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Abstract 

Ageing is an inevitable condition that afflicts all humans. Recent achievements, such as the generation of induced 
pluripotent stem cells, have delivered preliminary evidence that slowing down and reversing the ageing process 
might be possible. However, these techniques usually involve complete dedifferentiation, i.e. somatic cell identity is 
lost as cells are converted to a pluripotent state. Separating the rejuvenative properties of reprogramming from dedif-
ferentiation is a promising prospect, termed epigenetic rejuvenation. Reprogramming-induced rejuvenation strate-
gies currently involve using Yamanaka factors (typically transiently expressed to prevent full dedifferentiation) and are 
promising  candidates to safely reduce biological age. Here, we review the development and potential of reprogram-
ming-induced rejuvenation as an anti-ageing strategy.
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Background
Ageing is a complex process that affects all humans, and 
with it comes an increased susceptibility to a range of 
diseases, tissue dysfunction and mortality [1, 2]. Many 
studies indicate that the ageing process may not be as 
inevitable as previously thought. Young blood has been 
shown to have rejuvenative properties through hetero-
chronic parabiosis, whereby the circulatory systems of 
a young and old organism are connected [3–12]. The 
clearance of senescent cells in mice delays the onset of 
age-related pathologies and may extend life-span [13, 
14]. Hence, drugs that selectively induce apoptosis in 
senescent cells (referred to as senolytics) have become a 
prominent topic of research in the molecular ageing field 
[15–17]. Manipulation of dietary intake is also one of the 
most well studied ageing interventions. Various diets (e.g. 
calorie restriction, intermittent fasting, ketogenic diet) 
manipulate nutrient sensing pathways, particularly those 

involving mTOR and insulin/insulin-like growth factor 
(IGF), to extend lifespan and reduce metabolic risk fac-
tors [17–26]. Various drugs, such as rapamycin, appear 
to mimic the effects of calorie restriction [27–32] and 
induce autophagy, a process the decline of which is asso-
ciated with a number age-related diseases [17, 24, 33–35].

A recent addition to the anti-ageing strategies 
being developed, comes from cellular reprogramming 
approaches. Induced pluripotency studies provided evi-
dence that age-related cellular phenotypes such as mito-
chondrial morphology, function and number, as well as 
nuclear envelope integrity, are not irreversible [17, 36–
39]. However, developmental cellular reprogramming 
turns a cell to a pluripotent state, where it has the poten-
tial to generate any somatic cell type [40–42]. This pro-
cess is not appropriate for an anti-ageing therapy in vivo 
because it requires not only the loss of the original cellu-
lar identity, but also the re-establishment of self-renewal 
capabilities. Therefore, induction of pluripotency or the 
direct injection of pluripotent cells in vivo, invariably lead 
to cancer in mice [43–46]. For a cellular reprogramming-
based intervention to be considered rejuvenative (turn-
ing an old cell into a younger cell), we need to uncouple 
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its effects from dedifferentiation (loss of somatic cell 
identity).

To separate rejuvenation from dedifferentiation, ageing 
trajectories and somatic cell identity must be analysed 
simultaneously. Ageing can be assessed by:

(a) epigenetic clocks; DNA methlyation-based age pre-
dictors created using penalised regression models, 
where a select group of CpGs that have a mono-
tonically increasing relationship with age in a given 
training data are used to predict age [47]. Differ-
ences between the predicted epigenetic age (eAge) 
and chronological age (chAge) within individuals 
have been associated with diseases and environ-
mental factors that appear to increase or decrease 
ageing at a physiological level [48–59].

 Hence, eAge has become a primary candidate metric 
for estimating biological age [60].

(b) gene transcription; analysis of key age-associated 
genes that increase or decrease in transcription 
with age and are associated with age-related out-
comes [61–72]. A number of gene transcription-
based clocks have been created in a similar man-
ner to epigenetic clocks, but very few of them have 
been validated in other studies [68, 71–73].

(c) amelioration of physiological (e.g. declining organ 
function) and cellular (e.g. genomic integrity, mito-
chondrial health, nuclear envelope integrity, tel-
omere length) ageing hallmarks [2, 74].

In this review, we will evaluate the current status of cel-
lular reprogramming in the application of rejuvenation. 
We will also contextualise the efficacy of cellular repro-
gramming within the growing field of epigenetic age 
prediction.

Cellular reprogramming demonstrates 
that age‑related cellular changes are 
not irreversible
Somatic cell nuclear transfer
In 1957, Conrad Waddington postulated that once a cell 
is fully differentiated, it cannot revert back to a pluripo-
tent state [75]. The first evidence that cellular differentia-
tion is malleable came shortly after with the development 
of somatic cell nuclear transfer (SCNT) [76, 77], where 
a somatic cell nucleus is transferred into an enucleated, 
unfertilized egg cell and divides to form an embryo that 
is genetically identical to the donor cell. Initial cloning 
experiments with SCNT were conducted with frogs [76, 
77]. SCNT as a cloning process gained publicity when it 
was used to create the first ever cloned mammal, “Dolly” 
the sheep. An SCNT-derived artificial sheep zygote was 

implanted into a surrogate mother, resulting in the birth 
of a viable cloned sheep genetically identical to the ini-
tial donor [78]. One of the first questions raised was 
regarding the “age” of Dolly’s cells [79]. Did the biologi-
cal age of Dolly’s cells match her chAge, or the chAge of 
her somatic donor? Indeed, the premature death of Dolly 
(aged 6.5 years) with normal life expectancy of 12 years 
for Dolly’s breed of sheep, combined with developing 
osteoarthritis [80, 81] raised concerns regarding Dolly’s 
biological age.

Telomere length was one of the main biomarkers avail-
able to measure age when Dolly was first created [82–
85]. Analysis of Dolly’s cells revealed that the telomeres 
were actually shorter by ~20% compared to age-matched 
control sheep [86]. This observation initially suggested 
that SCNT does not reset biological age to zero [79]. 
However, analysis of telomeres of other SCNT-derived 
sheep (including sheep derived from the same cell line 
as Dolly) and other animals (e.g. mice) had normal tel-
omere lengths for their respective age groups [80, 87–91]. 
Indeed, a recent study showed that SCNT of telomerase 
haplo-insufficient cells restores telomere length [92]. The 
exact reason Dolly had such anomalous health conditions 
remains a mystery, but as a proof-of-principle, SCNT 
showed that the reprogramming capabilities of the ovum 
may hold rejuvenative factors.

Induced pluripotent stem cells
Groundbreaking work by Takahashi and Yamanaka in 
2006 further proved that somatic cell identity is indeed 
rewritable. They showed that overexpression of four tran-
scription factors (Oct3/4, Sox2, Klf4 and c-Myc, now 
referred to as the “Yamanaka factors” or “OSKM” fac-
tors) rearranges the epigenetic landscape and converts 
somatic cells to a pluripotent state [42, 93]. Since the cre-
ation of induced pluripotent stem cells (iPSCs) in  vitro, 
it has become clear that cellular identity is dictated by 
epigenetic changes, rather than by loss or alterations of 
genomic DNA [94, 95]. The process of generating iPSCs 
has been optimised over the years, and has also been 
achieved via chemical induction, rather than forced gene 
expression, in mouse cells [96–98]. iPSCs offer the prom-
ise of directed, personalised regenerative therapy (i.e. 
iPSCs grown from patient cells, minimising incompatibil-
ity) for diseases that are currently incurable, such as neu-
rodegenerative diseases of the central nervous system, 
heart infarction, diabetes mellitus, and also liver, lung, 
and kidney disease varieties [46]. However, ethical and 
safety considerations have to be met before iPSCs can be 
implemented for in vivo procedures [42, 46, 99], primar-
ily regarding cancer risk.

After reprogramming, many signs of cellular ageing 
such as nuclear envelope integrity and mitochondrial 
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morphology, function and number are improved [17, 36, 
38, 39]. It has been proposed that as a cell converts to a 
pluripotent state, the aged epigenome is also reset to zero 
[94, 100]. Indeed, the Horvath epigenetic clock confirmed 
that ESCs and iPSCs have an eAge around zero [101] and 
it has recently been shown that in vivo, eAge reaches its 
“ground zero” state between E4.5–E10.5 in mice (a time-
frame which encompasses the pluripotent state), after 
which organismal ageing begins [102, 103]. Telomeres of 
iPSCs are longer than in the parent differentiated cells, 
and are comparable in length to telomeres of control 
ESCs [104]. Telomere resetting even occurs when repro-
gramming somatic cells from both Hutchinson-Gilford 
progeria syndrome (HGPS) and supercentenarians [105].

Reprogramming‑induced epigenetic rejuvenation
Reprogramming cells to pluripotency has shown that, 
in principle, age-related cellular phenotypes can be 
reversed, including in non-dividing, terminally differenti-
ated cells [106–112]. However, this is based on dediffer-
entiation, turning cells into a stem-cell like state, as the 
underlying process. Dedifferentiation is also a process 
observed in oncogenesis [113–115]. To avoid the risk of 
cancer induction another strategy was proposed: epige-
netic rejuvenation-where an old cell is made young again 
without a change of cell identity, i.e. dedifferentiation 
[94, 100, 116]. If, for example, the reversal of age dur-
ing cellular reprogramming could be uncoupled from 
dedifferentiation, a viable rejuvenation strategy safe from 
cancer risk might exist. To achieve epigenetic rejuvena-
tion via reprogramming factors, studies must first look 
at the intermediate states during dedifferentiation, where 
cells have started to epigenetically change (presum-
ably de-age), but have not yet fully dedifferentiated [94, 
100]. Partially reprogrammed cells are such examples, 
which are isolated between days 3 and 15 during classi-
cal human OSKM-induced dedifferentiation and have 
not yet lost their somatic identity [117, 118]. Therefore, 
partial reprogramming is a method of using OSKM fac-
tors (or alternative reprogramming factors, in the wider 

context) to revert aged cells to a younger state without 
completing the reprogramming cycle, thus retaining their 
cellular identity. A pilot attempt at conceptually testing 
epigenetic rejuvenation was made by Manukyan et  al. 
where OSKM+LIN28 was expressed in human senes-
cent fibroblasts and the mobility of heterochromatin 
protein 1β (HP1β) was restored to non-senescent  levels, 
but not human embryonic stem cell (hESC) levels [119, 
120], with the caveat that senescent/non-senescent are 
not the same as old/young fibroblasts (Fig. 1A). Further-
more, Ocampo et  al. demonstrated that partial repro-
gramming, achieved by transient, periodic induction 
of OSKM (2 days on, then 5 days off, repeated several 
times), ameliorates signs of ageing without loss of cellular 
identity [74]. They conducted partial reprogramming first 
on progeroid (model for HGPS) mouse fibroblasts and 
alleviated age-associated hallmarks, such as DNA dam-
age, nuclear envelope damage, dysregulation of histone 
modifications, stress and senescence associated factors, 
and mitochondrial-associated reactive oxygen species 
(ROS) production (cellular and epigenetic differences 
between aged and young cells and tissues are reviewed in 
detail in [121, 122]). Similar rejuvenation of dysregulated 
histone modifications was also observed when transient 
reprogramming was conducted on high-passage human 
fibroblasts (derived from iPSCs). Partial reprogram-
ming was also applied in  vivo to progeroid mice, which 
extended their lifespan in the absence of teratoma for-
mation. When repeated in naturally aged mid-life mice, 
regenerative capacity of muscle and pancreas after injury 
was improved, as well as glucose tolerance (Fig. 1B; [74]).

Since Ocampo et  al.’s transiently expressed OSKM in 
mice, partial reprogramming has become an exciting 
avenue for rejuvenation research. Unfortunately, eAge 
prediction for mouse was unavailable for Ocampo et al., 
hence the exact extent of rejuvenation by partial repro-
gramming in  vivo could not be quantified. What also 
remained unclear was the nature of rejuvenation occur-
ring. Was a subpopulation of cells dedifferentiating, or 

(See figure on next page.)
Fig. 1 Cellular reprogramming experiments that induce epigenetic rejuvenation. A Fluorescent recovery of heterochromatin protein 1β (HP1β) 
in senescent cells was restored to the same level as non-senescent cells after nine days of OSKML treatment [119]. B OSKM treatment increased 
lifespan of progeria mice, improved the regenerative capacity of muscle and pancreas, as well as glucose tolerance [74]. C Overlaid summary of 
iPSC reprogramming time-course experiments by [118] and [73]. Upper panel: Horvath multi-tissue age predictor applied to OSKM-expressing 
adult fibroblasts [118]. The experimental setup of Gill et al. includes OSKM-free culturing at the time points in red for a minimum of four weeks. 
Day 13 was identified by Gill et al. as most suitable for OSKM withdrawal, where highest stable rejuvenation (eAge reduction) can be achieved: 
approximately 30 years, same as shown before OSKM withdrawal by Olova et al. Lower panel: The bars align with the time-course and summarise 
phases and patterns of gene expression as reported in Olova et al. “eAge drop onset” and “Point of no return” cannot be attributed to a precise day 
in the presented data as they occur between actual experimental time points. D OSKMNL-treatment of aged fibroblasts and endothelial cells results 
in a significant decrease in eAge (according to the Horvath clock), and a transcription profile resembling that of young fibroblasts/endothelial cells 
[125]. E 4 weeks of OSK treatment of 12 month old mice resulting in improved DNA methylation ageing signature, rejuvenation of age-related gene 
expression, and improved visual performance [127]
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Fig. 1 (See legend on previous page.)
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partially dedifferentiating and producing a rejuvena-
tive effect to surrounding cells by being more stem-like? 
Alternatively, were the cells epigenetically rejuvenated, 
meaning that they became more youthful without loss of 
somatic cell identity?

To test these scenarios, two biomarkers were required 
to track (i) biological ageing and (ii) dedifferentiation 
state. We  previously applied various eAge predictors to 
a well studied 49-day reprogramming time-course on 
human dermal fibroblasts (HDFs) that had both methyla-
tion data (to track eAge as a proxy for biological age) and 
gene expression data (to track cellular markers as a proxy 
for  somatic identity) [118, 123]. This dataset was suita-
ble to analyse since only cells expressing both the OSKM 
reporter (GFP) and TRA-1-60 (hESC marker) were flow 
sorted for analysis after day 3. Decline in eAge started 
after day 3 and steadily decreased until reaching eAge 
zero at day 20, well before the end of the reprogramming 
time-course (Fig. 1C). Meanwhile, fibroblast marker gene 
expression decreased but maintained comparatively sta-
ble levels until day 15, after which it dropped dramati-
cally. The TRA-1-60(+) cell populations at days 7 and 
11 were previously characterised as “partially repro-
grammed” due to their high expression of pluripotency 
markers but also high reversion rates towards a somatic 
state [117]. This state, however, did not persist by day 
15, when over 90 percent of cells could not spontane-
ously revert back to their somatic state after withdrawal 
of OSKM factors. Thus, the majority of day 15 cells were 
beyond the “point of no return” and into the more com-
mitted maturation phase of reprogramming, where the 
memory of their original cell identity is lost [117]. The 
“safe” from dedifferentiation partially reprogrammed 
state commenced before day 7 and ended between days 
11 and 15 in the time-course, a window, which we pro-
visionally positioned between days 3 and 13 [118] In this 
time-frame, the eAge of the partially reprogrammed cells 
already dropped dramatically by 30 to 35 years according 
to the Horvath clock (Fig. 1C). Thus, the partially repro-
grammed state could provide a “safe window” where cells 
reach substantial epigenetic rejuvenation whilst retaining 
the ability to revert back to their original somatic identity.

Given the fixed number of time-points in Ohnuki 
et  al.’s data, further investigation was required to firmly 
define the boundaries of a “safe” rejuvenation window. 
Another important question was whether the partially 
reprogrammed cells would retain their lower eAge and 
show a stable rejuvenated phenotype after reversion to 
somatic state, or would they quickly revert back to their 
original eAge? A recent preprint by Gill et al. addressed 
these questions using a similar in  vitro reprogramming 
system with fibroblasts from middle aged donors and 
discontinuing OSKM expression after days 10, 13, 15 

or 17 [73]. Importantly, the study confirmed a rejuve-
nated phenotype of the transiently reprogrammed cells, 
which is maintained upon reversion to somatic state 
at least four weeks after OSKM withdrawal. These cells 
retained lower eAge and showed lower transcriptional 
age, down-regulated age-associated gene expression 
and upregulated expression of genes characteristic for 
younger cells such as collagens (Fig.  1C). The authors 
defined day 13 as a “sweet spot” for rejuvenation, where 
eAge was reduced by approximately 30 years post OSKM 
withdrawal. This observation is consistent with the eAge 
reduction observed in the Ohnuki et  al’s data for day 
13 before OSKM withdrawal (through interpolation 
between time points), which also coincides with the par-
tially reprogrammed “safe window” boundary defined in 
Olova et  al. In addition, Gill et  al. show that fibroblast-
specific enhancers remained demethylated during the 
transient OSKM exposure, therefore acting as a carrier 
of epigenetic memory for fibroblast identity and facili-
tating the reversion to the somatic state. This supports 
our observation that during the partial reprogramming 
window, somatic genes maintain lower but stable expres-
sion, which does not drop to ESC and iPSC levels [118], 
pointing to a suppressed transcriptional program, which 
is "on hold" and not yet lost. An open question that nei-
ther of the two studies have firmly answered, remains the 
possibility that the de-ageing rate follows backwards the 
ticking rate of ageing throughout lifetime as measured by 
the Horvath clock, i.e. linear (slower) at first, followed by 
logarithmic (faster) before actual reset to zero (Fig.  1C, 
[101, 124]).

Other studies have confirmed and extended previ-
ous observations. Sarkar et  al. transiently expressed 
OSKM+LIN28+NANOG (OSKMLN) in adult human 
dermal fibroblasts and endothelial cells for four days and 
analysed gene expression and methylation two days after 
interruption (Ocampo et al. by comparison used a doxy-
cyclin-inducable system and forced expression 2–4 days 
in cell cultures; Fig. 1D; [125]). An important feature in 
this system is that OSKMLN is introduced non-integra-
tively as a cocktail of mRNA molecules, meaning there 
is no random integration of OSMKLN in the genome, 
which minimises oncogenic risk. They compared the 
eAge and RNA expression of aged (60–90 year old) 
samples before and after treatment, with young (15–35 
year old) samples. According to the Horvath clock, the 
OSKMNL treatment significantly reduced age in both the 
fibroblasts (mean age acceleration = − 1.84) and endothe-
lial cells (mean age acceleration = − 4.94), although the 
effect was more pronounced in the latter. Another study 
developed a skin-specific eAge predictor and confirmed 
the rejuvenation of Sarkar et  al’s OSKML treated fibro-
blasts [126]. In both tissues, RNA-seq analysis revealed 
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that treated cells were transcriptionally comparable 
to younger cells than the original aged cells. This could 
be seen to a certain extent in a PCA analysis where in 
both tissues, treated cells tend to cluster closer to young 
cells than original aged cells. Rejuvenative effects were 
observed in analysis of other markers for heterochroma-
tin, lamina, proteosomal activity, autophagosome forma-
tion and mitochondrial ROS. Additionally, expression 
of cell identity markers was maintained in the treated 
cells, meaning no loss of somatic identity occurred [125]. 
While adding significant evidence towards partial repro-
gramming as an epigenetic rejuvenation approach, no cell 
sorting based on pluripotency markers was conducted, 
which makes it difficult to place the transiently repro-
grammed cells within the reprogramming trajectory of 
the other in vitro experiments.

Sarkar et al. went on to test the effect of partial repro-
gramming on stem cells by transplanting young, old, and 
transient OSKMNL-treated old mouse-derived skel-
etal muscle stem cells (MuSCs) into injured muscles of 
immunocompromised mice. They observed an improved 
regenerative ability in the OSKMNL-treated old MuSCs, 
comparable to that of the young MuSCs, and no terato-
mas or neoplastic lesions developed. Improved muscle 
function was also observed in the muscles grafted with 
OSKMNL-treated old MuSCs compared to untreated old 
MuSCs. Sarkar et  al. repeated the experiment with old 
(60–80 years) human MuSCs, and found that they also 
had a higher proliferative capacity than the untreated 
cells, comparable to young human MuSCs [125].

Another cellular reprogramming approach has recently 
been tested in age- and injury-dependent impaired vision 
in mice [127]. Lu et  al. showed that ectopic expression 
of Oct4, Sox2 and Klf4 (OSK) stimulated axon regen-
eration in an optic-nerve-crush-injury mouse model. 
The same strategy led to improved vision in a glaucoma 
mouse model. OSK treatment in healthy 12 month 
old mice improved visual acuity, and age-related gene 
expression more closely resembled that of young (4 or 5 
month old) mice (Fig.  1E). An age-related DNA meth-
ylation signature of 1226 CpGs based on age, injury and 
OSK treatment was developed. A PCA of these CpGs was 
conducted using 14 control samples, which were used to 
create an “ageing signature”. According to this signature, 
the OSK-treated 12 month old mice ranked lower than 
the -OSK mice. Unfortunately, these results could not 
be replicated in aged (18 months) mice. Unlike Ocampo 
et al. who cyclically induced OSKM expression (continu-
ous expression for 2 days out of repeated 7 day intervals), 
Lu et  al. expressed OSK continuously. They excluded 
c-Myc from their treatment to avoid teratoma forma-
tion, since it is an oncogene [128]. In addition to its role 
in oncogenesis, reduced c-Myc expression also increases 

lifespan in mice [128]. After 10–18 months of continuous 
OSK expression in mice, no increase of tumour incidence 
was observed [127]. However, no direct measurement of 
cell identity or extent of dedifferentiation (e.g. somatic or 
pluripotency genes) was performed. It is therefore possi-
ble that cells are dedifferentiating, with the caveats men-
tioned above, rather than reversing their age.

During the revision of this manuscript, two pre-
prints were released addressing cellular reprogramming 
and rejuvenation. A single two and a half weeks course 
of OSKM treatment in two months old heterozygous 
progeria mice increased lifespan and improved organ 
integrity, metabolism and motor skills [129]. These 
improvements were also maintained throughout the 
lifespan of the mice, pointing to a stably rejuvenated 
phenotype in time. Also, the first in  vitro study utilis-
ing scRNA-seq showed that transient OSKM treatment 
restores a youthful transcriptomic ageing signature in 
both mouse adipogenic cells (adipocyte progenitors) and 
mesenchymal embryonic stem cells [130].

Conclusion
Cellular reprogramming has demonstrated potential 
not only in regenerative medicine, but also in the age-
ing field through the amelioration of both physiological 
and cellular ageing hallmarks. While partial reprogram-
ming might be used as a catch-all term to describe this 
type of rejuvenation, it does not reflect the fact that the 
described interrupted cellular reprogramming tech-
niques are applied with the aim of (epigenetic) reju-
venation as opposed to inducing pluripotency (loss of 
cell identity). Reprogramming-induced rejuvenation 
(RIR) is a better term, capturing the nature of the uti-
lised process and final aim of the interventions [131]. 
RIR has shown promise as a treatment to safely reverse 
ageing whilst retaining the ability to revert to or main-
tain original cell identity, both in vivo [74, 127, 129] and 
in  vitro [73, 118, 125]. However, the precise nature of 
RIR still needs to be fully understood before it can be 
safely implemented as an anti-ageing treatment. For 
example, tracking any traces of pluripotency in partially 
reprogrammed cells (particularly in vivo) is a necessary 
precaution to minimise long-term cancer risk. Addi-
tionally, can rejuvenated partially reprogrammed cells 
be cultured long-term? According to Gill et al. the reju-
venated phenotype of their OSKM-treated cells lasts at 
least four weeks [73], but does this phenotype remain 
stable or eventually start to deteriorate at a rate faster 
than normal ageing?

Other important RIR safety concerns include how 
the reprogramming factors are introduced in  vivo. Ret-
roviruses are commonly used to integrate reprogram-
ming factors into the genome [42, 93, 123]. However, 
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this method bears risks, such as insertional mutagenesis, 
residual expression and re-activation of reprogramming 
factors, and retrotransposon activation, all of which 
could increase cancer risk in  vivo [132, 133]. Non-inte-
grative delivery methods, such as transient transfection, 
non-integrating viral vectors, and RNA transfection are 
safer alternatives [132]. For example, Sarkar et  al. suc-
cessfully used mRNA transfection to non-integratively 
conduct RIR [125]. Another safe alternative is chemical-
based reprogramming, which involves direct conversion 
of a somatic cell to a pluripotent state by use of small 
molecules and growth factors [96–98]. It also avoids use 
of c-Myc, which is an oncogene [128]. It is conceivable 
that, in the future, chemical-based reprogramming could 
be adapted to achieve rejuvenation, however, this repro-
gramming approach currently only works for mice.

While RIR applied to skeletal muscle stem cells appears 
effective in improving regenerative capacity and muscle 
function in immunocompromised mice [125], further 
analysis is required regarding the somatic mosaicism of 
partially reprogrammed stem cells. Somatic variants at a 
stem or early progenitor cell level in turn can cause line-
age bias, reduced stem cell function and increased risk of 
developing haematologic cancer (e.g. age-related clonal 
haematopoesis; [134–136]). This can lead to the develop-
ment of pre-malignant cells, which have a higher propen-
sity to transform to a malignant state [44, 45], the effect 
of which could be attenuated or exacerbated by RIR.

It also remains to be further explored whether and 
how RIR would work on post-mitotic terminally differ-
entiated cells, such as neurons, cardiomyocytes or adipo-
cytes, but also other non-dividing cells such as quiescent 
or senescent cells. Pilot work has been done in the latter 
two states [119, 125], demonstrating that a rejuvenated 
phenotype is achievable after restoration of cell division. 
These results may point to a scenario where prolifera-
tion is an essential requirement for rejuvenation. Indeed, 
induced pluripotency of postnatal neurons was only pos-
sible after forced cell proliferation via p53 expression 
[111]. Coincidentally, the natural rejuvenation event in 
the early mouse embryo spans over stages of very active 
cell proliferation (E4.5–E10.5) [103].

Overall, RIR is currently the best prospect to achieve 
epigenetic rejuvenation. Further studies are required to 
fully determine its limitations and efficacy.
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