0.511) after evaluating the 
diagnostic performance of HM13 against the previous 
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binary classification model which combined the GNAS, 
GRB10 and SNRPN genes (Fig. 2B and Additional file 2: 
Table S2). These findings substantiated the expansion of 
the GNAS, GRB10 and SNRPN multi-marker panel to 
four imprinted genes including HM13.

Differential epigenetic imprinting alteration signatures 
in lung tissue specimens
For the subsequent evaluation to further investigate the 
most efficient imprinting markers among the four-gene 
panel, elevated allelic expression patterns for the 174 
lung cancers were observed from the heatmap analysis as 
compared to the 51 benign lesions and 21 normal con-
trols (Additional file 1: Fig. S3A). Statistical evaluation of 
the BAE, MAE and TE status between these groups dem-
onstrated a substantial increase in imprinting alterations 
(all p < 0.05) for the malignant cases as compared to both 
benign and normal samples (Additional file  1: Fig. S3B, 
Additional file 2: Table S3–S6). Significantly higher BAE 
and TE (all p < 0.05) were also observed for benign lesions 
as compared to normal controls (Additional file  1: Fig. 
S3B, Additional file 2: Table S3–S6).

Elevated imprinting alterations were pathologically 
confirmed to be associated with tissue morphology. As 
illustrated in Fig. 3A, increasing aberrant imprinting sig-
natures were observed between the normal, paracancer-
ous and malignant regions on the same tissue section. 
Further analysis in different tissue sections showed clear 
differences in the allelic expression status of imprinted 
genes between benign and malignant cases (Fig.  3B). 
Imprinting alterations were visually detected to a greater 

extent for lung cancers, with elevated expressions 
observed as early as adenocarcinoma in  situ, effectively 
distinguishing lung malignancy from benign lesions from 
a pathological perspective.

QCIGISH lung cancer diagnostic grading model building 
and testing
From the comparative analysis of the malignancy dis-
crimination between imprinting alteration markers, 
MAE consistently demonstrated higher ROC AUC (0.87 
to 0.94) and was the best marker across all genes as com-
pared to BAE (0.84–0.93) and TE (0.78–0.86) (Addi-
tional file 1: Fig. S4). In addition, when applying optimal 
thresholds to dichotomize BAE, MAE and TE into posi-
tive and negative categories (Additional file 2: Table S7), 
MAE demonstrated good specificity and sensitivity for 
all benign lung lesion subtypes and lung cancer subtypes 
included in this study (Additional file 1: Fig. S5). There-
fore, we identified MAE as the most effective imprinting 
biomarker over BAE and TE. As each gene demonstrated 
distinct diagnostic efficacies across the different benign 
lesion and cancer subtypes, MAE from all four genes 
were used during diagnostic model building.

We subsequently developed the classification model for 
distinguishing lung malignancy on the basis of the MAE 
imprinting alteration signatures from the prior analysis. 
We adopted the decision tree ensemble model structure 
from our previous study which combined individual gene 
classifiers to create more robust diagnostic predictions 
[30] but upgraded the malignancy classification system 
from two to five levels and only used the MAE status for 
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Table 1 Baseline characteristics of study population

PC, Pulmonary cryptococcosis. PSP, pulmonary sclerosing pneumocytoma. TB, pulmonary tuberculosis. COP, cryptogenic organizing pneumonia. PIP, pulmonary 
inflammatory pseudotumor. AdC, adenocarcinoma. SqCC, squamous cell carcinoma. AdSqLC, adenosquamous lung carcinoma. LCC, large cell carcinoma. SCLC, small 
cell lung cancer
a Normal tissue specimens were resected adjacent to the benign lesions
b No typical nodule under LDCT
c Nodule sizes not recorded by doctors
d Cases classified as current or former smokers were combined into a single category prior to analysis to comply with the statistical test requirements
e No analysis proceeded since data transformations applied failed to meet the statistical test requirements

Model building set
(n = 246)

Model testing set
(n = 30)

Model validation set
(n = 155)

Normala Benign Malignant p Benign Malignant p Benign Malignant p

(n = 21) (n = 51) (n = 174) (n = 9) (n = 21) (n = 38) (n = 117)

Age < 0.001 0.700 0.001

 Median 52 57 62 62 62 61 64

 IQR 45–57 49–63 53–67 49–77 56–66 52–63 58–71

Sex (%) 0.467 0.640 0.692

 Male 14 (66.7%) 28 (54.9%) 111 (63.8%) 6 (66.7%) 17 (81.0%) 25 (65.8%) 81 (69.2%)

 Female 7 (33.3%) 23 (45.1%) 63 (36.2%) 3 (33.3%) 4 (19.0%) 13 (34.2%) 36 (30.8%)

Sample type

 Surgically resected tissue specimen 21 51 174

 Small biopsy specimen 9 21 38 36

 Cytology specimen 81

Histologic characteristics no

 Normal 21

 PC 10

 PSP 13

 TB 10 2 7

 COP 10 2

 PIP 3

 Non-TB infections 3 8

 Inflammation 3 4 19

 Granuloma 2 1

 Hamartoma 1

 AdC 94 9 61

 SqCC 76 6 28

 AdSqLC 2 2

 LCC 1

 SCLC 5 23

 Carcinoma of unknown primary 1 1 3

Nodule size e e e

 < 0.8 cm 7 2 10 1

 ≥ 0.8–2.0 cm 3 35 1 1 2 20

 > 2.0–3.0 cm 48 9 3 32

 > 3.0–5.0 cm 1 52 4 4 42

 > 5.0 cm 28 6 18

 Unclear LDCT  featuresb 21 44 5 12 1

 Not  specifiedc 3 4 1 1 7 3

Smoking  statusd (%) 0.001 e 0.006

 Current smoker 3 (14.3%) 3 (5.9%) 56 (32.2%) 1 (11.1%) 6 (28.6%) 7 (18.4%) 48 (41.0%)

 Former smoker 1 (4.8%) 1 (2.0%) 11 (6.3%) 0 (0.0%) 3 (14.3%) 2 (5.3%) 11 (9.4%)

 Non-smoker 15 (71.4%) 40 (78.4%) 90 (51.7%) 1 (11.1%) 8 (38.1%) 16 (42.1%) 40 (34.2%)

 Not specified 2 (9.5%) 7 (13.7%) 17 (9.8%) 7 (77.8%) 4 (19.0%) 13 (34.2%) 18 (15.4%)
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each gene (Additional file 1: Fig. S6 and Fig. S7). Through 
a simulation study of different threshold combinations, 
twenty candidate models with equally optimal sensitiv-
ity and specificity using top one grade or top two grades 
were determined (Additional file  1: Fig. S8 A–D, Addi-
tional file 2: Table S8 and S9).

The twenty candidate models were further tested in an 
independent set of cytology and small biopsy samples 

obtained via bronchoscopy or transthoracic CNB to 
determine the optimal threshold for final model. With 
thresholds 1 to 4 set at 81% specificity, 98% specificity, 
46% sensitivity and 40% sensitivity targets, respectively, 
the model using the top two highest grades demonstrated 
the best diagnostic performance and was determined 
as the final model, achieving 95.2% sensitivity (95% CI 
86.1–100.0%) and 100.0% specificity in the test set, over 
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Fig. 2 Principle of QCIGISH technology and novel imprinted gene evaluation. A Illustration showing the QCIGISH principle and the respective 
equations used for calculating BAE, MAE and TE measurements. The QCIGISH method targets the non-coding intronic nascent RNAs to visualize 
the transcription loci of imprinted genes in the cell nuclei. Blue components in the image are cell nuclei stained using hematoxylin. The distinct 
red or brown dots represent the detected gene-expressing sites. The different allelic expressions of imprinted genes are quantified based on the 
transcription signals. Aberrant expressions for abnormal cells exhibit two or more dots, while normal cells contain no to a single dot. B ROC curves 
showing the significant differences in the AUC values determined for the BAE and MAE of HM13 as compared to the QCIGISH binary classification 
model during the imprinted gene selection study. *, significant differences between AUC values, p < 0.05
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the model using top one grade [90.5% sensitivity (95% 
CI 77.9–100.0%), 100.0% specificity] (Additional file  1: 
Fig. S8E and Additional file 2: Table S10). Moreover, the 

model using two highest grades effectively classified a 
considerable subset of benign samples into QCIGISH-
negative despite having one gene categorized as grade II 
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Fig. 3 Photomicrographs showing the pathological assessment and confirmation of QCIGISH results. A Comparative analysis of QCIGISH and H&E 
staining applied on serially resected specimens from the same tissue block of an adenocarcinoma showing increasing imprinted gene SNRPN 
expression alterations in normal, paracancerous and cancer regions, respectively. The typical normal, paracancerous and cancer regions were all 
magnified for both QCIGISH and H&E staining. B Illustrated examples showing the visualized allelic expression of imprinted gene GNAS in resected 
tissue sections of benign lesion and lung cancer subtypes in the model building set. TB, pulmonary tuberculosis. PC, pulmonary cryptococcosis. 
PIP, pulmonary inflammatory pseudotumor. AdIS, adenocarcinoma in situ. AdC, adenocarcinoma. SqCC, squamous cell carcinoma. LCC, large cell 
carcinoma. Scale bar, 20 μm
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with minimal number of malignant samples misclassified 
as QCIGISH-negative (Additional file 1: Fig. S9). The final 
QCIGISH diagnostic grading model was locked on Janu-
ary 4, 2020, with the process flow and threshold values 
for the individual genes summarized in Additional file 1: 
Figure S10 and Additional file 2: Table S11, respectively.

QCIGISH lung cancer diagnostic grading model validation 
in lung cytology and small biopsy specimens
We blindly validated the final QCIGISH diagnostic grad-
ing model in an independent cohort of 155 patients 
achieving an overall sensitivity of 99.1% (116/117, 95% 
CI 97.5–100.0%) and specificity of 92.1% (35/38, 95% CI 
83.5–100.0%) with ROC AUC of 0.99 (95% CI 0.97–1.00) 
(Fig. 4A, B). The QCIGISH classification results were con-
sistent with the clinical diagnoses which replicated those 
of the model building and test sets (Fig. 4A–C and Addi-
tional file 1: Fig. S11). Consistently high sensitivities were 
noted for the different NSCLC subtypes including adeno-
carcinoma (AdC) (98.4% = 60/61, 95% CI 95.2–100.0%), 
squamous cell carcinoma (SqCC) (100.0% = 28/28) and 
adenosquamous carcinoma (AdSqC) (100.0% = 2/2) 
(Fig.  4D and Additional file  2: Table  S12). Despite hav-
ing developed the diagnostic grading model particularly 
from NSCLC cases, QCIGISH was also highly effective 
for differentiating small cell lung cancer (SCLC) samples 
with 100.0% sensitivity (23/23) (Fig.  4D and Additional 
file  2: Table  S12). The specificity of QCIGISH was also 
consistently high across benign lung lesions (85.7% for 
TB, 89.5% for inflammation and 100.0% for COP, non-
TB infections, granuloma and hamartoma, Fig.  4E and 
Additional file 2: Table S12). Further analysis also showed 
equally high sensitivities (87.5–100.0%) and specificities 
(81.3–100%) with respect to patients’ clinical characteris-
tics including gender and age, except for a slightly lower 
specificity for non-smokers than current or former smok-
ers (Additional file 2: Table S13).

Diagnostic performance comparison between the QCIGISH 
method and cytology and small biopsy pathology
Comparing with standard cytology and small biopsy 
pathology using the same set of specimens, the QCIGISH 
diagnostic grading model demonstrated higher AUC val-
ues for both best-case (BCC, indeterminate results con-
sidered as positive) and worst-case (WCC, indeterminate 
results considered as negative) conditions (0.99 vs 0.94 
and 0.92 with p = 0.033 and p < 0.001, respectively, Addi-
tional file  1: Fig. S12 and Additional file  2: Table  S14). 
QCIGISH demonstrated better accuracy than cytology 
and small biopsy pathology particularly for very early 
cancer stages (carcinoma in  situ to Stage IB) (p = 0.041 
for BCC and p = 0.004 for WCC, Fig. 5A and Additional 
file 2: Table S15). For carcinoma in situ and stage IA lung 

cancers, QCIGISH showed higher sensitivity of 96.0% 
(24/25, 95% CI 88.3–100.0%), as compared to standard 
pathological examination (68.0% = 17/25, 95% CI 49.7–
86.3%). QCIGISH also demonstrated better accuracy for 
stage IB cancers [100.0% sensitivity (10/10) as compared 
to 70.0% sensitivity (7/10, 95% CI 41.6–98.4%)]. In addi-
tion, QCIGISH was consistently sensitive across late to 
terminal cancers (stages II to IV) (Fig. 5A and Additional 
file  2: Table  S15). For SCLC, QCIGISH also showed 
100.0% sensitivities to both limited stage and extensive 
stage (Fig. 5B and Additional file 2: Table S15).

The QCIGISH diagnostic grading model also equally 
demonstrated excellent accuracy for small pulmonary 
nodules (≤ 3  cm). For nodules smaller than 2 cm, QCI-
GISH’s sensitivity was noted at 100.0%, and specificity 
at 91.7% (95% CI 76.0–100.0%) (Fig.  5C, D, Additional 
file 2: Table S16 and S17). QCIGISH was also more accu-
rate in diagnosing nodules with diameters from 2 to 3 cm 
with 100.0% sensitivity and 100.0% specificity (Fig.  5C, 
D, Additional file  2: Table  S16 and S17). For all these 
measurements, QCIGISH was generally more sensitive 
[100.0% for < 2 cm (significant at p = 0.023 for WCC) and 
100.0% for 2–3 cm (marginally significant at p = 0.134 for 
WCC)] than cytology and small biopsy pathology (66.7% 
for < 2 cm and 87.5% for 2–3 cm), although their specifi-
cities were relatively comparable (Fig. 5C, D, Additional 
file 2: Table S16 and S17).

To illustrate, QCIGISH was able to accurately classify 
two preoperatively diagnosed benign cases from small 
biopsy pathology (normal and benign lung tissues from 
bronchial biopsy) into malignant cases which were sur-
gically verified as adenocarcinoma in  situ and invasive 
adenocarcinoma (Fig. 5E).

Discussion
The accurate diagnostic evaluation of pulmonary nod-
ules and early-stage lung cancers currently remain a huge 
clinical challenge for standard diagnostic biopsies due to 
the insufficient tumor morphological evidence required 
to make a definitive cancer diagnosis. Epigenetic path-
ways have been and continue to remain a research hot-
spot in early lung cancer detection because of clearer 
evidence of their alterations in lung cancer carcinogen-
esis that most often predate malignant morphological 
changes [8]. Although epigenetic alterations have been 
recognized as potentially powerful tool for earlier diag-
nosis of lung cancer, epigenetic biomarkers have not been 
widely used in clinical practice. Altered genomic imprint-
ing triggered by epigenetic changes is proposed to occur 
before tumor formation and promote tumor progres-
sion [8, 13]. While many researchers are exploring the 
changes of allele-specific DNA methylation in cancers, 
we focused on the transcriptional activity of imprinted 
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SCLC, small cell lung cancer. TB, pulmonary tuberculosis. COP, cryptogenic organizing pneumonia. NTBI, non-TB infections. Infl, inflammation. Gran, 
granuloma. Hama, hamartoma. Error bars on the bar charts showed the 95% CI
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over small biopsy pathology for pulmonary nodules and masses. D Analysis showing comparable specificities of QCIGISH with small biopsy 
pathology for pulmonary nodules and masses. E List of clinically available minimally invasive sampling procedures for lung lesions. F An illustrated 
example of clinical cases both positively classified as lung cancer by QCIGISH but were diagnosed as benign by small biopsy pathology. Surgical 
histopathology or clinical diagnosis with 2-year follow-up were used as golden standard. CIS, carcinoma in situ. N.E.D., no enough data. Error bars on 
the bar charts showed the 95% CI. Scale bar, 50 μm



Page 10 of 14Zhou et al. Clinical Epigenetics          (2021) 13:220 

gene loci on alleles, which could be better clinically vis-
ualized and quantified. In our previous study, we devel-
oped a novel QCIGISH method to evaluate the allelic 
expression status of imprinted genes and demonstrated 
the diagnostic significance of the elevated allelic expres-
sions for imprinted genes as effective translational bio-
markers for multiple cancers [31, 32].

In this study, we have developed a diagnostic grad-
ing model from highly sensitive and specific epigenetic 
imprinting-based biomarkers using the GNAS, GRB10, 
SNRPN and HM13 gene panel that can be used as more 
accurate and definitive diagnostic biopsy evaluation of 
lung lesions. Our QCIGISH diagnostic grading model 
developed from the multiallelic imprinting alterations 
of this gene panel achieved excellent overall accuracy 
(99.1% sensitivity and 92.1% specificity) for diagnosing 
lung lesions from lung cytology and small biopsy speci-
mens. In comparison with standard diagnostic biopsies, 
QCIGISH was more sensitive in detecting malignan-
cies at their early curative stages (96.0% vs 68.0% sensi-
tivity for CIS-Stage IA, 100.0% vs 68.6% sensitivity for 
Stage IB), and more accurate in distinguishing benign 
from malignant pulmonary nodules (100.0% vs 66.7% for 
< 2  cm, 100.0% vs 87.5% for 2–3  cm) with comparable 
specificities. All these findings demonstrated the epige-
netic imprinting biomarker’s capability to effectively pro-
vide clearer and more advanced evidence of cancer than 
morphology. These excellent diagnostic performance and 
predictive ability of QCIGISH make this molecular test 
a robust and useful clinical decision-enabling technology 
which could improve the accuracy for standard diagnos-
tic biopsies particularly for early-stage lung cancers and 
small pulmonary nodules.

LOI of the GNAS gene has been reported to be asso-
ciated with increased risks of multiple cancers including 
thyroid cancer, skin cancer, osteosarcoma and neurofi-
bromatosis [33]. Similarly, studies have shown the rela-
tionship between the aberrant methylation of the GRB10 
gene and invasive breast cancer [34]. Hypomethylation 
for the SNRPN gene has also been linked to breast cancer 
and seminoma [35, 36]. Moreover, research has shown 
that LOI and upregulation for the HM13 gene have both 
been involved with breast cancer, in addition to its func-
tional relationship with glioblastoma progression [14, 
37]. However, to our knowledge, the potential relation-
ship between these four imprinted genes toward lung 
cancer development has yet to be explored. Using this 
four-gene panel, our QCIGISH method has detected sig-
nificantly elevated BAE, MAE and TE in lung cancers as 
compared to benign lesions. Increased allelic expression 
can result from either LOI with the normally silenced 
copy of the gene reactivated [13] or copy number vari-
ation (CNV) with the active copy of the gene amplified 

but the inactive copy still silenced [19]. Our QCIGISH 
method only detects the transcriptionally active cop-
ies which potentially limits the capability to determine 
the specific mechanisms driving the increased allelic 
expression. Further studies are needed to investigate 
and explore the prospective roles of LOI and CNV in the 
increased allelic expressions of imprinted genes during 
lung cancer development. Our additional analyses across 
the different disease subtypes identified MAE as the 
more effective malignancy biomarker over BAE and TE. 
This observation might be particularly related to the pre-
cocious occurrence of imprinting alterations in tumors. 
Higher TE was reported for both lung inflammatory 
lesions and lung cancer and therefore determined as not 
optimally effective in differentiating malignancy. Higher 
BAE, representing early epigenetic or genetic alterations 
of imprinted genes which might precede morphologi-
cal changes in cells and tissues indicative of malignancy, 
demonstrated unsatisfactory diagnostic specificity for 
lung diseases. Higher MAE, which subsequently devel-
ops after BAE, effectively demonstrated good malignancy 
discrimination consistent with current pathological evi-
dence. Further exploratory studies are, however, needed 
to further investigate the biological implications of ele-
vated TE, BAE and MAE levels toward other cancer types 
with varying pathophysiology.

From the simultaneous comparative pathological eval-
uation performed using QCIGISH and H&E staining on 
the same block resected near the cancer-bearing tissue 
region, elevated allelic expressions effectively conformed 
with malignant morphological features. These results 
highlighted the diagnostic significance of epigenetic 
imprinting alterations as clear and reliable distinguish-
ing markers for lung malignancy. Therefore, epigenetic 
imprinting biomarkers could effectively provide a defini-
tive diagnosis of lung cancers especially when clear 
tumor morphological evidence is insufficient.

Clinical studies have shown that nodule morphologi-
cal characteristics such as diameter size, among others, 
have been associated with an increased risk of malig-
nancy [38]. However, current preoperative biopsies 
for these small nodules may be inadequate to make a 
definitive diagnosis. While diagnostic guidelines dif-
fer between countries, nodules with diameters smaller 
than 2 cm are generally recommended for a 24-month 
CT follow-up instead of immediate surgical interven-
tion. Therefore, progressive malignant tumors are not 
promptly identified to permit timely clinical manage-
ment [39]. In recent years, as more sub-centimeter 
nodules are detected with the expanding population 
receiving LDCT screening [3], more accurate and defin-
itive diagnostic methods for pulmonary nodules have 
become increasingly essential.
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As more than 50% of CT-detected lung cancers are 
reported as Stage I [3], QCIGISH addresses this unmet 
clinical need of accurately detecting potentially malig-
nant cases among small pulmonary nodules which are 
usually at their early stages. Our results showed that 
QCIGISH could positively detect truly malignant cases 
from biopsies potentially diagnosed as benign or indeter-
minate due to unclear morphological evidence, helping 
tackle a significant clinical diagnostic challenge [40]. The 
application of QCIGISH now enables the discovery of 
these early lung cancers which could lead to better clini-
cal outcomes by permitting timely treatment and reduc-
ing the uncertainty of delayed monitoring of malignant 
cases, ultimately increasing patients’ survival.

It is interesting that the diagnostic grading model 
developed from NSCLC samples can also be applied for 
SCLC, as we discovered that both shared similar epige-
netic alterations using the imprinted gene panel despite 
their different cell origins and distinct genetic alterations 
[41]. As SCLC patients have very poor prognosis because 
of late-stage diagnosis [42], QCIGISH could be clinically 
useful by also effectively supporting the early prediction 
and accurate diagnosis of SCLC using cytology and small 
biopsy specimens.

This study had several limitations. First, our validation 
cohort consisted of only six Chinese hospitals—a more 
conclusive validation could be achieved using a prospec-
tive large-scale evaluation involving more medical cent-
ers and higher patient case numbers with more diverse 
clinical characteristics and disease subtypes; second, we 
monitored the clinically diagnosed benign cases for only 
two years—a longer follow-up period could provide a 
more accurate clinical validation especially for slowly 
progressive lung cancer cases; third, there are oppor-
tunities to further optimize the gene probes that we 
used—more exploration could be proceeded to addition-
ally improve the diagnostic model’s accuracy and better 
characterize more cancer subtypes while maintaining a 
minimally efficient number of probes; and lastly, due to a 
substantial number of cases with unclear LDCT features 
obtained particularly for benign lesions, radiological fea-
tures such as solid, subsolid and ground glass were not 
considered in the analysis although their inclusion could 
have provided vital perspectives toward malignancy dif-
ferentiation especially for early-stage lung cancers.

Conclusions
This study demonstrated how epigenetic imprinting bio-
markers effectively provided clearer and more advanced 
differentiation of lung cancer than morphology. The 
high sensitivity and specificity make this test particularly 
effective in ruling-out and ruling-in malignancy in lung 
lesions. Capitalizing on the strength of highly sensitive 

and specific epigenetic translational biomarkers and a 
clinically viable technique, QCIGISH represents a reli-
able epigenetics-based approach and a decision-enabling 
technology for a more accurate and definitive cytology 
and small biopsy specimen diagnosis of small pulmonary 
nodules and early-stage lung cancers. Thus, as an adjunc-
tive procedure to standard biopsies for lung lesions, this 
novel imprinting biomarker-based diagnostic test has a 
high potential to improve current clinical treatment deci-
sions, and ultimately health outcomes.

Methods
Study design and sample collection
A total of 431 subjects recruited from eight Chinese 
medical centers were found eligible for the study and 
were divided into three sets based on specimen type and 
sample collection date as shown in Fig. 1 and Additional 
file 1: Figure S1. For the imprinted gene screening, bio-
marker pre-selection and diagnostic model building set, 
283 formalin-fixed and paraffin-embedded (FFPE) sur-
gically resected and histologically diagnosed lung tissue 
specimens were retrospectively collected. For the model 
testing set, 35 bronchoscopy and transthoracic CNB 
sampled lung small biopsy specimens were retrospec-
tively collected. For the blinded model validation set, 240 
patients with lung lesions detected on chest CT scans (see 
Additional file 2: Materials and Methods) were recruited 
and were clinically examined using bronchoscopy or 
transthoracic CNB (see Additional file  2: Materials and 
Methods). The sources and collection time periods of the 
samples are shown in Fig. 1 and Additional file 1: Figure 
S2. The demographic and clinical characteristics of the 
study subjects are provided in Table  1 and Additional 
file 2: Table S1. The corresponding surgical histopathol-
ogy was reviewed by three pathologists, namely RS, HY 
and WH. CB maintained the blinded data and oversaw 
the evaluation process. This study has been registered in 
clinicaltrials.gov (clinical trial ID: NCT03882684).

Sample preparation and QCIGISH detection
The lung tissue specimens and the lung cytology and 
small biopsy specimens were prepared using a previously 
described procedure [30]. Briefly, FFPE tissue samples 
were cut into 10-μm sections and mounted on positively 
charged slides. Cytology and small biopsy samples were 
fixed immediately after sampling in 10% NBF (neutral 
buffered formalin) for 48  h at RT. The dissociated cells 
were directly mounted onto positively charged slides. 
With probes targeting the non-coding intronic regions of 
nascent RNAs for the GNAS, GRB10, SNRPN and HM13 
imprinted genes, ISH was applied following a previously 
described procedure using RNAscope 2.5 HD Assay kit 
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(Advanced Cell Diagnostics, Newark, CA, USA) [30]. The 
detected gene-expressing sites were visualized as distinct 
red or brown dots under common bright field micro-
scope after signal amplification (Fig. 2A). The numbers of 
nuclei containing no signal  (N0), one signal  (N1), two sig-
nals  (N2), and more than two signals  (N2+) were collected 
from the microscopic images using the procedure as 
previously described [30] and were used to calculate the 
respective biallelic expression (BAE), multiallelic expres-
sion (MAE) and total expression (TE) according to the 
equations shown in Fig. 2A. The minimum nuclei count 
applied for processing tissue and cell samples using QCI-
GISH was determined as 1500 and 1000, respectively, 
with details described under Additional file 2: Materials 
and Methods (Additional file 1: Fig. S13). The technicians 
who performed QCIGISH detection have no pathology 
background and were blinded to the simultaneous H&E 
staining results.

Imprinted gene screening and biomarker pre‑selection
In our previous study, we have identified three imprinted 
genes GNAS, GRB10 and SNRPN for the diagnosis of ten 
cancer types including lung cancer [30]. Aiming to poten-
tially improve the diagnostic performance of the QCI-
GISH binary classification model with 92% sensitivity 
and 88% specificity [30], we evaluated a new imprinted 
gene HM13 which was reported to be involved in breast 
cancer and glioblastoma [14, 37].

To subsequently evaluate the imprinting alteration sig-
natures and pre-select candidate biomarkers for diagnos-
tic model building, the discrimination performance for 
the BAE, MAE and TE measurements for each imprinted 
gene was individually assessed in a pooled analysis for 
each disease subtype (see Additional file 2: Materials and 
Methods, Additional file 1: Fig. S5).

Diagnostic grading model building and testing
Using the imprinting patterns from the most effective 
markers determined in the prior analysis, the previously 
developed malignancy classification model structure 
using an ensemble of individual gene classifiers [30] was 
updated by extending the diagnostic output from binary 
response to a five-level grading system (Additional file 1: 
Fig. S6 and Fig. S7). The development of the diagnostic 
algorithm and the corresponding evaluation and opti-
mization of the model thresholds in the model building 
set are detailed under Additional file  2: Materials and 
Methods. Based on the evaluation results, a number 
of models with varying threshold combinations which 
demonstrated an optimal range of diagnostic accuracies 
were further tested in an independent set of 30 cytology 
and small biopsy specimens. The candidate model which 

showed the best diagnostic performance after testing was 
determined as the final model, with all threshold speci-
fications locked prior to validation in an independent 
cohort of 155 patients.

Statistics
Continuous variables were reported as medians with 
interquartile ranges (IQR), while frequencies and pro-
portions were reported for categorical variables. Con-
tinuous clinical variables were compared between groups 
using the Mann–Whitney U and Kruskal–Wallis tests, as 
applicable, driven by the non-normal distributions deter-
mined using the Shapiro–Wilk test [43]. Dunn’s test was 
performed as a post hoc test for the pairwise compari-
sons between each independent group with Bonferroni 
correction applied during  p-value determination [44]. 
Categorical clinical variables were compared using Chi-
square or Fisher exact tests, as applicable.

Diagnostic discrimination performance was assessed 
and compared using the receiver operating character-
istics area under the curve (ROC AUC) metric with 
95% confidence intervals determined using the DeLong 
method [45]. Sensitivity, specificity and their respective 
normal-based 95% confidence intervals were computed 
using standard methods. Diagnostic sensitivities and spe-
cificities obtained using QCIGISH were evaluated against 
cytology and small biopsy pathology using McNemar’s 
test for paired data [46].

All hypothesis tests were done in a two-sided manner, 
with computed p < 0.05 considered to be statistically sig-
nificant. All statistical analyses and visualizations were 
performed using R software (version 3.5.0) [47]. Sample 
size justification is described under Additional file 2.
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