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Abstract 

Background:  Lung cancer is the leading cause of cancer-related mortality. The alteration of DNA methylation plays 
a major role in the development of lung cancer. Methylation biomarkers become a possible method for lung cancer 
diagnosis.

Results:  We identified eleven lung cancer-specific methylation markers (CDO1, GSHR, HOXA11, HOXB4-1, HOXB4-2, 
HOXB4-3, HOXB4-4, LHX9, MIR196A1, PTGER4-1, and PTGER4-2), which could differentiate benign and malignant pulmo‑
nary nodules. The methylation levels of these markers are significantly higher in malignant tissues. In bronchoalveolar 
lavage fluid (BALF) samples, the methylation signals maintain the same differential trend as in tissues. An optimal 
5-marker model for pulmonary nodule diagnosis (malignant vs. benign) was developed from all possible combina‑
tions of the eleven markers. In the test set (57 tissue and 71 BALF samples), the area under curve (AUC) value achieves 
0.93, and the overall sensitivity is 82% at the specificity of 91%. In an independent validation set (111 BALF samples), 
the AUC is 0.82 with a specificity of 82% and a sensitivity of 70%.

Conclusions:  This model can differentiate pulmonary adenocarcinoma and squamous carcinoma from benign 
diseases, especially for infection, inflammation, and tuberculosis. The model’s performance is not affected by gender, 
age, smoking history, or the solid components of nodules.
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Introduction
Based on the published data in 2020 [1], lung cancer is 
one of the most dangerous malignant tumors for human 
health and life, with the highest mortality rates, and the 
5-year relative survival rate for lung cancer is only 19%. 
However, if lung cancer can be diagnosed at the localized 
stage, especially for non-small cell lung cancer (NSCLC) 
on stage IA, the 5-year relative survival rate can achieve 
92%. Therefore, it is an effective and essential way to pro-
long lung cancer patients’ lives by early diagnosis with 
appropriate treatments.

Open Access

*Correspondence:  zhiwei_chen@anchordx.com; weimi003@scu.edu.cn; 
jianbingfan1115@smu.edu.cn; edifier0617@gmail.com
†Lei Li, Zhujia Ye, and Sai Yang have contributed equally to this work
1 Department of Respiratory and Critical Care Medicine, West China 
Hospital, Sichuan University, No.37 Guoxue Alley, Wuhou District, 
Chengdu 610041, Sichuan, China
3 AnchorDx, Inc., 46305 Landing Pkwy, Fremont, CA 94538, USA
4 Department of Pathology, School of Basic Medical Science, Southern 
Medical University, 1838 ShaTai Road, Guangzhou 510515, China
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-7852-8097
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13148-021-01163-w&domain=pdf


Page 2 of 13Li et al. Clin Epigenet          (2021) 13:185 

Currently, the clinical detection of lung cancer mainly 
adopts low-dose computed tomography (LDCT). The 
application of LDCT increases the detection rate of 
pulmonary nodules and reduces the mortality of lung 
cancer. However, it is hard to use LDCT alone for dif-
ferentiating malignant nodules from benign. Accord-
ing to the data from the National Lung Screening Trial 
(NLST) test, the false positive rate of LDCT reached 
96.4%, which can lead to an increase in unnecessary 
treatments [2].

The present standard clinical diagnosis methods of 
lung cancer include transbronchial lung biopsy, percuta-
neous aspiration biopsy of the lung, bronchoalveolar lav-
age fluid (BALF) [3, 4], and liquid biopsies (blood [5] or 
sputum [6]). Transbronchial lung biopsy and percutane-
ous aspiration biopsy of the lung are invasive diagnostic 
techniques and have limitations in sampling broncho-
scopically invisible tumors. Nevertheless, bronchoalveo-
lar lavage (BAL) can overcome these issues by sampling 
tumors by washing their surfaces [7]. Sampling BALFs is 
a routine operation during bronchoscopy in individuals 
with suspected lung cancer [8, 9]. BAL has advantages of 
large sampling volumes and multiple wash times in one 
operation, which improve the specificity and sensitiv-
ity for lung cancer detection [10]. It is a simple and less 
invasive diagnostic technique [11], which can be ideal for 
diagnosing pulmonary nodules in the high-risk lung can-
cer population. Although liquid biopsies, especially tests 
based on blood, become popular for early cancer screen-
ing and diagnosis due to their minimal invasiveness/non-
invasiveness, high compliance, and simple operation. 
However, the lack of tissue specificity and low sensitiv-
ity are huge challenges for blood-based tests. The sputum 
test can diagnose squamous cell carcinoma since sputum 
is mainly coughed up from the central atmospheric chan-
nel but may not be suitable for detecting adenocarcinoma 
that often occurs in the lung periphery [12].

DNA methylation is an epigenetic modification that 
is important for human development and diseases [13]. 
Aberrant DNA methylation can be causally involved 
in cancer progression by multiple mechanisms, such 
as inactivating tumor-suppressor genes [14]. With the 
development of highly sensitive techniques for DNA 
methylation detection, the aberrant methylation status of 
CpG islands becomes an attractive biomarker for cancer 
diagnosis [15, 16].

In this study, we selected an optimal 5-marker model 
from all the possible combinations of eleven lung can-
cer-specific DNA methylation markers. The results 
from the test set of tissue and BALF samples indi-
cated that the methylation signals in BALF samples are 
derived from pulmonary tissues. The model was further 
validated in an independent data set containing only 

BALF samples and had great potential for differentiat-
ing benign and malignant pulmonary nodules.

Methods and materials
Study design
The study design is described in Fig. 1. Over 100 lung 
cancer-specific DNA methylation markers had been 
pre-selected from the in-house database [17] and public 
resources (e.g., TCGA Database). Considering the sig-
nal intensities (high sensitivity), noise level (specificity), 
and signal complementarities (low correlations), eleven 
markers (CDO1, GSHR, HOXA11, HOXB4-1, HOXB4-
2, HOXB4-3, HOXB4-4, LHX9, MIR196A1, PTGER4-1, 
and PTGER4-2) were chosen for further investigations.

A total of 57 tissue (Malignant: Benign = 28:29) and 
181 BALF samples (Malignant: Benign = 86:95) were 
enrolled to investigate these eleven candidate markers.

A three-segment train/test/independent validation 
set data division was applied to build and validate the 
model. In the first step, all the tissue and 71 BALF sam-
ples (Malignant: Benign = 35: 36) were used to con-
struct the model. Tissue samples were divided by a 
threefold cross-validation (CV) approach, which was 
repeated 100 times. For each threefold CV division, 
two of the divisions were combined to form a train set, 
and the remaining one was used as a test set. Thus there 
were three possible combinations for each division, 
which created 300 different splits in this process. Each 
test set with pure tissue samples was then combined 
with the 71 BALF samples to form a complete test set. 
Considering the key performance indicators including 
but not limited to significances from the DMRs statisti-
cal tests, the area under curve (AUC) values along with 
overall and by stage sensitivity (Sn) under 80% specific-
ity (Sp), an optimal model was chosen from all the pos-
sible combinations ( 

∑
n

i=1 C
i
n =

∑
n

i=1
n!

i!( n−i)!
, n = 11 ) 

of the eleven markers. In the second step, an inde-
pendent data set of 110 BALF samples (Malignant: 
Benign = 51:59) was used to validate the selected opti-
mal model.

Available data from TCGA database
Methylation data (single-site beta value) from The Can-
cer Genome Atlas (TCGA) program with clinical infor-
mation were downloaded from Genomic Data Commons 
(GDC) data portal (https://​portal.​gdc.​cancer.​gov/). The 
clinical features of the 816 patients used are listed in 
Additional file 1: Tables S1, which includes 446 lung ade-
nocarcinoma (LUAD) patients (446 tumor and 23 nor-
mal tissues) and 370 lung squamous carcinoma (LUSC) 
patients (370 tumor and 40 normal tissues).

https://portal.gdc.cancer.gov/
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Patients and samples collections
The specimens, formalin-fixed paraffin embedded (FFPE) 
pulmonary tissue and BALF samples, were collected 
at West China Hospital from 2015 to 2018. This study 
was approved by the ethics committee of West China 
Hospital, and written consent was collected from each 
participant.

The tissue samples were derived from 57 patients 
receiving lung tissue resection, including 28 cancer and 
29 benign disease patients (Table 1). BALF samples were 
collected from 186 patients receiving fiberoptic bron-
choscopy examinations. Among them, 90 were diagnosed 
with lung cancer following surgical biopsy, including 13 
squamous cell carcinomas, 63 adenocarcinomas, one 
small cell lung cancer, and 13 unclassified lung cancer. 
The other 96 patients were confirmed as lung benign 
diseases, including pulmonary infection, inflammation, 
tuberculosis, and hamartoma, etc. Only 182 samples 
were used for further data analysis due to the quality 
control failures of four samples (Table  2). Within these 
BALF samples, 111 formed an independent sample set 
to validate the model’s performance (Additional file  1: 
Table S2).

Based on the smoking history, we divided the patients 
into two groups, “Non-smoking” and “Smoking”. “Non-
smoking” was referred to the patients who have never 

smoked, while the “Smoking” group contained both cur-
rent and former smokers.

According to nodule size, the largest diameter was 
determined by either LDCT or surgery.

For the analysis of solid components in nodules, the 
nodules were defined as ground-glass opacity solid 
(GGO) nodules as long as containing non-solid compo-
nents; on the contrary, the solid nodules only have solid 
components.

DNA Extraction and bisulfite treatment
Cell pellets were collected from 5  ml of BALF samples 
with centrifugation at 5000×g for 5 min and stored at − 
80 °C until use. Genomic DNA (gDNA) was isolated from 
the pellets using DNeasy® Blood & Tissue Kit (QIAGEN, 
Catalog No. 69506, Hilden, Germany). Pulmonary tis-
sue gDNA was isolated from FFPE tissue samples using 
QIAamp DNA FFPE Tissue Kit (Qiagen, Cat# 56,404, 
Hilden, Germany). Genomic DNA (gDNA) was quanti-
fied by the Qubit™ dsDNA HS Assay Kit (Thermo Fisher 
Scientific, Cat# Q32854, Eugene, Oregon, USA) and 
analyzed by the Agilent High Sensitivity DNA Kit (Cat# 
5067–4626, CA, USA) on a 2100 Bioanalyzer Instrument 
(Agilent) for fragment size. gDNA was treated by the EZ 
DNA methylation-Direct™ kit (Zymo Research, Catalog 

Fig. 1  Study design
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No. D5021, Irvine, CA, USA) to convert unmethylated 
cytosines into uracils.

DNA methylation analysis
The DNA Methylation analysis was used the Methy-
Light approach [18, 19]. The bisulfite-treated DNA was 
used as a template for the following multiplex PCR assay 
[20]. The multiplex PCR was implemented by Q5U® Hot 
Start High-Fidelity DNA Polymerase (New England Bio-
Labs, Catalog, No. M0515, MA, USA) and an LC Detect 
Panel (AnchorDx, China, Catalog No. LCME-BAL-001) 
including markers CDO1, GSHR, HOXA11, HOXB4-
1, HOXB4-2, HOXB4-3, HOXB4-4, LHX9, MIR196A1, 
PTGER4-1, and PTGER4-2, in a thermal cycler (Thermo 
Fisher, USA, Catalog No. 4484073) at 98  °C for 30  s, 5 
cycles at 98 °C for 15 s, 58 °C for 15 s and 68 °C for 15 s, 
13 cycles at 98  °C for 15 s, 63  °C for 15 s and 68  °C for 
15  s, and 68  °C for 5  min. The amplified products were 
quantified by multiplex quantitative real-time PCR [19] 
using Luna® Universal Probe qPCR Master Mix (New 
England BioLabs, Catalog No. M3004E, MA, USA) on 

Applied Biosystems 7500 Real-Time PCR (Life Technolo-
gies Holdings Pte Ltd, Blk 33, Mariling Industrial Estate 
Rd 3, Singapore). The reaction was performed at 95 °C for 
5 min, 40 cycles at 95 °C for 15 s and 62 °C for 30 s, with 
fluorescent signals collected at the annealing/extension 
step (62  °C for 30  s). The methylation-specific primers 
and probes were designed by Beacon Designer version 
8.14 for detecting the methylation signals of target mark-
ers (Table 3). � CT values ( �CT = MarkerCT − ActinCT ) 
from the Quantitative PCR were used to represent the 
methylation levels of each marker. Those values would be 
given a “z-score” transformation before training and test-
ing in the machine-learning model.

Statistics analysis
The methylation level of the markers of the TCGA data 
set was represented with beta value, whereas the methyl-
ation level of the markers of the tissue and BALF data set 
was represented with � CT values from the Quantitative 
Real-time PCR experiment. Those values representing 
methylation statuses would be given a z-score transfor-
mation before training and testing in the machine-learn-
ing model.

Uniform Manifold Approximation and Projection 
(UMAP) was used to summarize large multi-dimensional 
datasets with a much smaller number of dimensions (ide-
ally 2) while retain most of the useful information in the 
data (“umap” package from programming language of 
python).

To determine the differences between groups in a sta-
tistical way, Wilcoxon Rank Sum test (“Wilcox.test” 
function with “paired” parameter set to “FALSE” from 
programming language of R) with false discovery rate 
(FDR) adjustment for the p value (the threshold used 
here was 0.05) was performed.

Logistic regression model (“LogisticRegression” func-
tion in “sklearn” package from programming language of 
python) was constructed using methylation markers as 
input features and pathology classes as a label (digitalize 
the labels using 1 for malignant, 0 for benign/normal).

The performance of the model was evaluated with Area 
Under Curve (AUC) value along with overall and by stage 
sensitivity (Sn) under fixed specificity (Sp) or specificity 
(Sp) under fixed sensitivity (Sn).

Cancer Score was the output probability of the logistic 
regression model:

Notice that the domain of Ŷ  is between 0 and 1, Ŷ  repre-
sents the estimated probability of being in one binary out-
come category versus the other, and eβ0+β1X1+β2X2+···+βiXi 
represents the linear regression equation for independent 

Ŷ =
e
β0+β1X1+β2X2+···+βiXi

1+ eβ0+β1X1+β2X2+···+βiXi

Table 1  Characteristics of patients receiving lung tissue 
resection

Clinical features Lung cancer Benign diseases Total

Age

> 60 12 (42.86%) 4 (13.79%) 16 (28.07%)

≤ 60 16 (57.14%) 25 (86.21%) 41 (71.93%)

Sex

Male 14 (50%) 12 (41.38%) 26 (45.61%)

Female 14 (50%) 17 (58.62%) 31 (54.39%)

Smoking history

Current 7 (25%) 6 (20.69%) 13 (22.81%)

Former 3 (10.71%) 1 (3.45%) 4 (7.02%)

Never 10 (35.71%) 19 (65.52%) 29 (50.88%)

Unknown 8 (28.57%) 3 (10.34%) 11 (19.30%)

Tumor stage

Stage I 16 (57.14%)

Stage II 3 (10.71%)

Stage III 8 (28.57%)

Stage IV 1 (3.57%)

Histology subtype

Adenosquamous carci‑
noma

25 (89.29%)

Squamous cell carci‑
nomas

3 (10.71%)

Hamartoma 4 (13.79%)

Infection 7 (24.14%)

Inflammation 3 (10.34%)

Tuberculosis 12 (41.38%)

unknown 3 (10.34%)

Total 28 (49.12%) 29 (50.88%) 57
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Table 2  Characteristics of patients receiving fiberoptic bronchoscopy examination

Clinical features Lung cancer Benign diseases Total

Age

 > 60 45 (50%) 26 (28.9%) 71 (38.17%)

 ≤ 60 45 (50%) 70 (77.8%) 115 (61.83%)

Sex

Male 55 (61.1%) 56 (62.2%) 111 (59.68%)

Female 35 (38.9%) 40 (44.4%) 75 (40.32%)

Smoking history

Current 23 (25.6%) 21 (23.3%) 44 (23.66%)

Former 25 (27.8%) 16 (17.8%) 41 (22.04%)

Never 42 (46.7%) 59 (65.6%) 101 (54.30%)

Unknown

Tumor stage

Stage I 54 (60.00%)

Stage II 4 (4.44%)

Stage III 7 (7.78%)

Stage IV 13 (14.44%)

unknown 12 (13.33%)

Histology subtype

Adenosquamous carcinoma 63 (70.0%)

Small cell carcinoma 1 (1.1%)

Squamous cell carcinomas 13 (14.4%)

unknown 13 (14.4%)

Atypical adenomatous hyperplasia 5 (5.2%)

Hamartoma 6 (6.3%)

Infection 13 (13.5%)

Inflammation 49 (51%)

Tuberculosis 14 (14.6%)

Unknown 9 (9.4%)

Total 90 (48.39%) 96 (51.61%) 186

Table 3  Information of target markers

Gene name Chromosome location (hg19) Cpg sites on TCGA datacase

IHX9 chr1:197889098–197889188 cg09076431

GSHR chr3:172166143–172166236 cg07852825, cg15987088

CDO1 chr5:115152460–115152575 cg08516516, cg11036833, cg23180938

PTGER4-1 chr5:40681603–40681717

PTGER4-2 chr5:40681829–40681912 cg27071460

HOXA11 chr7:27225175–27225261 cg15760840

HOXB4-1 chr17:46655336–46655421 cg14458834, cg21546671

HOXB4-2 chr17:46655488–46655610 cg08089301, cg09194159, cg14345497

HOXB4-3 chr17:46655771–46655862 cg02422694, cg07015911, cg12806763, 
cg19081437, cg24114154, cg26327071

HOXB4-4 chr17:46655935–46656053 cg21460081

MIR196A1 chr17:46711296–46711411 cg01452847
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variables expressed in the logit scale. As long as we set 
the labels of the samples from the cancer/malignant 
group as 1, and the benign/normal group as 0, for the 
training set of the model, after the model training pro-
cess, we could get a predicted probability after passing 
each test sample to the model. This could be served as 
an indicator of whether this sample was at risk of being 
cancer/malignant: if it is closer to 1, it should more likely 
be cancer/malignant; if it is closer to 0, it should be less 
likely [21–23]. In this paper, this probability from logistic 
regression was named as “cancer score”.

Multivariate logistic regression used the pathological 
class of the subjects as the dependent variable and the 
covariates listed in Table 5 as the predictors. All predic-
tors were entered simultaneously into the regression.

Unless otherwise specified, all statistical tests were 
two-sided.

Results
DNA methylation signals of pre‑selected markers
In the eleven lung cancer-specific methylation mark-
ers (CDO1, GSHR, HOXA11, HOXB4-1, HOXB4-2, 
HOXB4-3, HOXB4-4, LHX9, MIR196A1, PTGER4-1, 
and PTGER4-2), 21 CpG sites (cg09076431, cg07852825, 
cg15987088, cg08516516, cg11036833, cg23180938, 
cg27071460, cg15760840, cg14458834, cg21546671, 
cg08089301, cg09194159, cg14345497, cg02422694, 
cg07015911, cg12806763, cg19081437, cg24114154, 
cg26327071, cg21460081, and cg01452847) were found 
in the TCGA database. Compared to the adjacent normal 
tissue samples, the median beta value of each CpG site is 
significantly higher (p value < 0.001) in the tumor tissues 
of both lung cancer adenocarcinoma (LUAD) and lung 
squamous carcinomas (LUSC) (Additional file  2: Figure 
S1A). According to our previous data from pulmonary 
tissues [17, 24], these CpG sites also have consistent per-
formance between malignant and benign tissue samples 
(Additional file 2: Figure S1C and S1E). The methylation 
signals of the adjacent normal or benign tissues are clus-
tered into a group away from malignant tissues, which 
inferred the differential methylation signals of these CpG 
sites between malignant and adjacent normal/benign tis-
sues (Additional file 2: Figure S1B, S1D and S1F). In addi-
tion, clustering of LUAD and LUSC together suggested 
that these CpG sites have consistent methylation status 
between these two groups.

Validation of target DNA methylation markers
Besides the performance on TCGA datasets, we further 
investigated the potentials of these CpG sites on the 
classification of malignant and benign pulmonary nod-
ules using clinical pulmonary tissue and BALF samples, 
respectively. A concept, “caner score” (details described 

in Methods and Materials), was introduced to evaluate 
the capability of a marker or model for diagnosing pul-
monary nodules. The cancer score of a malignant nodule 
should be closed to “1”, while the cancer score of a benign 
nodule should be closed to “0”. Therefore, the greater the 
difference of cancer scores in benign and malignant nod-
ules is, the better the performance of a marker or model 
in differentiating benign and malignant nodules has. As 
shown in Fig.  2A, methylation signals of the malignant 
tissues are perfectly separated from the benign tissues. 
The cancer scores of the eleven markers are significantly 
different between benign and malignant tissues, espe-
cially for markers LHX9, GHSR, PTGER4-1, PTGER4-2, 
HOXB4-1, HOXB4-2, and HOXB4-3 (Fig. 2C). Compared 
to the performance on tissues, the capability of the target 
markers on differentiating benign and malignant nod-
ules is relatively weaker in BALF samples but still signifi-
cant except for GHSR (p value: 0.069) (Fig. 2B). In BALF 
samples, the distributions of methylation signals of the 
target markers are scattered but still clustered into two 
groups (Fig.  2D). Followed by an approach of threefold 
cross-validation, the performance of individual markers 
was calculated (Table  4). The average area under curve 
(AUC) of PTGER4-2, HOXB4-1, HOXB4-2, HOXB4-3, 
LHX9, MIR196A1, HOXA11, and CDO1 are all above 
0.70. Among them, sensitivities (Sn) and specificities (Sp) 
of the markers, PTGER4-2, HOXB4-1, and HOXB4-3 are 
both above 70%, which are 75% (Sn) / 73% (Sp), 74% (Sn) 
/ 71% (Sp), and 71% (Sn) / 73% (Sp) at Youden’s index cut-
offs, respectively. In summary, the lung cancer-specific 
methylation markers, CDO1, GSHR, HOXA11, HOXB4-
1, HOXB4-2, HOXB4-3, HOXB4-4, LHX9, MIR196A1, 
PTGER4-1, and PTGER4-2, exhibit the potential of dis-
criminating benign and malignant pulmonary nodules.

Performance of the model on diagnosing pulmonary 
nodules
We further constructed model with all combinations of 
target markers to enhance performance compared to 
individual markers. The training data set, which only 
contained tissue samples, confirmed that the methyla-
tion signals are derived from pulmonary tissues. The test 
data set included both tissue and BALF samples to verify 
the signal consistency between tissue and BALF samples, 
adjust the model with appropriate parameters, and select 
the optimal model for clinical applications.

In the test data set, according to the results from all the 
possible combinations of the eleven markers, an opti-
mal model (including markers LHX9, GHSR, HOXA11, 
PTGER4-2, and HOXB4-3) was selected for further anal-
ysis. In this model, the difference in cancer scores is sig-
nificant between benign and malignant samples in both 
pulmonary tissues and BALF samples, which have less 



Page 7 of 13Li et al. Clin Epigenet          (2021) 13:185 	

difference compared to tissue samples (Fig. 3d). Methyla-
tion levels of the target markers showed the same trend 
between tissue and BALF samples, which implied the 
methylation signals in BALF samples might be derived 
from pulmonary tissues. The AUC of the optimal model 
achieved 1.00 and 0.84 in tissue and BALF samples, 
respectively (Fig.  3a, b). The overall sensitivity is 82% 
at a specificity of 91% (Additional file  1: Table  S3). The 

sensitivities mostly increase according to the stage sta-
tus. The detection rates of Stage I lung cancer are 71.2% 
(Fig. 4 and Additional file 1: Table S4).

An independent validation set containing 111 BALF 
samples was set aside to evaluate the model’s diagnostic 
performance. In this independent sample set, the AUC is 
0.82 (Fig. 3c and Additional file 1: Table S3), and the dif-
ferences in cancer scores between benign and malignant 

Fig. 2  Methylation signals of 11 target markers in pulmonary tissues and bronchoalveolar lavage fluids (BALF). a, b The distribution of methylation 
signals of the 11 target markers in the pulmonary tissues and BALF, respectively. c, d The difference of the cancer score between benign and 
malignant nodules for the 11 candidate markers in the pulmonary tissues and BALF, respectively. Stars represent the difference of cancer scores 
between different stage cancers and benign diseases. “**”, p value < 0.01
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samples are still significant (Fig.  3e). Under Youden’s 
index cutoff, the overall sensitivity can achieve 70% at a 
specificity of 82% (Additional file 1: Table S3). Moreover, 

the detection rate of Stage I lung cancer is 68.5% (Fig. 4 
and Additional file 1: Table S4). In both test and valida-
tion data sets, this model showed great potential for dif-
ferentiating pulmonary malignant and benign nodules.

Performance of the model on pathological subtypes
To evaluate the model performance on different patho-
logical subtypes, we analyzed pulmonary tumors (ade-
nocarcinoma and squamous carcinoma) and benign 
diseases (pulmonary hamartoma, infection, inflamma-
tion, and tuberculosis).

For pulmonary tumors, this model can differentiate 
both adenocarcinoma and squamous carcinoma from 
benign diseases distinctly (The p values of difference in 
cancer scores either between benign nodules and adeno-
carcinoma or between benign nodules and squamous 
carcinoma are less than 0.01) (Additional file  2: Figure 
S2). Compared to adenocarcinoma, the cancer scores 
of squamous carcinoma are much closer to “1”, which 

Table 4  Performance of individual marker in BALF

Gene AUC​ AUC.lower AUC.upper Sensitivity Specificity

PTGER4-1 0.69 0.62 0.77 0.73 0.60

PTGER4-2 0.78 0.71 0.85 0.75 0.73

HOXB4-1 0.76 0.69 0.82 0.74 0.71

HOXB4-2 0.71 0.63 0.78 0.67 0.64

HOXB4-3 0.75 0.67 0.82 0.71 0.73

HOXB4-4 0.67 0.59 0.75 0.48 0.81

IHX9 0.71 0.64 0.79 0.59 0.77

GSHR 0.64 0.56 0.72 0.62 0.62

MIR196A1 0.71 0.63 0.78 0.58 0.78

HOXA11 0.70 0.62 0.78 0.55 0.79

CDO1 0.72 0.65 0.80 0.55 0.84

Fig. 3  Performance of the optimal model on diagnosing benign and malignant pulmonary nodules. a, b The figures are the ROC curves of the 
model in the tissue samples and BALF samples, respectively, in the test set. a The figure is the ROC curve of the model in an independent validation 
set that only contains BALF samples. d The violin plots demonstrate the difference of cancer score between benign and malignant samples in 
the test set that contains pulmonary tissues and BALF samples. e The violin plots demonstrate the difference of cancer score between benign 
and malignant samples in an independent validation set that only contains BALF samples. Stars represent the difference of cancer score between 
different cancer stages tumors and benign diseases; “**”, p value < 0.01
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indicated that this model has better performance on dif-
ferentiating squamous carcinoma from benign diseases.

For benign diseases, the abilities to differentiate pulmo-
nary hamartoma, inflammation, infection, or tuberculo-
sis from tumors have been tested for the selected model 
(Additional file  2: Figure S2). Except for pulmonary 
hamartoma, differences between other benign diseases 
and malignant nodules are significant (p values < 0.01). 
Among these benign diseases, the cancer scores of 
infection and tuberculosis are not only remarkably 
below tumors, but also beneath other benign diseases, 

especially tuberculosis, whose cancer scores are closed to 
“0” (The p value of difference in cancer scores between 
tuberculosis and other benign diseases is less than 0.01). 
Therefore, the selected model is more capable of distin-
guishing malignant tumors from pulmonary infection 
and tuberculosis.

Effect of physiological characteristics on diagnosing 
pulmonary nodules
Although the samples might differ in the age, gen-
der, smoking history, or solid components of nodules, 

Fig. 4  Performance of the optimal model in BALF on different pathology stage. The boxplots of a, b demonstrate the performance of the model 
in BALF on different pathology stage in the test set and the validation set, respectively. Stars represent the difference of cancer score between 
different cancer stages tumors and benign diseases; “**”, p value < 0.01
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respectively, the cancer scores of benign nodules are 
consistently lower than the malignant nodules in this 
5-marker model (Additional file 2: Figure S3A, S3B, S3C, 
S3E). The diagnostic power of this model was not affected 
by the factors mentioned previously, while it is better for 
the patients with larger target nodules size (Additional 
file 2: Figure S3D).

In the univariable analyses, the 5-marker model, age, 
and smoking history were as significant predictors for 
detecting pulmonary malignant nodule. In contrast, the 
multivariate analysis indicates only the 5-marker model 
as significant independent predictors of pulmonary 
malignant nodule detection (Table 5).

Discussion
To date, low-dose computed tomography (LDCT) is the 
primary strategy for the substantial reduction of lung 
cancer-related mortality in the long term within high-risk 
asymptomatic populations [25]. Two large randomized 
controlled trials, the US National Lung Screening Trial 
(NLST) [2] and the Dutch-Belgian lung-cancer screen-
ing trial (NELSON) [26], have proven that LDCT-based 
screening could statistically significantly reduce lung can-
cer-related mortality by more than 20% in high-risk indi-
viduals. While the high sensitivity of LDCT also brings 
a significant challenge in differentiating benign nodules 
from malignancy, which leads to a relatively high false-
positive rate [27]. Suspected nodules detected by LDCT 
can be further diagnosed through lung biopsies, includ-
ing bronchoscopy and percutaneous puncture. How-
ever, pulmonary peripheral and bronchoscopic invisible 
lesions are always challenges for lung biopsy diagnosis. 
The application of BALF is more likely to obtain tissue/
cells released from peripheral or bronchoscopic invisible 
lesions, which would potentially solve these issues [28, 
29].

Eleven lung cancer methylation-specific mark-
ers (CDO1, GSHR, HOXA11, HOXB4-1, HOXB4-2, 
HOXB4-3, HOXB4-4, LHX9, MIR196A1, PTGER4-1, 

and PTGER4-2) were selected from the previous stud-
ies [17, 24] based on their capabilities of differentiating 
pulmonary benign and malignant nodules on the tissue 
level. Twenty-one CpG sites in these eleven genes were 
further validated to have significantly different methyla-
tion levels between lung cancer and normal tissues in the 
TCGA database (Additional file  2: Figure S1A). CDO1, 
a tumor suppressor gene, plays a role in the oxidative 
stress response of cancer cells [30, 31]. PTGER4 proteins 
belong to the G-protein coupled receptor family. As the 
hypermethylated markers, CDO1 and PTGER4 were 
detected using plasma and sputum samples in early-stage 
lung cancers [5, 32]. MiR196 gene family could play an 
essential role in regulating HOX gene expression, and 
their dysregulated expression in multiple cancers may 
function as both oncogenes and tumor suppressors [33, 
34]. MIR196A1 and HOXA11 have been reported to be 
highly methylated in the bronchial washings of lung can-
cer patients. The methylation levels of MIR196A1 were 
inversely associated with the duration of smoking cessa-
tion in healthy people [35]. LHX9 encodes a transcription 
factor that might involve the control of cell differentia-
tion of several neural cell types [36], but its methylation 
status in lung cancer has not been reported. Glutathione 
reductase (GSHR) is a biologically important enzyme 
involved in the protection against ROS [37, 38]. HOXB4 
plays a vital role in proliferation, metastasis, and angio-
genesis in cancers [39–43]. Moreover, GSHR and HOXB4 
were reported with differential methylations in lung ade-
nocarcinoma [44].

To verify whether the methylation signals of these 
markers were derived from pulmonary tissues, we 
trained the model using pulmonary tissue samples only 
and then tested them on both pulmonary tissues and 
BALF samples. The trends of differential methylation sig-
nals between benign and malignant samples are consist-
ent in both pulmonary tissues and BALF. Although BALF 
methylation signals can be traced back to pulmonary tis-
sues, the less difference of cancer scores between benign 

Table 5  Predictors of diagnosing pulmonary nodules

Analyzed variables Univariable analysis Multivariable analysis

OR (95% CI) p value OR (95% CI) p value

Model: LHX9 + GHSR + HOXA11 + PTGER4-
2 + HOXB4-3

93.93 (27.178–382.05) 1.25E−11 43.15 (11.16–196.05) 2.17E−07

Male gender 1.22 (0.67–2.23) 0.5109 0.68 (0.23–2.00) 0.4927

Age 1.05 (1.02–1.08) 0.0007 1.03 (1.00–1.07) 0.0923

Positive smoking history 2.01 (1.11–3.65) 0.0212 1.70 (0.58–5.15) 0.3346

Ground glass opacity nodule type 1.34 (0.68–2.66) 0.3959 1.63 (0.68–4.07) 0.2850

Nodule size 1.05 (0.87–1.264) 0.6372 1.11 (0.88–1.43) 0.3851
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and malignant samples (Fig. 2) might be owing to the less 
tumor burden or cancer cells in BALF samples compared 
to pulmonary tissues. Therefore, using both pulmonary 
tissue and BALF samples as a test set can preliminar-
ily verify the model performance and adjust the model 
with appropriate parameters for the BALF application. 
Through further validation in an independent sample set, 
the selected model maintained robust performance for 
differentiating benign pulmonary nodules from malig-
nancy. In particular, the sensitivity of stage I lung cancer 
was up to 71.2% and 68.5% in the test and independent 
validation set, respectively, which was of great clinical 
significance for diagnosing early-stage lung cancers.

In terms of two main subtypes of lung cancer, LUAD 
and LUSC, the selected model could effectively differ-
entiate both of them, with a better diagnostic power 
for LUSC (Additional file 2: Figure S2A and S2B). Since 
LUSC is mainly associated with the central air tract while 
LUAD mainly occurs in the lung periphery, the different 
signal intensities may be ascribed to their locations. Even 
though it has a high chance to obtain cells from periph-
eral or subsegmental bronchioles where targeted tissues 
might locate through the current bronchoalveolar lavage 
procedure, the overall targeted cell amount is still limited. 
As artificial intelligence and robots for interventional 
surgery are continuously being developed, the first robot-
assisted bronchoalveolar lavage procedure for bronchus 
surgeries has been reported [38]. The surgical robot can 
help the bronchoalveolar lavage procedure and reach 
smaller areas such as bronchial trees. This new approach 
may improve targeted tissue sampling and increase the 
test signals in the future.

This model has shown significant differences between 
pulmonary malignancy and benign diseases such as 
tuberculosis, infection, and inflammation. Among them, 
the diagnostic power of the model for tuberculosis and 
infection is better than other benign diseases. In our 
data, the methylation levels of hamartoma are higher 
than other benign diseases but are still lower than lung 
cancer tumors, yet not significantly. In the clinical diag-
nosis, certain pathology subtypes like pulmonary hamar-
toma could potentially utilize BALF inspection, lung 
cancer-specific marker tests of BALF samples, and AI-
aided diagnosis by CT/LDCT scans to further improve 
the diagnostic accuracy [45].

Smoking has been reported to alter lung function, gene 
expression, and DNA methylation [46–49]. The accuracy 
of determining ground-glass opacity (GGO) lesions is rela-
tively low using the traditional diagnostic techniques [50], 
and often differs depended on GGO components. Aging 
would change the statues of DNA methylation [51]. The 
differences of DNA methylation might contribute to the 
sex-related differences in cancer [52]. The selected model 

has strong performance on diagnosing pulmonary benign 
nodules from malignant nodules regardless of smoking sta-
tus, GGO components, genders, and age.

Conclusions
In summary, we have developed a DNA methylation test 
using BALF samples for diagnosing pulmonary nodules, 
especially on differentiating pulmonary infection, inflam-
mation, and tuberculosis from malignancy. The model’s 
performance is not affected by gender, age, smoking his-
tory, and nodule component. It showed great potential 
for pulmonary nodule management in the clinical setting.
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