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Abstract 

Background: Disease progression and therapeutic resistance are hallmarks of advanced stage prostate cancer 
(PCa), which remains a major cause of cancer‑related mortality around the world. Longitudinal studies, coupled with 
the use of liquid biopsies, offer a potentially new and minimally invasive platform to study the dynamics of tumour 
progression. Our aim was to investigate the dynamics of personal DNA methylomic profiles of metastatic PCa (mPCa) 
patients, during disease progression and therapy administration.

Results: Forty‑eight plasma samples from 9 mPCa patients were collected, longitudinally, over 13–21 months. After 
circulating cell‑free DNA (cfDNA) isolation, DNA methylation was profiled using the Infinium MethylationEPIC Bead‑
Chip. The top 5% most variable probes across time, within each individual, were utilised to study dynamic methylation 
patterns during disease progression and therapeutic response. Statistical testing was carried out to identify differen‑
tially methylated genes (DMGs) in cfDNA, which were subsequently validated in two independent mPCa (cfDNA and 
FFPE tissue) cohorts. Individual cfDNA global methylation patterns were temporally stable throughout the disease 
course. However, a proportion of CpG sites presented a dynamic temporal pattern that was consistent with clinical 
events, including different therapies, and were prominently associated with genes linked to immune response path‑
ways. Additionally, study of the tumour fraction of cfDNA identified > 2000 DMGs with dynamic methylation patterns.

Conclusions: Longitudinal assessment of cfDNA methylation in mPCa patients unveiled dynamic patterns associated 
with disease progression and therapy administration, thus highlighting the potential of using liquid biopsies to study 
PCa evolution at a methylomic level.
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Introduction
Despite its 5-year survival rate of nearly 100% for local-
ized disease, prostate cancer (PCa) is still considered 
a major cause of morbidity and mortality, accounting 
for approximately 7.6% of all cancer-related deaths 
worldwide [1]. Numerous studies have highlighted the 

importance of epigenetic aberrations, particularly DNA 
methylation, in PCa [2–4]. However, a knowledge-gap 
surrounds the dynamics of epigenetic alterations during 
disease progression and treatment resistance. Such inves-
tigations are typically hampered by the validity of per-
forming molecular characterisation on archival tumour 
tissue acquired at diagnosis, often several years before 
disease progression. Moreover, acquiring serial biopsies 
or sampling multiple lesions to study tumour dynamics 
remains impractical and unethical.
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Longitudinal studies have long been used to decipher 
the temporal association of disease traits in an effort to 
elucidate specific biological pathways and better under-
stand variability observed among individuals. However, 
there is a dearth of longitudinal epigenetic studies in 
cancer, as most studies have focused on associations 
between epigenetic modifications and aging [5, 6]. Liq-
uid biopsies provide an opportunity to overcome chal-
lenges associated with tissue biopsies and incorporate 
longitudinal assessment into the management of can-
cer patients. Circulating tumour DNA (ctDNA) can 
be noninvasively evaluated in blood plasma and sev-
eral studies have shown that PCa-specific methylation 
alterations can be studied using this approach [7–9], 
with recent evidence showing that ctDNA profiles are 
consistent with metastatic tissue [10]. Additionally, 
since ctDNA is shed from different focal lesions, it 
overcomes spatial and clonal heterogeneity [11], thus 
making liquid biopsies an ideal surrogate to study the 
dynamics of tumour progression and real-time disease 
monitoring.

The aim of this study was to investigate the dynam-
ics of individual methylomic profiles of metastatic PCa 
(mPCa) patients. Through longitudinal analysis of cir-
culating cell-free DNA (cfDNA), we demonstrate the 
feasibility of this approach to study tumour dynamics 
and monitor disease-associated characteristics.

Results
Study cohort characteristics
Longitudinal assessment of methylation dynamics 
in 9 mPCa patients (comprising 48 cfDNA samples) 
was performed over at least 4 time points for an aver-
age of 19.11  months (Table  1). The shortest follow-up 
time (13 months) was attributed to death from disease. 
During follow-up, subjects received up to four differ-
ent therapies: 88.9% had luteinizing hormone-releas-
ing hormone (LHRH) agonists/antagonists, 100% had 
chemotherapy (taxanes), 88.9% had androgen receptor 
(AR) inhibitors and 33.3% had radioisotopes.

To assess the prostate content in the cfDNA samples, 
we utilised the human cell-type DNA methylation atlas 
[12]. Sixteen of 48 samples (33.3%), across 6 patients, 
had detectable prostate-derived DNA; 10 of whom had 
prostate content (PC) ≥ 10% (Fig.  1A). Samples with 
the largest prostate contribution came from two sub-
jects, one (S019) had the highest tumour burden (as 
measured by prostate-specific antigen, PSA), and the 
second (S008) died from disease during follow-up. For 
the remaining samples, sources of cfDNA were largely 
attributed to cells of hematopoietic origin, as previ-
ously observed [12].

Global cfDNA methylation profiles are temporally stable
In order to understand the dynamics of cfDNA meth-
ylation during PCa progression and sequential thera-
pies, we analysed the global methylation patterns of 
all samples. Principal component analysis was used to 
understand methylation differences between individu-
als, with this analysis showing little variance between 
samples and/or individuals (Fig.  1B). Interestingly, the 
biggest difference stemmed from prostate cellular con-
tribution, as samples from S019 clearly separated from 
all other samples. We next investigated the degree to 
which global methylation changed over time within 
individuals. Evaluation of temporal divergence showed 
that most probes remained relatively stable (stand-
ard deviation—SD < 0.1), indicating a low intra-subject 
variation in cfDNA methylation (Fig. 1C). Again, S019 

Table 1 Clinical characteristics of the study cohort (n = 9)

AR androgen receptor, cfDNA cell-free DNA, LHRH Luteinizing hormone-releasing 
hormone, mPCa metastatic prostate cancer, mCRPC metastatic castration 
resistant prostate cancer, PSA prostate-specific antigen

Other notes: aAge at time of recruitment
b Prior to recruitment
c Cohort classification: Cohort 1—patient was on/starting androgen deprivation 
therapy at time of recruitment, and had no evidence of castration resistance; 
Cohort 2—patient had castration resistant disease at time of recruitment
d Timepoint refers to number of cfDNA isolations available for study
e At any given timepoint
f During follow-up in the iPROSPECT study
g Follow-up time reflects last timepoint obtained for this analysis

Mean  agea, years (range) 64.2 (51–74)

Gleason score at diagnosisb, n (%)

7 (3 + 4) 5 (55.6)

9 4 (44.4)

Metastatic sites, n (%)

Bone 9 (100)

Lymph node 2 (22.2)

Evidence of castration resistance at recruitment (cohort)c, n (%)

No (mPCa; cohort 1) 5 (55.6)

Yes (mCRPC; cohort 2) 4 (44.4)

Number of timepointsd, n (%)

4 2 (22.2)

5 2 (22.2)

6 5 (55.6)

Mean cfDNA  concentratione, ng/ul (range) 5.08 (0.61–38)

Mean PSA  levelse, ng/ml (range) 35.3 (0.1–352.1)

Therapies administeredf, n (%)

LHRH agonists/antagonists 8 (88.9)

Taxanes 9 (100)

AR‑inhibitors 8 (88.9)

Radioisotopes 3 (33.3)

Mean follow‑up  timeg, months (range) 19.1 (13–21)
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was distinct, displaying the greatest degree of temporal 
variation.

The dynamic patterns of the 5′-regulatory probes 
within the top 5% most variable probes (MVPs) (Addi-
tional file 1: Fig. S1) were analysed for congruence over 
time, and assessed in conjunction with the disease course 
for each individual (Fig.  2A and Additional file  1: Figs. 
S2–S9). Probes with similar patterns were aggregated 
into clusters. Individuals displayed as few as two probe 
clusters (S019) and as many as seven (S007) (Fig.  2B 
and Additional file  1: Figs. S2–S9). Greater numbers of 
probe clusters suggest that the most variably methyl-
ated genes in these patients behave differently through-
out the disease course and therapeutic response. Indeed, 
some methylated gene clusters correlated with clinical 
events. For example, in subjects with high PC samples 
(S008 and S019), methylation dynamics mimicked PSA 
patterns, with methylation shifts coinciding with PSA 
changes observed in these patients (Fig. 2 and Additional 
file 1: Fig. S8). Findings also indicate that therapy admin-
istration may affect cfDNA methylation dynamics, with 
most subjects demonstrating a notable shift in meth-
ylation patterns following taxane administration (Fig. 2C 

and Additional file  1: Figs. S2–S9). This is evident, for 
example, by the methylation difference observed in S019 
between administration of cabazitaxel at baseline (BL) 
and follow-up 1 (FU1) (Fig. 2C). AR inhibition may also 
confer temporal epigenomic shifts, as shown by meth-
ylation changes in 4/6 probe clusters in S007, after com-
mencing enzalutamide at month 11 (Additional file  1: 
Fig. S7).

Overall, although the majority of the methylome 
remained stable over time, a proportion of 5′ regulatory 
CpGs had a dynamic longitudinal pattern, consistent 
with clinical events.

Dynamic methylation patterns during therapy 
administration are associated with an immune response 
element
To further explore the relationship between cfDNA 
methylation changes and therapy administration, we 
examined each subject’s MVPs and measured methyla-
tion changes (absolute β ≥ 0.1 difference) between time-
points after therapy began. For most subjects, over 50% 
of the MVPs displayed a methylation change after taxane 
(Fig.  3A) or AR inhibitor (Fig.  3B). Notably, both drugs 

A

C

B

Fig. 1 Longitudinal assessment of global methylation uncovers low‑intra subject variability. A cfDNA concentration (ng/µL) and proportion of 
prostate content (%) for forty‑eight cfDNA samples. cfDNA concentration ranged from 0.61 to 38 ng/µL and prostate content from 0 to 49.1%. 
B Principal component analysis of the 801,849 EPIC array probes available after QC and pre‑processing of raw data depicts the methylation 
differences between the 9 subjects at different timepoints. C Temporal probe variability for each subject. Gold circles represent the top 5% most 
variable probes. BL Baseline, cfDNA cell‑free DNA, FU follow‑up, mCRPC metastatic castration resistant prostate cancer, mPCa metastatic prostate 
cancer, NTS new treatment strategy, SD standard deviation
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were administered simultaneously for S017 and S029, 
hindering any conclusions about methylation changes 
that might be associated with a specific therapy.

A detailed look at the cluster analysis also uncovered 
a methylation shift after taxane termination, such as 
the ones observed after FU1 in S019, bringing methyla-
tion patterns to a pre-therapy level (Fig. 2C; other exam-
ples are shown in Additional file 1: Figs. S2–S9). Indeed, 
reviewing all hyper- and hypo-MVPs showed that most 

were only transiently affected by taxanes, with their 
methylation shift largely dissipating upon therapy cessa-
tion (Additional file 1: Fig. S10).

Additionally, we investigated if the probes that changed 
after therapy administration were associated with any 
biological processes and pathways. Studying the most 
significantly represented processes associated with both 
taxane and AR therapy administration (FDR p < 0.05), we 
observed that a high proportion of gene ontology (GO) 
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Fig. 2 Longitudinal analysis of metastatic PCa patient S019 highlights dynamic methylation patterns across time and their association with 
clinical findings. A Disease course (since recruitment to iPROSPECT study—baseline). PSA levels (ng/mL) and cfDNA concentration (ng/µL) are 
represented in the left (black) and right (red) y axis, respectively. Details of therapies administered are indicated by coloured lines below the graph: 
LHRH agonists/antagonist (orange), taxane (pink), AR inhibitors (blue) and radioisotopes (yellow). B Heatmap showing the similarity of patterns 
between probes, located in 5′ regulatory regions (n = 9549), across time. Probes with similar methylation patterns were aggregated into clusters, 
which are identified in the heatmap by purple boxes and numbers. Unsupervised clustering was performed using euclidean distances between 
probes and coloured legend reflects magnitude of those distances (blue to yellow–small to large distance). C Methylation dynamics observed for 
genes identified through cluster analysis, with total number of genes used indicated in the top right corner for each cluster. Only genes represented 
by ≥ 2 dynamic CpGs are shown. Blue filled area represents methylation values observed at each time point, with edges indicating the maximum 
and minimum values observed. Darker blue line represents the observed mean methylation value of all genes. Black lines, on the upper part of the 
plots, indicate the duration of administration of a specific PCa therapies, whose effect was explored in our study (taxanes—T; AR inhibitors—AR). BL 
baseline, cfDNA cell‑free DNA, FU follow‑up, PSA prostate specific antigen
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terms were associated with immune response (Fig.  3C, 
D). Other processes were also enriched, such as signal-
ing, cellular components and neurological system. This 
might be expected, since most cfDNA samples had sub-
stantial contribution from cells of hematopoietic origin. 
Notably, S008 and S019 were distinct; their cfDNA was 
enriched for transcriptional regulation and multicellular 
processes, perhaps reflecting their higher PC and thus 
genes involved in PCa (Fig. 3C, D).

ctDNA temporal dynamics in mPCa patients
Irrespective of therapy administration, we also examined 
the tumour fraction of cfDNA methylation patterns. To 
do this, we used the top 5% promoter-associated MVPs 
to identify genes with dynamic methylation patterns 
among subjects with PC samples (S008, S009, S019, 
S029). After assessment of their methylation values 
across samples with no prostate content (NPC) from the 
whole cohort (to verify their ctDNA-specificity), a list of 
3435 differentially methylated genes (DMGs) was com-
piled, 1991 hyper- and 1444 hypomethylated (Fig.  4A). 

Notably, several DMGs are already known to be involved 
in PCa carcinogenesis. For example, in our cohort, both 
APC and RASSF1 demonstrated higher methylation, and 
CPEB4 and EPN1 showed lower methylation, when com-
paring PC versus NPC samples (Fig.  4B). The majority 
(72%) of DMGs (1574 hyper- and 900 hypomethylated) 
validated in an independent mPCa cfDNA cohort, where 
DMGs were also compared between PC and NPC sam-
ples [13] (Fig.  4C). Additionally, overlap with the pub-
licly-available COSMIC methylation dataset, showed that 
methylation changes in 53% and 36% of these hyper and 
hypomethylated genes, respectively, has been previously 
implicated in PCa (Fig. 4C).

Further validation was carried out in a formalin-fixed, 
paraffin-embedded (FFPE) tissue cohort of six dis-
tinct stages of PCa, to account for potential confound-
ing cfDNA methylation originating from non-prostate 
sources. Certain hyper- and hypomethylated DMGs 
show similar methylation patterns across PCa stages, 
which might suggest that these DMGs are prostate-spe-
cific and differences can only be seen when comparing 

A BTaxanes AR inhibitors
* *

C D

**

Fig. 3 Dynamic methylation patterns observed during PCa therapy administration and their biological relevance. Stacked bar graphs for A 
taxanes and B AR inhibitors, indicate the proportion of the top 5% most variable probes (located in 5′ regulatory regions) with an absolute 
methylation change ≥ 0.1 between the time‑points before and after therapy administration. Probes are classified as hyper‑ or hypomethylated 
according to whether the change resulted in a gain or loss of methylation, respectively. Subjects for whom these two therapies were administered 
simultaneously (*) are indicated. Gene ontology (GO) analysis of probes with methylation changes that were consistent with administration of C 
taxanes and D AR inhibitors. Total number of significant GO terms, for each subject and each dataset (hyper and hypo) is indicated in the right and 
left edges of the graph. Significance threshold was set at FDR p value < 0.05
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prostate with other tissues/cfDNA sources. However, the 
methylation values for most mPCa DMGs were similar to 
observations in the metastatic stage of the FFPE cohort, 
validating our results and suggesting an association 
of these epigenetic alterations and the more advanced 
stages of PCa (Fig. 4D). Additionally, methylation differ-
ences were observed across the different stages of PCa, 
emphasizing the potential role of DNA methylation in 
disease progression (Fig.  4D and Additional file  1: Fig. 
S11).

The majority of both hyper and hypomethylated DMGs 
(60.37% and 93.98%, respectively) were notably unique 
to one subject (Fig.  4A). This again demonstrates the 
renowned molecular heterogeneity of PCa, and the need 
for personalised medicine approaches such as this.

Discussion
In this study, we describe the first personal methylomic 
longitudinal analysis of PCa using cfDNA from 9 mPCa 
patients. Our results reveal that distinct methylation 
dynamics, observed in a proportion of assessed CpG 
sites, were consistent with different clinical events, such 
as PSA progression and therapy administration. Addi-
tionally, specifically studying ctDNA methylation dynam-
ics allowed us to identify genes previously observed as 
epigenetically modified in mPCa [2, 7, 14].

Longitudinal studies are defined by following individu-
als over time to identify disease-specific temporal pat-
terns that relate to stage or burden of disease, or response 
to a given therapy. Understanding these specific patterns 
may result in novel diagnostic, prognostic and monitor-
ing tools that could improve clinical management, and 
also help reduce the burden on the healthcare system. 
This is particularly relevant for advanced stage PCa, 
as the lack of detailed knowledge surrounding disease 

A B

C D

Fig. 4 Identification of differentially methylated genes in cfDNA samples with prostate content and validation of results across independent 
cohorts. A Numbers of significantly hyper and hypomethylated differential methylated genes (DMGs) identified by comparing samples with 
prostate cell content (PC) versus samples without (NPC), across the 4 subjects with samples having substantial prostate content (≥ 10%). B 
Schematic representation of 4 DMGs. Circles represent individual mean β‑values. The 4 subjects with PC samples are distinguished from the 
5 remaining subjects (grey). Statistical analysis identified differences between (1) PC and NPC samples within subjects with prostate content 
and (2) PC samples from subjects with prostate content and all NPC samples. C Validation of DMGs in an independent cfDNA cohort (n = 181). 
Waterfall plot indicates the degree of methylation difference between NPC (considered baseline in this plot) and PC samples for validated DMGs. 
Additionally, overlap of DMGs and the COSMIC methylation dataset indicated genes whose methylation had previously been detected in PCa and/
or other cancers. D Heatmap showing methylation status of validated DMGs in an independent PCa tissue cohort, comprising all histological stages 
of PCa development. Differences between PC and NPC samples in B and C were carried out using an independent t test/Mann–Whitney U test, and 
multiple testing correction (Benjamini–Hochberg method) was used when appropriate. p values are as follow: *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001; 
****p ≤ 0.0001. PC prostate content, NPC no prostate content, PIA proliferative inflammatory atrophy, HGPIN high‑grade prostatic intraepithelial 
neoplasia, PCI prostate cancer (indolent), PCA prostate cancer (aggressive), PCM prostate cancer (metastatic)
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progression has affected clinical management. The stand-
ard use of PSA as a biomarker has been of great bene-
fit for monitoring disease outcomes in PCa (i.e. disease 
progression and response to therapy) [15]. However, it 
offers no insight into the molecular mechanisms driving 
tumour progression or resistance to therapy. Thus, there 
is an unmet need to investigate PCa-specific temporal 
patterns that might uncover the foundations of disease 
progression and contribute towards the establishment of 
a biomarker-guided and risk stratification-based clinical 
management of PCa.

We employed an epigenome-wide array to understand 
longitudinal methylation patterns and how these might be 
influenced by disease progression and treatment change 
in men with metastatic PCa. As previously reported [8, 
12], the use of array platforms with liquid biopsy samples 
averages DNA methylation from distinctive, and poten-
tially multiple, cell types present. We therefore employed 
a methylation atlas to identify the source(s) of the main 
cellular components in each subject’s cfDNA [12]. One-
third of the cfDNA samples in our cohort had detectable 
prostate content; a frequency on par with previous mPCa 
cfDNA studies [16–18]. While statistical methods have 
been developed that adjust methylation data for cell-type 
heterogeneity [19], most focus on whole blood cell popu-
lations or more generic cell types (i.e. epithelial cells), 
overlooking the necessity to analyse tumour-specific pat-
terns. Additionally, there is a dearth of statistical meth-
ods for n-of-1 or personalised approaches, such as this. 
Applying these approaches in this study could affect their 
robustness and lead to erroneous adjustments. Thus, the 
longitudinal observations made in this study are largely 
related to the total cfDNA content.

Temporal analysis of liquid biopsy DNA methylation 
patterns in mPCa individuals throughout disease pro-
gression, drug treatment(s) and relapse showed that 
most CpG sites did not substantially change. This find-
ing supports previous research, which demonstrated that 
the human methylome is relatively stable over time [5, 
20, 21]. However, the proportion of the methylome that 
demonstrated temporal variation was notably evident 
on administration of two PCa therapies: taxanes and AR 
inhibitors. To the best of our knowledge this is the first 
study to interrogate how therapies might affect the PCa 
methylome over time. Changes in CpG methylation fol-
lowing therapy administration were most pronounced 
in genes involved with immune response, including 
ones that encode essential components of the JAK-STAT 
pathway, an important regulator of the inflammatory 
response [22]. This discovery is bolstered by previ-
ous reports, which showed that chemotherapy-induced 
methylation changes could influence immune cells and 
pathways [23, 24]. We also observed that this potential 

therapy-induced methylation shift was transient, and was 
only typically present during the time of drug adminis-
tration. We suggest that this ephemeral pattern may be 
indicative of a systemic-epigenomic response to chemo-
therapy, rather than an epigenetic reprogramming, as 
previously observed during PCa progression [25], which 
would be unlikely to disappear after treatment cessa-
tion. Conversely to systemic treatments, AR inhibitors 
are a targeted PCa therapy that function by antagonis-
ing AR signalling [26]. Although AR receptors are mostly 
expressed in reproductive tissues, they have also been 
implicated in the regulation of multiple cellular pro-
cesses in a variety of other organs and systems [27, 28]. 
In fact, recent reports suggest that AR inhibitors might 
have a role in modulating the immune response in PCa 
[29, 30]. However, the molecular mechanisms by which 
AR inhibitors exert this immune-effect are still unknown. 
Our findings suggest that an epigenetic component could 
be involved.

Longitudinal assessment of methylation patterns 
allowed us to explore the dynamics of epigenetic events 
during metastatic PCa. Using our cohort as a discovery 
set and validating in two independent cohorts, we iden-
tified 2474 DMGs, with some (i.e. AR, GSTP1, RASSF1, 
APC) previously linked to PCa [2]. Two noteworthy 
hypomethylated genes are EPN1 and CPEB4. EPN1 is 
known to actively promote tumorigenesis by enhanc-
ing cell surface receptor endocytosis and upregulating 
tumour growth-related pathways [31]. CPEB4, an mRNA 
binding protein, actively reprogrammes gene expres-
sion by acting as a translational repressor/activator and 
promoting an invasive phenotype [32]. While elevated 
expression of both genes has been reported in several 
invasive cancers, including prostate [31, 33], the mecha-
nism of their upregulation was previously unknown. 
Here, we show that their promoter regions are hypo-
methylated in cfDNA (with detectable prostate content) 
from mPCa patients, suggesting that a loss of promoter 
methylation might play a role in the upregulation of 
CPEB4 and EPN1 in advanced PCa.

Individualised longitudinal studies, such as this, are 
important for precision medicine and to enable a bet-
ter understanding of how to tailor clinical decisions [34, 
35]. Indeed, by analysing serial plasma samples over the 
course of 36  months, Chen and colleagues were able to 
demonstrate that personal DNA methylomes showed 
distinct dynamic patterns that were associated with dif-
ferent physiological conditions, and that those patterns 
were present before the onset of the disease [34]. Our 
study does have some limitations. As an observational 
study with a small cohort size, we cannot causally attrib-
ute methylation changes to specific therapies and any 
attempt to do so would be an over interpretation of the 
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data. Further studies are needed to validate our findings 
and provide robust translational evidence for the appli-
cation of this methodology to the clinic. We prioritised 
promoter methylation within the top 5% MVPs in each 
subject, in order to study the most temporally vari-
able probes and focus on biologically relevant regions, 
as promoter methylation is highly correlated with gene 
expression. However, this represents only ~ 1% of CpG 
sites represented on the EPIC array and > 0.04% of all 
human CpGs. A deeper dive into how the methylome 
(beyond the conventional promoter CpG island) evolves 
during disease progression and therapeutic resistance is 
warranted.

Conclusions
Overall, we show the feasibility of studying longitudinal 
cfDNA methylation patterns in individuals and demon-
strate how these profiles might be influenced by clinical 
events, such as therapeutic administration. Further anal-
ysis into the identification of PCa-specific temporal pat-
terns might improve our understanding on how to better 
use cfDNA-methylation changes for improving monitor-
ing and clinical management of this malignancy.

Methods
Clinical cohorts
Patients were recruited between 2015 and 2016, to a Can-
cer Trials Ireland sponsored translational, multicentre, 
longitudinal study of men with mPCa titled CTRIAL-IE 
(ICORG) 14-04 Irish Programme for Stratified Pros-
tate Cancer Therapy (iPROSPECT). All patients gave 
informed consent for serial blood sampling.

Additionally, two independent validation cohorts were 
used: (1) an FFPE tissue cohort of different histologi-
cal stages of PCa (n = 44, Additional file 1: Table S1 and 
GSE157272), (2) and a previously described cfDNA data-
set (n = 181 mPCa patients) [13].

Sample collection and DNA methylation profiling
Peripheral blood samples were collected at baseline (BL), 
and subsequent follow-ups (FU), every 4 ± 1  months. 
Plasma was isolated, by centrifugation at 2000×g for 
15  min, within 2  h of collection and stored at –  80  °C. 
Forty-eight plasma samples (≤ 3 mL) from 9 participants 
across multiple time points were used for cfDNA isola-
tion, as previously described [8]. cfDNA was bisulfite 
modified using the Zymo EZ DNA methylation kit and 
quality control was by real-time PCR quantification, as 

A B

C D

Fig. 5 Overview of patient samples and study methods. A Fifty‑two plasma samples were used for cfDNA isolation and DNA methylation profiling, 
48 of which were further analysed. Raw data were pre‑processed and were characterised for cellular origin. B The top 5% most variable probes 
(MVPs) within each subject over time were filtered for 5′ regulatory regions and used to analyse dynamic methylation patterns, generating 
congruent clusters. C The effects of drug therapy on cfDNA methylation were analysed by examining changes in methylation of ≥ 0.1 (between 
drug time‑points). D Methylation differences between PC and NPC samples were analysed for the 4 subjects with any number of PC samples. 
Identified differentially methylated genes (DMGs) were validated using two independent PCa cohorts. BL baseline, cfDNA cell‑free DNA, DMGs 
differentially methylated genes, FU follow‑up, mCRPC metastatic castration resistant prostate cancer, mPCa metastatic prostate cancer, MVPs most 
variable probes, NPC non‑prostate content, PC prostate content, SD standard variation
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previously described [36]. Bisulfite modified DNA was 
subjected to the Illumina Restoration kit and analysed 
using the Illumina Infinium Human MethylationEPIC 
BeadChip platform (Fig.  5A). Raw data (GSE157273), 
were pre-processed using minfi [37]. After QC, normali-
zation and probe filtering (Additional file  1), a total of 
801,849 probes were retained for analysis. A similar data 
processing pipeline was applied to the two validation 
cohorts, both run on the Illumina HM450K platform.

The human cell-type DNA methylation atlas [12] was 
used to determine tissue origin of cfDNA samples and 
classify samples into those with prostate content (PC) or 
without (NPC) (Fig. 5A).

Longitudinal methylation analysis
The top 5% MVPs within each subject over time (cal-
culated by SD of β-values), were used to study dynamic 
methylation patterns. Further analysis concentrated on 
5′ regulatory probes, as characterised in Illumina’s EPIC 
array manifesto (TSS1500, TSS200 and 5′UTR), which 
were used to identify clusters of probes that had similar 
methylation patterns over time [38] (Fig.  5B and Addi-
tional file  1). Additionally, the effects of different thera-
pies, taxanes and AR inhibitors, on the methylation of 
cfDNA were examined using the top 5% MVPs between 
commencement and cessation of therapy (Fig.  5C and 
Additional file  1). GO was performed as previously 
described [39, 40]. Finally, ctDNA dynamics were inves-
tigated by analysing genes identified in subjects with PC 
cfDNA (S008, S009, S019 and S029). Genes were consid-
ered differentially methylated (DMGs) after comparison 
with NPC samples from the whole dataset (β ≥ 0.1 dif-
ference, adjusted p value < 0.05) (Additional file 1). Vali-
dation of DMGs was carried out using two independent 
PCa cohorts (Fig. 5D).

Statistical analysis
Unpaired t-test/Mann–Whitney U test were used to 
identify DMGs to study ctDNA dynamics; Kruskal–
Wallis and Dunn’s multiple comparison tests were used 
to evaluate methylation across different histological 
stages of PCa carcinogenesis. Analyses were performed 
using Prism 6 (GraphPad) and R (v3.6.3) and deemed 
significant if FDR-adjusted p value < 0.05. The Benja-
mini–Hochberg method was used for multiple testing 
correction when appropriate.
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