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Abstract 

Background: In an effort to contribute to overcoming the platinum resistance exhibited by most solid tumors, we 
performed an array of epigenetic approaches, integrating next‑generation methodologies and public clinical data to 
identify new potential epi‑biomarkers in ovarian cancer, which is considered the most devastating of gynecological 
malignancies.

Methods: We cross‑analyzed data from methylome assessments and restoration of gene expression through micro‑
array expression in a panel of four paired cisplatin‑sensitive/cisplatin‑resistant ovarian cancer cell lines, along with 
publicly available clinical data from selected individuals representing the state of chemoresistance. We validated the 
methylation state and expression levels of candidate genes in each cellular phenotype through Sanger sequencing 
and reverse transcription polymerase chain reaction, respectively. We tested the biological role of selected targets 
using an ectopic expression plasmid assay in the sensitive/resistant tumor cell lines, assessing the cell viability in the 
transfected groups. Epigenetic features were also assessed in 189 primary samples obtained from ovarian tumors and 
controls.

Results: We identified PAX9 and FKBP1B as potential candidate genes, which exhibited epigenetic patterns of expres‑
sion regulation in the experimental approach. Re‑establishment of FKBP1B expression in the resistant OVCAR3 pheno‑
type in which this gene is hypermethylated and inhibited allowed it to achieve a degree of platinum sensitivity similar 
to the sensitive phenotype. The evaluation of these genes at a translational level revealed that PAX9 hypermethylation 
leads to a poorer prognosis in terms of overall survival. We also set a precedent for establishing a common epigenetic 
signature in which the validation of a single candidate, MEST, proved the accuracy of our computational pipelines.
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Background
Ovarian epithelial carcinoma (OEC) is the most deadly 
of gynecological neoplasms among pelvic cancers world-
wide [1]. The discouragingly high mortality rate reported 
for OEC is due to three key factors, the first of which 
is associated with the unsuccessful efforts to identify 
women with early stage disease, given that 75% of these 
patients are diagnosed at stage III-IV of the International 
Federation of Gynecology and Obstetrics (FIGO) stag-
ing system [2]. Unlike many other cancers, OEC has no 
natural barrier to prevent the widespread dissemination 
of tumor cells to surrounding pelvic organs and there-
fore it grows rapidly, metastasizes early and has a highly 
aggressive course [3]. The second factor involves the scar-
city of biomarkers for identifying OEC and their limited 
transfer to clinical practice. Gene expression-based tools 
designed to identify postoperative and postchemother-
apy predictors are only available for certain tumor types. 
The MammaPrint test involves the expression analysis of 
70 genes to predict the probability of metastasis in breast 
cancer [4]. The Oncotype assay predicts recurrence after 
treatment in colon [5], breast [6] and prostate [7] cancer 
through the expression analysis of 21 genes. Several gene 
signature approaches associated with overall survival 
(OS) and therapy response in OEC have been described 
[8–10], but none is currently in clinical use. The third 
factor is treatment failure, mainly caused by resistance 
to conventional chemotherapy, which is evidenced by 
the high recurrence rates. Preliminary chemotherapy 
response rates (taxane–platinum) are 60–75% [11]; how-
ever, 30–40% of these patients relapse within 12 months 
[12, 13].

One scenario related to drug resistance involves spe-
cific cellular mechanisms [14] that influence the chemo-
therapy response by affecting intracellular active drug 
concentrations, drug–target interactions and the apop-
totic effector machinery. These cancer cell-specific issues 
are associated with acquired somatic mutations and epi-
genetic changes. The assessment of DNA methylation 
status is the most widely used strategy for determining 
chemoresistance in the epigenetic context. Methylation 
of the proapoptotic gene hMLH1 has been associated 
with acquired chemoresistance and plays a key role in 

this event. Patients with OEC exhibit an increase in 
hMLH1 methylation after 4 cycles of platinum-based 
chemotherapy and when the disease reappears [15]. This 
characteristic has been identified in 25% of patients at 
the time of recurrence and has been detected in circu-
lating tumor DNA, showing a direct relation with low 
OS [16]. Demethylation treatment of RASSF1A, HOX10 
and HOX11 genes favors the response to carboplatin in 
patients with recurrence, showing a positive correlation 
between activity restoration and long-term disease-free 
periods [17]. This study therefore aimed to identify new 
chemoresistant epigenetic biomarkers by assessing meth-
ylome and transcriptome in cancer cell lines and cohorts 
of patients with ovarian cancer, supported by next-gen-
eration sequencing techniques, in search of an effective 
stratification that would predict each patient’s progres-
sion and therapeutic response.

Results
Establishment of cisplatin‑resistant ovarian human cancer 
cell lines
To identify the potential epigenetic biomarkers, we estab-
lished an in  vitro resistance model. OVCAR3-R and 
A2780-R cisplatin-resistant variants were selected after 
a final exposure to 0.05 and 0.5 μg/mL of cis-diammine-
platinum (II) dichloride (CDDP), respectively, showing 
a twofold greater resistance than their corresponding 
parental mates (resistance index [RI] of 2.3 and 2.2, 
respectively; p < 0.001) (Fig. 1A).

Differential gene expression between tumor phenotypes 
as an effect of platinum treatment
Using the statistical package limma, we identified a large 
number of differentially expressed genes in the ovarian 
cancer cell lines OVCAR3 and A2780, all of them with 
an adjusted p-value and false discovery rate (FDR) < 0.05. 
The output data contrasts of the gene expression micro-
arrays following the previously described steps [18] 
helped determine the number of overexpressed or inhib-
ited genes according to the pharmacological response 
and cell line. These analyses identified 9736 differentially 
expressed genes in the two tumor lines of ovarian cancer 
(Fig. 1B).

Conclusions: Epigenetic regulation of PAX9 and FKBP1B genes shows that methylation in non‑promoter areas has 
the potential to control gene expression and thus biological consequences, such as the loss of platinum sensitivity. 
At the translational level, PAX9 behaves as a predictor of chemotherapy response to platinum in patients with ovarian 
cancer. This study revealed the importance of the transcript‑specific study of each gene under potential epigenetic 
regulation, which would favor the identification of new markers capable of predicting each patient’s progression and 
therapeutic response.
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Identification of differentially methylated candidate genes
We assessed the methylome of OVCAR-3 S/R and 
A2780 S/R cancer cell lines through whole genome 
bisulfite sequencing (WGBS), seeking to identify the 
genes with differential methylation among these cell 
phenotypes. We analyzed each tumor line’s methylation 
profile after filtering the CpG positions with coverage 
greater than 5X. We first validated SPHK1, DCBLD2 
and CDKN2 genes by bisulfite sequencing. These 
genes were selected according to the methylation sta-
tus assigned to each based on a differential methylation 
screening supported by the WGBS analysis through β 
values   between R > 0.7 and S < 0.3, as described in pre-
vious studies [19]. This initial test aimed to validate 
the selected β values and corroborate their exact role 
as a candidate selection parameter. SPHK1 exhibited 
similar DNA methylation levels in the sensitive and 
resistant cells, while DCBLD and CDKND2 showed no 
degree of methylation in either the sensitive or resistant 

phenotype (data not shown). Based on these findings, 
we decided to readjust the set of β values, adding a level 
of 0.2 in S and a difference greater than 0.4 in R, aiming 
to avoid methylated positions in R that had basal meth-
ylation already in S. However, this adjustment involved 
lowering the value in R to prevent losing candidates 
whose methylation was moderate in resistance. An 
analysis under the rearranged criteria identified 298,152 
and 178,113 differentially methylated CpGs positions in 
A2780-R Vs A2780-S and OVCAR3-R Vs OVCAR3-S, 
respectively, encompassing 4097 genes. The interroga-
tion of differentially methylated regions was focused 
on three types of genomic areas called alpha, beta and 
gamma. We catalogued as alpha regions those typical 
promoter areas near the transcription start site. Beta 
regions were located 2  kb and 4  kb 5’ upstream from 
the start of CpG islands, also known as shore and shelf 
regions, respectively. Gamma areas were those located 
within the gene body.

Fig. 1 Development of resistant ovarian cancer cell lines and differential gene expression. A Viability curves showing the acquired resistance of 
A2780 and OVCAR3 cell lines. S/R CDDP identifies ovarian cancer cell lines sensitive or resistant to cisplatin, also known as cis‑diammineplatinum (II) 
dichloride (CDDP). Data were normalized with respect to the untreated control (100% survival) and are shown as the mean and standard deviation 
of at least three independent experiments. The resistance index (RI) was calculated using the half maximal inhibitory concentration (IC50) as 
follows: IC50‑resistant/IC50‑sensitive cell line. p values < 0.001 indicated a significant change in drug sensitivity (Student’s t test). B Number of genes 
differentially expressed for each cell line in the resistance vs. sensitivity cross‑analysis (adjusted p value ≤ 0.05) are shown. The black bar represents 
gene overexpression in resistance (UP), and the white bar represents gene underexpression in resistance (DOWN). We identified 3637 and 2512 
overexpressed genes for A2780‑R and OVCAR3‑R, respectively, and 3076 and 2976 inhibited genes for A2780‑R for OVCAR3‑R, respectively. The 
overall analysis by cell type identified 6686 genes differentially expressed in A2780 and 5481 in OVCAR3. *The sum of each analysis does not have a 
mathematical equivalence because the probes that hybridized in duplicate for the same gene were eliminated
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Pipeline of combined approaches to identify potential 
predictive platinum‑resistant epi‑biomarkers
Our workflow started by combining suitable patient 
information extracted from The Cancer Genome Atlas 
(TCGA) with the differential expression profiles resulting 
from the experimental model. The implementation of the 
TCGA database helped establish a parallelism with find-
ings from the in  vitro analysis and thereby enabled the 
identification of candidates supported by clinical data. 
Based on information related to tumor type, treatment 
and clinical follow-up, we identified 576 patients, 238 
of whom met the criteria for inclusion in the analysis. 
These criteria were having information on the platinum 
therapy, death within 1100 days along with gene expres-
sion data for controls and tumor samples. Of these 238 
patients, 123 died within the established period and were 
identified as the patients with the poorest therapeutic 
response.

Starting from this preliminary cross-analysis, we 
found 7377 common differentially expressed genes 

between the ovarian tumor lines and the TCGA 
patients, 153 of which were present in all 123 selected 
patients (Fig.  2). To identify candidates under epige-
netic regulation, this group of genes was compared with 
those identified by the expression microarray interroga-
tion performed after the epigenetic reactivation treat-
ment (RT) induced in the same cell lines. From the 153 
genes, 91 were identified as re-expressed genes after 
drug treatment, and 66 contained CpGs islands in the 
promoter regions (Fig.  2). Lastly, we observed that 
a high percentage (44%) of these genes (29 out of 66) 
were represented among the genes identified as differ-
entially methylated in the WGBS conducted between 
the cisplatin-sensitive and cisplatin-resistant lines 
(4097). These candidates showed promoter hypermeth-
ylation as a consequence of the cisplatin treatment and 
might therefore be involved in the onset of resistance in 
our in vitro model. These 29 genes were selected by our 
pipeline for further screening based on the genomic 
location of the methylated areas and the degree of 

Fig. 2 Selection of candidate target genes expressed under epigenetic regulation. Pipeline indicating the criteria followed for the selection of 
candidates: 1. Identification of the genes differentially expressed in the four paired cisplatin‑sensitive and cisplatin‑resistant cell lines A2780S/R and 
OVCAR3S/R that were consistent with those identified in the 123 patients interrogated in the TCGA with the same pathology and methodology 
(expression arrays). 2. We subsequently observed which genes coincided with those identified in the cell lines subjected to epigenetic reactivation 
treatment and that contained CpGs islands in the promoter regions. 3. From these, we selected those represented among the genes identified as 
differentially methylated in the global epigenome analysis (WGBS) conducted between the cisplatin‑sensitive and cisplatin‑resistant lines (4097 
genes). These 29 candidates showed promoter hypermethylation as a consequence of cisplatin treatment and might therefore be involved in the 
onset of resistance in our in vitro model. These candidates were therefore selected by our pipeline for further screening based on the genomic 
location of methylated areas and the degree of methylation exhibited. This analysis was supported by external resources such as the Ensembl 
API, the Encyclopedia of DNA Elements (ENCODE) and patient biological data stored in TCGA 
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methylation exhibited, leading to the selection of 4 
genes for further validation (Fig. 2).

PAX9 and FKBP1B are differentially methylated 
in cisplatin‑resistant ovarian cancer cells.
The criterion followed for the gene selection was based 
on the location of differentially methylated regions and 
high methylation intensity detected in such areas, as pre-
viously mentioned. The FABP5, PAX9 and FKBP1B genes 
were chosen among 29 candidates because they were 
representative of these criteria and particularly of each 
of the assessed genomic zones. We also selected the CFD 
gene, which singularly exhibited a methylated area in 
each tumor cell line (Additional file 6: Table 1).

Validation through bisulfite sequencing of FABP5 did 
not lead to conclusive chromatograms that enabled us 
to identify differential methylation profiles, given that 
we identified a repetitive guanine background with simi-
lar intensity levels to both evaluated cell lines (Addi-
tional file  1: Fig.  1). The analysis of CFD showed two 

differentially methylated areas identified by WGBS, 
which were designated as Area 1 (differentially methyl-
ated in A2780) and Area 2 (differentially methylated in 
OVCAR3). Validation of Area 1 yielded no methylation 
in the A2780-R phenotype but did show methylation in 
the non-neoplastic DNA from saliva, ovary control and 
peripheral blood mononuclear cells (PBMCs) and in the 
tumor lines HeLa and LoVo (Additional file  2: Fig.  2). 
However, the analysis of Area 2 confirmed the β val-
ues   applied for the differential methylation identifica-
tion despite only two hemimethylated positions being 
observed in resistance. Similar to Area 1, the DNA meth-
ylation in non-neoplastic tissues was also observed in the 
HeLa and LoVo tumor lines (Additional file 3: Fig. 3).

No methylation was detected in the ovarian and PBMC 
tissue control in PAX9 or FKBP1B (Fig.  3), whereas 
clear differential methylation was identified for both in 
OVCAR3-R (Fig.  3), and the sensitive line exhibited no 
methylation. These findings confirm the WGBS results 
for these two candidates, given that CpG methylated 

Fig. 3 Bisulfite sequencing of PAX9 and FKBP1B regulatory CGIs. Representation of   bisulfite‑modified DNA fragment of both candidate genes from 
the sensitive and resistant tumor lines A2780 and OVCAR3, as well as DNA obtained from healthy ovarian tissue (OC) from patients undergoing 
sex change, DNA from human peripheral blood mononuclear cells (PBMCs) and from the tumor lines HeLa, BT747, LoVo and PC3. Samples were 
sequenced with sense primer for PAX9 and antisense for FKBP1B except in OVCAR3‑S. Asterisks indicate methylated positions
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positions were identified only in the OVCAR3-R cells and 
not in A2780-R cells, thereby validating the re-evaluation 
of selected β parameters (Additional file 6: Table 1). The 
PAX9 analysis yielded methylation in HeLa and BT747 
(Fig. 3A), and methylation of FKBP1B was also detected 
in HeLa, PC3 and LoVo (Fig. 3B).

Gene expression of PAX9 and FKBP1B is under epigenetic 
regulation in ovarian tumor cell lines
In addition to the qualitative analysis, we assessed the 
methylation level of PAX9 and FKBP1B by implement-
ing a quantitative approach, which included a Methyl-
Light (quantitative methylation-specific polymerase 
chain reaction [qMSP]) assay. In the interrogated region 
of FKBP1B, we observed a 4.7-fold increase in methyla-
tion of contrasting resistance versus sensitivity in the cor-
responding cell line (95% vs. 20%) and a 13% decrease 
in the number of methylated molecules in the RT group 
compared with resistance (Fig. 4A). In the case of PAX9, 
methylation was sixfold higher (60% vs. 10%) in resist-
ance versus sensitivity, and the RT phenotype exhibited 
15% less methylation compared with the resistant pheno-
type (Fig. 4B). These findings suggest that cisplatin treat-
ment induces a significant increase in the methylation 
rate in both genes when comparing resistance versus sen-
sitivity. Consistent with the data from Sanger sequencing, 
we detected no methylated molecules in the normal ova-
ries for either of the two genes.

To validate the data from the gene expression microar-
ray and determine the association between methylation 
and transcriptional inhibition, we performed real-time 
polymerase chain reaction (PCR) amplification for the 
two genes in the three experimental groups. PAX9 and 
FKBP1B inhibited their expression significantly in the 
resistant phenotype compared with the sensitive phe-
notype (Fig.  4C, D). This expression pattern detected 
in resistance for the two candidates correlated with the 
methylation status inferred by WGBS, bisulfite sequenc-
ing and MethylLight. The re-expression levels of PAX9 
and FKBP1B identified in the RT group when compared 
with the resistant group (Fig. 4C, D) are indicative of the 
role played by epigenetic regulation, indicating that drug 
therapy favors the induction of gene re-expression and 
that transcription modulation is epigenetic-dependent 
for these targets in the experimental model.

Ectopic overexpression of FKBP1B restores cisplatin 
sensitivity in resistant ovarian tumor cells
This study aimed to identify potential marker genes 
whose biological function grants malignant cells under 
treatment sufficient susceptibility for the compound to 
conduct its effector mechanisms. We therefore sought 
to demonstrate an association between the improved 

response to cisplatin treatment and the exogenous over-
expression of our two candidate genes by conducting 
plasmid transfection experiments.

The viability analysis indicated that FKBP1B over-
expression induced an increase in cisplatin sensitivity, 
matching up the cisplatin response values of the sen-
sitive OVCAR3 tumor line, whereas no changes were 
observed in the group transfected with PAX9. The half 
maximal inhibitory concentration (IC50) was 1.3  μg/
mL (SD ± 0.08) for the OVCAR3-R FKBP1B group and 
2  μg/mL (SD ± 0.02) for the control group (OVCAR3 
R-MOCK), which yielded a resistance index between 
these two groups of 1.53 (p ≤ 0.01) (Fig. 4E).

PAX9 methylation is related to decreased overall survival 
in cisplatin‑resistant patients
After studying the associated profile of these genes 
regarding cell viability to cisplatin, we focused on 
assessing their potential involvement in the therapeutic 
response by evaluating primary tumors. The methyla-
tion rates for PAX9 were similar in the three cohorts, 
with the lowest value corresponding to the Span-
ish National Cancer Research Center (CNIO) group 
(Fig.  5A). In terms of FKBP1B methylation, the Hos-
pital del Mar cohort showed the highest frequency of 
methylation, and not one methylated sample was found 
in the resistant/refractory patients (Fig.  5A). To rule 
out imprinting, we also tested 10 fallopian tube sam-
ples and found no methylation (Fig. 5B, C). To confirm 
whether methylation or the expression degree of the 
candidate genes influenced the clinical outcome, we 
performed a cross-linking analysis between gene meth-
ylation/expression and OS/PFS for each clinical param-
eter in the fresh tumor cohorts. There were significant 
differences in OS associated with PAX9 methylation in 
the patients considered cisplatin-resistant. The Kaplan–
Meier analysis showed that resistant/PAX9-methylated 
patients died earlier than those in whom methylation 
was not detected. We assessed methylation through 
qualitative and quantitative methods, and when relat-
ing the results from both techniques, we observed that 
the lowest methylation rate associated with a positive 
result by MSP was 29.74%. Patients with values   above 
this threshold were therefore considered methylated. 
There was no significant relationship with FKBP1B in 
any analysis of either expression or methylation in any 
cohort. To extrapolate data collected from our survival 
study, we applied the Kaplan Meier plotter [20], a web-
based tool that uses patient information stored in the 
TCGA and Gene Expression Omnibus (GEO) data-
bases. This tool performs survival analyses based solely 
on gene expression. We therefore explored the expres-
sion of PAX9 in a large group of patients with ovarian 
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cancer treated with platinum compounds. These analy-
ses showed significant differences in the patients with 
low PAX9 expression in terms of shorter survival ranges 
and recurrent disease compared with those that exhib-
ited higher expression. Figure 5D, E show the influence 
of PAX9 expression, with the statistical significance 
demonstrated through the log-rank test (p = 0.017 
for the OS analysis and p = 0.0029 for PFS). Such 

interactions show a direct effect on gene functionality, 
which is reflected in the clinical landscape, showing a 
worsening prognosis for patients with a hypermethyl-
ated and downregulated PAX9 gene.

Clinical information for each of the patients in each 
evaluated cohort, along with the results of the method-
ological approaches employed, are described in Addi-
tional file 13: Excel database.

Fig. 4 Absolute methylation and relative expression levels for FKBP1B and PAX9 and the effect of overexpression of candidate genes on cell 
sensitivity to CDDP in the OVCAR3 cell line. A, B Representation of methylated and unmethylated molecules assessed through qMSP (quantitative 
methylation‑specific PCR). The methylation rate obtained from three replicates for each type of evaluated sample is shown. Assays were performed 
in all experimental conditions: S, R and RT. S, sensitive; R, resistant; RT, resistant treated with epigenetic reactivation drugs (5‑Aza and TSA). Each 
trial was repeated twice, and a non‑neoplastic ovary sample was included as the control. C, D The expression levels of each candidate gene 
assessed by qRT‑PCR were normalized using GAPDH as the endogenous control. Assays were performed in all experimental conditions of the 
OVCAR3 cell line. Data are represented in the log10 scale using the sensitive experimental group as a calibrator. Bars represent the mean ± SE of 
two independent experiments performed in duplicate. **p ≤ 0.01 ***p ≤ 0.001. E Viability assays of the OVCAR3 cell lines transfected with pCMV6 
(S‑MOCK and R‑MOCK) and with the overexpression vectors (R‑PAX9 and R‑FKBP1B). Each experimental group was exposed for 48 h to six different 
CDDP concentrations, and the data were normalized to each untreated control (set to 100%). The data represent the mean ± SD of at least three 
independent experiments performed in quadruplicate at each drug concentration for each analyzed cell line. P‑values < 0.01 indicated a significant 
change in drug sensitivity (Student’s t‑test)
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The combination of omics and clinical database resources 
provides potential diagnostic predictive candidates
The lack of predictive tools based on omic technolo-
gies with the potential to assess the behavior of several 
genes in ovarian cancer prompted us to develop a pre-
dictive bioinformatic matrix. We established a series of 
computational approaches based on multiple combina-
tions between high-throughput screening techniques 
such as methylation arrays, whole methylome and RNA 
sequencing and information from the TCGA database. 
In this case, we implemented two ranges of β values   to 
evaluate the WGBS data. These settings, along with a 
covering range of 10X, identified 11,661 genes with 
at least one differentially methylated CpG position in 
areas covering from 2000 base pairs upstream to 500 
downstream from the transcription start site of all cod-
ing transcripts, thereby obtaining 35,468 different tran-
scripts differentially methylated in the in  vitro model 
(Fig. 6A).

To exploit the information that high-throughput tech-
niques can provide, we interrogated the methylation state 
over 450,000 CpG positions by performing the Illumina 
Methylation 450 K array in fresh tumor samples, thereby 
obtaining 6421 differentially methylated CpG positions 
among the tested samples and normal controls. To deter-
mine the state of global gene expression, we performed 
transcriptome sequencing in the healthy tissue samples, 
such as ovary and fallopian tubes, and in the tumor tissue 
of various cohorts. One of these transcriptomically eval-
uated cohorts was also analyzed at the methylation level 
through the Illumina array.

Multiple bioinformatic approaches contribute to enriching 
the predictive matrix
Several cross-studies were conducted among the meth-
odologies mentioned above to identify relevant genes 
according to their methylation profiles, expression and 
possible suppressive role, taking into account their 

Fig. 5 FKBP1B and PAX9 methylation analysis in primary tumors and survival analysis. A The methylation rates were evaluated in clinical samples 
from different cohorts through MSP (methylation‑specific PCR). For each sample, the presence of a product in lane M was considered as methylated 
DNA, while the product amplification in lane U was considered as non‑methylated. Negative and positive controls for each reaction corresponded 
to DNA from PBMCs and in vitro methylated DNA, respectively. Representative MSPs of candidate genes are shown. B Samples 78, 79, 80, 82 and 
140 showed methylation for FKBP1B, C and samples 152, 153 and 155 showed methylation for PAX9. Kaplan–Meier comparison in terms of overall 
survival (OS) between cisplatin response and PAX9 methylation in 21 patients with platinum‑resistant ovarian cancer treated. Qualitative and 
quantitative methylation comparisons correspond to D and E, respectively. Log‑rank tests were used for comparisons, and p values < 0.05 indicated 
a significant change in OS. We employed a Kaplan–Meier plotter tool to compare PAX9 expression versus OS and progression‑free survival (PFS) 
(F, G) in 505 and 475 selected TCGA patients, respectively. A log‑rank test was applied for comparisons, and p values < 0.05 indicated a significant 
change in OS
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comparative profile between in  vitro and translational 
observations. In this case, the TCGA patient selection 
criteria included treatment with platinum derivatives in 
all cases, availability of expression and methylation data 
obtained from RNA-seq and 450  K array, respectively, 
and a relapse within 6 months. Thirty-five patients were 
selected from the TCGA, 11 of whom were considered 
sensitive and 24 of whom were considered resistant.

Twenty-four studies were designed to identify the main 
potential candidates to be included in the matrix. To 
describe these multiple analyses rationally, we grouped 
them into three types according to the methodologies 
applied. An example of these studies is represented in 
Fig. 6. Group 1 comprised WGBS and expression micro-
array data plus information from the TCGA patients. 

The cross-analysis against methylation and expression 
yielded 11,493 hypermethylated and inhibited genes pre-
sent in both resistant tumor lines (Fig. 6B), 139 of which 
had more than 10 methylated CpG positions (Additional 
file 7:  Table 2), among them, the MEST gen. When ana-
lyzing the in vitro models along with TCGA patient infor-
mation, only three common genes were found between 
the patients and cell lines (Fig. 6C). Among the six genes 
obtained from the analysis in this study, MEST became 
a relevant candidate because it was also identified in 
four subsequent analyses (Additional files 4, 5:  Figs. 4D, 
5B, 5F and 5J and Additional file 8:  Table 3). Additional 
file 4: Fig. 4 shows a Venn diagram of group 2 related to 
the crossover between 450 K methylation and RNA-seq 
of the studied cohorts plus the study of TCGA patients, 

Fig. 6 Identification of differentially methylated CpG dinucleotides through methylome sequencing and representation of cross‑linked studies. A 
Data derived from whole genome bisulfite sequencing (WGBS) conducted in the ovarian cancer cell lines were analyzed by means of an FDR < 0.05, 
and two ranges of β values were implemented, one of them similar to that used in the first differential methylation analysis (β > 0.4 in R and < 0.23). 
Two additional β values were added to establish greater restrictiveness in sensitive samples, in which we expected to identify unmethylated 
cytosines (β < 0.16 in S) but allowing lower β values   in resistance (Δβ of 0.14 between R and S) to capture small tendencies of methylation in 
resistance. These methylated positions were interrogated in typical promoter regions. B, C, D, E Representative Venn diagrams showing the 
candidate genes obtained from the cross‑analysis of in vitro (methylome sequencing, expression arrays) and in silico information (data related 
to methylation and gene expression of selected patients from the TCGA). The results of these studies show the common genes derived from the 
assessed parameters. The other studies can be found in Additional file 12
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Additional file 5:  Fig. 5 shows a Venn diagram for group 
3, consisting of the analysis of massive methylome 
sequencing, expression microarrays, 450  K methylation 
analysis and RNA-seq of our patients. Additional file  9: 
Table  4 also presents a list of 73 genes with more than 
10 methylated positions that originate from the analysis I 
shown in Additional file 5:  Fig. 5.

MEST as a potential biomarker in resistance to platinum 
treatment
In the series of studies, a group of genes was character-
ized by exhibiting more than 10 methylated CpG posi-
tions, as well by recurrence in the resulting data. Within 
this particular group of genes, MEST was the most fre-
quently represented gene. According to these analyses, 

MEST is methylated/inhibited in resistance in the experi-
mental model, inhibited in platinum-resistant TCGA 
patients and hypomethylated and overexpressed in the 
tumors of patients belonging to La Paz Hospital and 
Santiago de Compostela cohort. This gene is comprised 
of 13 protein-encoding transcripts with two identified 
CpG-rich regions, whose methylation could be regulat-
ing the expression of its transcripts (islands 1 and 2). In 
our study, however, we found differential methylation 
exclusively in a region linked to CpG island 2 (Fig. 7A). 
This region could act as a possible regulatory zone for 
the expression of certain transcripts of MEST, although 
it is not located in the canonical promoter region. Island 
2 has a greater extent than island 1 and is located at 
4000 bp in the 3’ direction (Fig. 7A).

Fig. 7 MEST transcript illustration and bisulfite sequencing of two potentially regulatory CpG‑rich areas. A Island 1 is located in a typical promoter 
zone with the capacity to regulate the closest transcripts and possibly distant ones (Cr 7: 130 126 018—130 126 801 identified in A2780‑R). A region 
of 529 bp in length was sequenced. Island 2, which is located in the gene body, could fit within a promoter region for transcripts 201, 9, 1, 5, 11 
and 12 and possibly for transcript 17 (Cr7: 130 130 377–130 132 422, identified in A2780‑R). An area of 429 bp in length with 20 CpG positions was 
selected to be sequenced. B Island 1. Representation of a sequence fragment of the   bisulfite‑modified DNA MEST gene area from sensitive and 
resistant tumor lines A2780, normal ovarian tissue from patients undergoing sex change, DNA from peripheral blood mononuclear cells (PBMCs) 
and tumors from fresh tissue. All samples were sequenced with the antisense primer. C Island 2. Representation of a sequence fragment of the   
bisulfite‑modified DNA MEST gene area. In addition to the samples sequenced for the evaluation of area 1, we added a fallopian tube sample and 
tumor 754. PBMCs, tumors 568, 569 and 5T were not evaluated for this region. All samples were sequenced with the sense primer. Methylated 
positions are indicated by a blue asterisk
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The in silico MEST CpG 1/2 island methylation matches 
the in vitro assessment
We performed bisulfite sequencing on both CpG islands 
in the tumor cell lines, control samples and tumor tis-
sue from the analyzed cohorts to corroborate the MEST 
methylation status identified by our methodological com-
binations. Sanger sequencing yielded differential methyl-
ation in island 1 for the A2780-R line and the presence 
of methylation in the non-tumor samples (normal ovary, 
PBMCs) (Fig. 7B). Hemimethylation was also observed in 
all analyzed tumors, except in the 6T sample where the 
cytosine signal was very weak (Fig. 7B).

Differential methylation in island 2 was also validated 
through Sanger sequencing in the resistant tumor line, 
and methylated CpG positions were identified in the 
ovarian and fallopian tube control samples. Methylation 
in this area was detected in all analyzed tumors (Fig. 7B).

Based on the data from RNA-seq and 450  K array 
methodologies, we performed a cross-analysis to deter-
mine the influence that the degree of methylation in such 
areas can exercise on the regulation of MEST transcript 
expression. According to the β values and transcript 
count (Additional file  10:  Table  5), higher methylation 
in island 2 than in island 1 was detected in all samples. 
Decreased methylation in island 1 compared with the 
control sample agrees with the overexpression of MEST 
transcript-006 in 50% of the analyzed tumor samples, 
while the increased methylation on shore island 1 (shore 
1) correlates with the inhibition of MEST transcript-007 
expression in all tumors (Additional file 10: Table 5). The 
analysis of island 2 showed the highest degree of meth-
ylation on island and shore areas (shore 2) in two tumor 
samples, those that exhibited inhibition in the expression 
of MEST transcript-001 (Additional file 10:  Table 5).

Discussion
Epigenetic disruptions reported in EOC related to DNA 
hypermethylation have been associated with the inactiva-
tion of almost all pathways involved in cancer, including 
DNA repair mechanisms, cell cycle regulation and apop-
tosis. Varying degrees of methylation have been found in 
numerous genes in EOC, but few are related to acquired 
resistance to platinum treatment. We sought to identify 
novel epi-biomarkers capable of predicting the behavior 
of the disease post-therapy by combining an experimen-
tal model with an analysis performed on patient samples 
and combined with public information and omic data. 
We established the ovarian cancer cells A2780R and 
OVCAR3R, with a cisplatin RI in accordance with the 
previously established H23R and H460R cell lines [20]. 
The expression analysis showed that 48% of the genes 
were differentially expressed in the resistant phenotypes 
in both tumor cell lines. Of the 9736 genes differentially 

expressed in this experimental model, 75% matched with 
altered genes observed in the data from TCGA patients.

Aberrant methylation in cells continuously exposed 
to cisplatin has been reported to affect the sensitivity of 
tumor cells to antineoplastic agents, altering the expres-
sion of crucial genes in response to this drug [21]. This 
high percentage of differentially expressed coincident 
genes suggests a similarity in treatment response between 
the experimental and translational scenarios. Regard-
ing the methylome sequencing analysis, we applied a 
binomial analysis that resulted from the Illumina array 
27 K known as the β value [22]. The first set of β values 
did not allow us to detect differential methylation in the 
initial evaluated candidates. These preliminary outcomes 
could have originated from the bias identified in previous 
studies related to the performance of massive sequencing 
associated with the guanine–cytosine content [23, 24]. 
We therefore considered this initial approach as a prece-
dent for adjusting new parameters intended to reduce the 
above-mentioned bias. By using bisulfite sequencing as 
an alternative methodology, we found differential meth-
ylation in 50% of the evaluated targets due to rearrange-
ment of β values. However, bisulfite sequencing does not 
have sufficient sensitivity to identify specific epigenetic 
signatures in formalin-fixed paraffin-embedded (FFPE) 
samples. In fact, this methodology cannot be used rou-
tinely in clinical practice due to its complexity and the 
type of samples analyzed in hospitals, given that a large 
percentage of cases involve paraffin samples. It is there-
fore necessary to explore the area of   epigenetic inter-
est in additional human tumor cell lines to confirm the 
positions identified by next-generation sequencing that 
remain frequently methylated in cancer. Our bisulfite 
sequencing results not only confirmed the β values but 
also allowed  for the design of high-sensitivity primers 
and double probes for these specific positions (by MSP 
or qMSP), ensuring their use in not only determining the 
percentage of demethylation after epigenetic reactivation 
treatment in our cellular model but also in patient paraf-
fin samples, which supports the potential diagnostic use 
of the assay, as is the case for the FDA-approved epige-
netic marker O6-methylguanine-DNA methyltransferase 
(MGMT) for routine clinical practice [25].

Using this double probe approach (qMSP), the dem-
ethylation rate observed after the epigenetic reactiva-
tion treatment in our “in vitro” model agreed with that 
of previous studies and ranged from 14 to 30% [26, 27]. 
The demethylation rate observed for PAX9 and FKBP1b 
genes significantly upregulated their expression levels, 
as reported for other candidates, with a 70-fold to more 
than 270-fold increase after the same epigenetic reac-
tivation treatment [18, 27, 28]. It is also possible that 
this strong increase in expression levels could be due to 
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histone acetylation. According to an article by Kuznik 
et al., there are peptides that can bind to the histone H1.3 
protein, altering its conformation, causing changes in the 
chromatin structure in the loci of certain genes, in par-
ticular FKBP1b [29].

These changes could alter gene expression in extreme 
biological situations such as chemotherapy and the use 
of epigenetic pharmacological reactivation drugs. Never-
theless, we were able to validate the methylation of our 
markers both qualitatively and quantitatively, as well as 
the absence of methylation in control samples. Therefore, 
optimization of β values   contributed to the identifica-
tion of genes with differential methylation in the cellular 
model of platinum resistance.

A direct interaction has been reported between hyper-
methylation in promoter regions and genomic silencing 
in cancer [30, 31], but the role of regions located distally 
to the canonical CpG islands in regulating gene expres-
sion has only recently been determined. Less common is 
the interrogation of methylation in intragenic zones and 
its association with controlling gene expression [32]. Dif-
ferential methylation on PAX9 was identified in a region 
located 4  kb  bp upstream of the promoter region. We 
observed an inverse relationship between high methyla-
tion levels and low PAX9 expression in the OVCAR3-R 
group, a finding that highlights the influence of hyper-
methylation in distal areas. FKBP1B exhibited a methyl-
ated area within the gene and just like PAX9. An inverse 
relationship between methylation and expression was 
identified in vitro. It has been suggested that DNA meth-
ylation in the gene body can increase the transcriptional 
activity by blocking the initiation of intragenic promot-
ers [33]. However, other studies have reported an inverse 
association between expression and methylation regions 
such as exons and introns [34, 35]. Zhang et al. demon-
strated that PMP24, a tumor suppressor gene, is silenced 
in prostate cancer lines through methylation of a CpG 
island that overlaps part of the promoter, exon 1 and part 
of the first intron [36]. This finding is similar to the epige-
netic and transcriptional trend we identified in FKBP1B 
in vitro, even in relation to the assessed CpG island, 
because although our region is located specifically in 
intron 1, it belongs to a larger island that encloses exon 1 
and the promoter of this gene, just like PMP24. In terms 
of biological roles, the ectopic expression of FKBP1B in 
the resistant phenotype promoted a decline in cell sur-
vival after CDDP treatment, mimicking the behavior of 
OVCAR3-S. However, PAX9 overexpression had no effect 
on cell survival. We have left the door open to developing 
future assays with PAX9 under different transfer condi-
tions, mainly due to the features observed in this gene in 
the translational model, such as an association regard-
ing methylation and survival in CDDP-resistant patients 

in terms of longer survival in those who without the 
methylation. OS is considered the variable of greatest 
confidence and interest when the effects of an interven-
tion are to be analyzed [37]. Despite not finding a simi-
lar relation in terms of PAX9 inhibition, we performed a 
survival analysis through a web tool using data from the 
TCGA  database. This approach showed that low PAX9 
expression has a negative effect on OS and PFS, thereby 
confirming that PAX9 exhibits a desirable profile as an 
epi-biomarker. PAX genes (paired box) are transcription 
factors that contain a highly conserved DNA binding 
domain called paired domain [38], which regulates pro-
cesses such as proliferation, resistance to apoptosis, cell 
migration and invasion [38]. To date, only one study has 
described the role of PAX9 as a predictive marker in can-
cer. Tan et al. (2017) observed an interaction between the 
expression of this gene and postoperative radiotherapy in 
esophageal squamous cell carcinoma, wherein patients 
with high expression showed greater life expectancy and 
delayed disease reoccurrence, granting this gene a posi-
tive role as a marker of radiosensitivity in this type of 
malignancy [39].

The outcomes of the survival analyses performed for 
FKBP1B resembled those for PAX9 but without statis-
tical significance, probably due to the low number of 
methylated patients (4 of 49). However, Tougeron et  al. 
proposed a possible association between the low fre-
quency of mutation in known oncogenes such as KRAS 
(< 10%) and the response to colon cancer treatment [40]. 
It is likely that a similar situation occurs for FKBP1B and 
that increasing the sample size would lead to the iden-
tification of a translational role for this gene, as with 
PAX9. FK506-binding proteins (FKBPs) are intracellular 
ligands of FK506 and rapamycin. This family of proteins 
is involved in the intracellular release of calcium, gene 
transcription, protein translation and cell trafficking [41]. 
Complexes formed between FKBPs and their ligands reg-
ulate cell signaling pathways, including the mechanistic 
target of rapamycin (mTOR) [42], and hyperactivation 
of this molecule is known to play a role in tumor trans-
formation and growth. It was believed that only FKBP12 
acts as a link between rapamycin/FK506 and mTOR; 
however, FKBP1B has been identified as another media-
tor in this interaction and therefore has the potential to 
inhibit mTOR kinase activity [43]. Liu et al. demonstrated 
that the FKBP12 protein promotes the degradation of the 
oncogenic protein MDM2 through self-ubiquitination, 
favoring the efficiency of doxorubicin treatment in tumor 
lines of neuroblastoma [44]. It has also been reported 
that inhibition of the member FKBP51 leads to increased 
resistance in chemotherapy of several tumor cell lines 
[45]. So far, there is no solid evidence of the role that 
FKBP1B could play in resistance for any malignancy. Our 
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study therefore provides a first insight into the function 
and influx that our candidates can exert on the response 
to conventional treatment in ovarian cancer.

Between 1971 and 2007, survival in ovarian cancer 
increased by only 17%, while the 10-year survival for 
breast cancer increased 38% [37]. Only a few markers 
have been identified and put into clinical practice in EOC. 
We therefore focused on identifying potential differen-
tially methylated transcripts by epigenetic interrogation 
in canonical promoter regions to identify key markers, 
supported by interpolation of several approaches. We 
submitted this data to all possible comparisons to simu-
late the potential information that could be derived from 
the in silico performance of a constantly enriched matrix. 
Among the potential targets originating from these tests, 
we chose MEST to corroborate our study design because 
of its previously described predictive epi-role in EOC 
[46]. Sanger sequencing helped verify the accuracy of the 
β values   selected for this second goal, given that meth-
ylation was not observed in the sensitive phenotype of 
line A2780 but was observed in the resistant parental 
line. Differential methylation in the validated line A2780 
was also identified by Zeller et  al. but over a different 
region (island 1). The authors also demonstrated MEST 
re-expression by epigenetic treatment demonstrating 
the regulatory mechanism. This evidence reinforced the 
direction and approaches we employed in our search for 
candidates. MEST is regulated by genetic imprinting and 
deregulation of methylation, and its expression has been 
associated with invasive breast cancer [47], invasive cer-
vix cancer [48] and the onset of lung adenocarcinoma 
[49]. Imprinting can exert a promoter-specific regula-
tion, as reported by Pendersen et al., who identified that 
transcript 1 of MEST is underimprinting in control sam-
ples and tumor tissue in invasive breast cancer, thereby 
maintaining its monoallelic expression, while transcript 
2 is biallelically expressed in most tumors [50]. We com-
pared the methylation in both islands and shore regions 
(from the study by Zeller et al. and from our study) and 
found that the monoallelic expression of this MEST-
001 transcript is possibly related to the maintenance of 
imprinting in area 2. Our results indicate that MEST-001 
inhibition could be related to the chemotherapy response 
and that this transcript regulation governs the meth-
ylation balance of the region examined in our study. The 
effects of these mechanisms in MEST have been related 
to the biology of certain tumors, but until now, no study 
has evaluated this behavior in such a specific approach 
regarding treatment resistance.

Although the observed characteristics of MEST make 
it a candidate predictor gene, PAX9 is the main output 
from the model proposed in this study, having demon-
strated its epigenetic characteristics in  vitro in addition 

to the direct relationship between its methylation and the 
poor prognosis of the platinum-resistant study patients.

Materials and methods
Cell lines, platinum viability and epigenetic reactivation 
treatment
Six human cancer cell lines were purchased from ATCC 
(Manassas, VA) and ECACC (Sigma-Aldrich, Spain) and 
cultured according to the recommendations. The CDDP-
resistant variants A2780R and OVCAR3R were estab-
lished in our group according to a protocol developed 
for H23R and H460R variants [51]. The ovarian-resistant 
types were selected after a final exposure to 0.5 (A2780R) 
and 0.05 (OVCAR3R) μg/mL cisplatin (Farma Ferrer, 
Spain). An additional 4 tumor cell lines (PC3, BT474, 
LoVo and HeLa) were used to validate the most frequent 
methylated positions identified by bisulfite sequencing. 
The platinum compound’s effect on cell viability was 
assessed by exposing the tumor cell lines to increasing 
doses of CDDP, as previously described [52]. To achieve 
gene re-expression, the resistant variants were epigeneti-
cally treated by exposing them to 5-aza-2’-deoxycytidine 
(5Aza-dC) and trichostatin A (TSA) (Sigma-Aldrich, 
Spain) at concentrations of 5  μM and 300  nM, respec-
tively, as previously described [53].

Clinical sample and data collection
We collected fresh frozen and FFPE ovarian cancer sam-
ples along with the clinical data from various institutions 
in Spain. Frozen samples representing the most frequent 
ovarian cancer subtypes were obtained from La Paz 
University Hospital (HULP) (10 patients) and from the 
Health Research Institute-University Hospital Complex 
of Santiago de Compostela-HULP Biobank (47 patients). 
FFPE samples were provided by Hospital Parc de Salut 
Mar (83 patients), 7 samples from patients categorized 
as stage III/IV with a platinum treatment response were 
provided by Hospital Madrid Clara Campal, and 39 
high-grade serous carcinoma (HGSOG) samples were 
obtained from CNIO Biobank. We also collected DNA 
from various tissues to rule out gene imprinting. DNA 
was therefore extracted from PBMCs from 4 healthy 
donors, as well as from saliva and healthy ovarian sam-
ples from individuals who had undergone sex reassign-
ment surgery. We also extracted RNA from 10 fallopian 
tube samples from women undergoing tubal ligation. 
Follow-up was conducted according to the criteria of the 
medical oncology divisions of each institution. The clini-
cal parameters associated with the study included age, 
carcinoma type, histology grade, stage, treatment, OS 
and overall progression-free survival.
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Gene expression assays
Gene expression microarrays were conducted on vari-
ous experimental tumor cell line groups, as previously 
described [53]. Total RNA for quantitative RT-PCR was 
isolated from non-neoplastic tissue and tumor cells using 
Trizol (Life Technologies, Rockville, MD, USA) accord-
ing to the manufacturer’s instructions. RNA was retro-
transcribed, and a quantitative analysis was performed, 
as previously described [51, 53]. Samples were analyzed 
in triplicate using the HT7900 real-time PCR system 
(Applied Biosystems, USA), and relative expression levels 
were calculated according to the comparative threshold 
cycle method  (2−ΔΔCt) using GAPDH as an endogenous 
control gene. Probes for gene expression (Applied Bio-
systems, USA) were as follows: PAX9: Hs00196354_m1; 
FKBP1B: Hs00997682_m1; and GAPDH: Hs03929097_
g1. Microarray and qRT-PCR assays are detailed in Addi-
tional file 12:  Materials and Methods section. Each study 
included control samples as calibrators to reference the 
results.

A transcriptome study was performed through RNA-
seq technology based on RNA extraction from fro-
zen fresh samples encompassing non-neoplastic cells 
and tumor cells. Total RNA was isolated from controls 
and tumor samples and delivered to Fundacion Centro 
Nacional de Investigaciones Cardiovasculares (National 
Center Foundation for Cardiovascular Research, CNIC) 
and Sistemas Genomicos (Genomic Systems, ASCIRES), 
to be processed by their respective protocols and 
sequenced with Ilumina Hseq 2500 technology. The 
detailed process is described in Additional file 12.

RNA-seq provided a view of the gene expression 
through transcript quantification, given that the output 
reads were individually mapped to the source genome 
and counted, thereby obtaining the density correspond-
ing to each known exon of our gene candidates.

Epigenetic validation
DNA from human cancer cell lines, ovarian specimens 
and non-neoplastic tissues were isolated, bisulfite-mod-
ified as described [53] and then employed for bisulfite 
sequencing, MSP, qMSP, WGBS assays and 450 K array. 
The WGBS and DNA extraction protocols for each type 
of sample are described in Additional file  12:  Materi-
als and Methods section, as well the PCR settings and 
primer sequences for the BS, MSP and qMSP probes 
(Additional file  6 and 11:  Tables  1 and 6). The features 
of the genomic regions selected for epigenetic validation 
can also be found in Additional file 6:  Table 1. qMSP is 
based on qPCR methodology, which allows for quan-
titative differential methylation assessment due to the 
simultaneous presence of both methylated and non-
methylated detection probes, each of which is tagged 

with a different dye, and is therefore a multiplex strategy. 
We developed the assay through the QuantitTect Multi-
plex PCR kit (Quiagen, the Netherlands), and in-house 
designed probes were synthetized by Applied Biosystems 
(USA). Fresh frozen samples were analyzed in duplicate 
using the HT7900 real-time PCR system (Applied Bio-
systems, USA). We also performed a high-throughput 
methylation analysis through the HumanMethylation450 
BeadChip array. Briefly, we obtained DNA from 5 frozen 
samples, 1 healthy ovarian tissue sample and 4 tumor 
samples belonging to the HULP cohort, which were 
also transcriptome sequenced. The DNA was extracted 
according to the aforementioned procedures and sent 
to CNIO for the array procedure. The HumanMethyla-
tion450 BeadChip array has a capacity of 12 samples and 
interrogates more than 450,000 CpG sites using Infinium 
HD Methylation technology.

cDNA plasmid transfection
The experimental tumor cell line groups were transfected 
with test cDNA plasmids to determine their potential 
biological role. A Myc-DDK-tagged ORF clone of PAX9 
(ID: RC200380), FKBP1B (ID: RC200667) and the nega-
tive control pCMV6 were used for transfection (Ori-
Gene, USA). OVCAR3 S/R phenotypes were seeded onto 
60-mm dishes at 5 ×  105 cells/dish density and trans-
fected with either a negative control or test vector using 
jetPei (Polyplus-transfection, Graffenstaden, France) 
as a transfection agent according to the manufacturer’s 
instructions. Seventy-two hours after transfection, the 
cells were exposed to increasing doses of the platinum 
compound, and the survival fraction was calculated fol-
lowing the previously described method [52]. Transfec-
tion efficacy was evaluated by measuring cDNA plasmid 
gene expression at 24 and 72 h by qRT-PCR as described 
above, using the resistant cell line transfected with nega-
tive control as a calibrator. Three independent experi-
ments were performed in triplicate.

Computational analysis
Epigenetic study
Regions found to be differentially methylated by the 
WGBS assay were identified as CpG islands using infor-
matics tools. To this end, we applied search engines that 
use strategies based on Takai and Jones parameters: 
GC ≥ 55%; Obs/Exp ≥ 65; and length ≥ 500  bp [54]. We 
applied two search engines linked to websites (http:// 
bioin fo. itb. cnr. it/ cgi- bin/ wwwcpg. pl and http:// doua. 
prabi. fr/ softw are/ cpgpr od_ query) that identify pro-
moters associated with CpG islands in large genomic 
regions, exhibiting high sensitivity and specificity [55]. To 
increase the specificity of the search, the sequences were 
processed with the RepeatMasker Web Server (http:// 

http://bioinfo.itb.cnr.it/cgi-bin/wwwcpg.pl
http://bioinfo.itb.cnr.it/cgi-bin/wwwcpg.pl
http://doua.prabi.fr/software/cpgprod_query
http://doua.prabi.fr/software/cpgprod_query
http://www.repeatmasker.org
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www. repea tmask er. org), discarding experimental back-
ground that might originate by repetitive ALU elements 
with structures similar to the CpG islands [54, 56]. These 
positions were confirmed by data from the ENCODE 
project (http:// www. genome. ucsc. edu/ index. html).

The data obtained from 450 methylation arrays were 
evaluated through the minfi [57] and ChAMP [58] pack-
ages, which help obtain quality controls, filtering, nor-
malizations and identification of differentially methylated 
CpG sites. Libraries were paired-end sequenced follow-
ing guidelines on the HiSeq2000 (Illumina, Inc.), with a 
reading length of 2 × 101 bp. Image analysis, assignment 
of bases and score quality of the run were processed with 
the real-time analysis program according to the manufac-
turer’s instructions.

Output data related to the differential methylation 
from the WGBS and arrays were obtained through sta-
tistical packages in synergy with β values, applied in Illu-
mina microarrays to discriminate methylation levels [59]. 
Potential differentially methylated regions were evalu-
ated at first glance with the β value parameter, and those 
that fit in the established ranges were analyzed with the 
methylKit package [60] to identify those with statistical 
significance.

Transcriptome study
Regarding the bioinformatic expression analysis, the 
Limma statistical package [61] helped identify the dif-
ferentially expressed genes from the microarray analysis 
using the unpaired t-test algorithm with Benjamini Hoch-
berg as the FDR correction method for multiple testing 
corrections. RNA-seq reads were processed through a 
workflow based on FastQC to ensure quality and through 
Cutadapt v1.3 [62] to eliminate remnants of the Illumina 
adapters and to discard sequences shorter than 30  bp. 
Reads were analyzed through the quantification of genes 
and isoforms methodology RSEM v1.2.3 (RNA-Seq by 
Expectation Maximization) [63]. A differential expres-
sion analysis was conducted using the edgeR package 
[64] to obtain genes/transcripts differentially expressed 
in tumor tissue versus normal tissue (FDR < 0.05). Those 
genes/transcripts with fewer than 1 read per million in 
fewer than 6 samples were discarded. Normalization was 
performed using the trimmed mean of M-values method 
[65], and the applied model was QLF, taking into account 
the technical variability related to the fact that the sam-
ples were sequenced in different centers and phases.

Statistical analysis
The clinical data were statistically evaluated 
using a Chi-squared test or Fisher’s exact test for 
qualitative variables and Student’s t-test or the 

Wilcoxon–Mann–Whitney test (non-normal distri-
bution) for quantitative variables. The Kaplan–Meier 
method was employed to plot the cumulative OS 
curves for the platinum-resistant patients with methyl-
ated or non-methylated genes according to the log-rank 
test. Statistical significance was defined as a bimodal 
p-value < 0.05. The statistical analyses were performed 
using Stata 10 and R 3.6 software.
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PBMCs: Peripheral blood mononuclear cells; BS: Bisulfite sequencing; CDDP: 
Cisplatin; CGI: CpG island; mSP: Methylation‑specific PCR; OEC: Ovarian 
epithelial carcinoma; OS: Overall survival; PFS: Progression‑free survival; qRT‑
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Additional file 1. Supplementary Figure 1. Bisulfite sequencing of 
FABP5 gene. Representation of a sequence fragment from the FAPB5 
gene area of bisulfite‑modified DNA from sensitive and resistant A2780 
and OVCAR3 tumor lines, DNA from normal ovarian tissue from patients 
undergoing sex change, and DNA from Peripheral Blood Mononuclear 
Cells (PBMCs) and tumor lines A431 and HeLa. All samples, except Hela, 
were sequenced with the antisense primer. Methylated positions are 
indicated with a blue Asterisk.

Additional file 2. Supplementary Figure 2. Bisulfite sequencing of the 
CFD gene Area1.  Representation of a sequence fragment of CFD gene 
of bisulfite‑modified DNA from sensitive and resistant tumor lines A2780, 
DNA normal ovarian tissue from patients undergoing sex change and 
from Peripheral Blood Mononuclear Cells (PBMC’s) as well DNA extracted 
from oral epithelium. The sequenced tumor lines were cervical cancer 
(HeLa) and adenocarcinoma of the colon (LoVo). All the samples were 
sequenced with the sense primer. Methylated positions are indicated by 
a blue asterisk.

Additional file 3. Supplementary Figure 3. Bisulfite sequencing of the 
CFD gene Area 2. Representation of a sequence fragment of the CFD 
gene of bisulfite‑modified DNA from the sensitive and resistant A2780/ 
OVCAR‑3 tumor lines, normal ovarian tissue from patients undergoing sex 
change, DNA from Peripheral Blood Mononuclear Cells (PBMCs) and DNA 
extracted from oral epithelium The sequenced tumor lines were cervical 
cancer (HeLa) and adenocarcinoma of the colon (LoVo). All the samples 
were sequenced with the reverse primer. Methylated positions are indi‑
cated by a blue asterisk.

Additional file 4. Supplementary Figure 4. Set of cross‑analysis called 
group 2 designed to identify genes of interest. Venn’s diagrams A, B, C, D, 
E, F, G and H show genes derived from the analyzes developed between 
the Illumina 450K methylation array and transcriptome data obtained 
through RNA‑seq performed on patient samples with the methylation and 
expression data of TCGA patients. It should be mentioned that in order 
not to omit possible candidates, the search for markers also included 
overexpressed and hypomethylated genes in the tumors of patients, since 
genes that resemble the profile sought in in vitro resistance could be 
found within such a group. Candidates exhibiting lower expression in R 
regarding another group of genes in S may correlate with hypomethyla‑
tion in S (lower β values) or hypermethylation in R. 

Additional file 5. Supplementary Figure 5. Set of cross‑analysis called 
group 3 designed to identify genes of interest. Venn’s diagrams A, B, C, D, 
E, F, G, H, I, J, K and L show genes derived from the analyzes developed 
between data obtained from Illumina methylation array 450K, tran‑
scriptome data obtained through RNA‑seq both performed on patient 

http://www.repeatmasker.org
http://www.genome.ucsc.edu/index.html
https://doi.org/10.1186/s13148-021-01149-8
https://doi.org/10.1186/s13148-021-01149-8
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samples, with methylation and expression data from the experimental 
model, that is, expression array and WGBS performed in vitro. It should be 
mentioned that in order not to omit possible candidates, the search for 
markers also included overexpressed and hypomethylated genes in the 
tumors of patients, since genes that resemble the profile sought in in vitro 
resistance could be found within such a group. Candidates exhibiting 
lower expression in R regarding another group of genes in S may correlate 
with hypomethylation in S (lower β values) or hypermethylation in R.

Additional file 6. Supplementary Table 1. Bisulfite PCR amplification 
features of initial candidate genes. Genes with differentially methylated 
regions obtained by WGBS in the OVCAR3 (S/R) and A2780 (S/R) lines were 
validated by bisulfite sequencing and further analyzed in additional tumor 
lines, in order to know the methylation frequency of those CpG positions. 
This analysis allowed the subsequent design of specific oligonucleotides 
for methylated and unmethylated positions in methylation‑specific PCR. 
Here it is also shown the chromosomal location of the region observed as 
differentially methylated by methylome sequencing, the cell line in which 
that region was identified and the number of CpG (CG dinucleotides) in 
which the methylation mark was found when resistance vs. sensitivity 
was contrasted. The amplification conditions for PCR were 5’ at 95º, 40 
cycles (1’ at 95ºC, 1’ at 60 or 62º [Annealing temperature for each gene was 
obtained by performing a gradient PCR], 1’ at 72º and a final extension 
of 8’ at 72ºC. PAX9 region was splitted into two areas due to its length. F: 
forward sense, R: reverse sense.

Additional file 7. Supplementary Table 2. Genes derived from analysis 
of contrast B Group 1 (Figure 6) with more than 10 positions differentially 
CpG methylated. MEST gen is highlighted.

Additional file 8. Supplementary Table 3. Genes resulting from contrast 
J Group 3 (Figure S5) with more than 10 positions differentially CpG meth‑
ylated. MEST gen is highlighted

Additional file 9. Supplementary Table 4. Genes resulting from contrast 
I Group 3 (Figure S5) with more than 10 positions differentially CpG 
methylated.

Additional file 10. Supplementary Table 5. Methylation and expres‑
sion cross‑analysis regarding the CpG islands and shores of MEST gen.  
Based on the data obtained from RNA‑seq and the Illumina 450K array 
performed in our patients, we did a cross‑analysis between methylation 
and expression of each of these islands and their associated shore regions, 
with the aim of identifying the influence that the degree of methylation 
of these areas may exert on the regulation of the expression of MEST 
transcripts patients. The level of methylation in the samples was assessed 
by the study of the β value using the same range as that used in the 
screening of potential genes in the first approach. Blue color represents 
hypermethylation and the red color hypomethylation. The inhibited tran‑
scripts are represented in smaller size and those over‑expressed in larger.

Additional file 11. Supplementary Table 6. Specific methylation 
amplification features of PAX9 and FKBP1B genes. Once the methylation 
frequencies of the different CpG positions in the tumor lines were ana‑
lyzed through bisulfite sequencing, those with the highest were chosen to 
perform the Methylation Specific PCR technique in the different cohorts 
of ovarian cancer patients. PCR reactions were performed on primary 
tumors and control samples and amplification conditions depended on 
the gradient reactions performed for each of the genes, varying in both 
cycles and annealing temperatures. The amplification conditions for PCR 
were 5’ at 95º, 8’ at 50ºC, the number of cycles depended on each gene (1’ 
to 95ºC, annealing temperature for each gene was obtained by perform‑
ing a temperature gradient PCR. Annealing was a 1’ long and extension for 
1’ at 72ºC) and a final extension of 8’ at 72ºC. Primers and probes used to 
amplify the methylated and unmethylated areas of each gene of interest 
are also shown. Probes are labeled with fluorophores for the quantitative 
determination of methylation in these genes through quantitative MSP 
(qMSP). F: forward sense primer, R: reverse sense primer.

Additional file 12. Word document containing supplementary informa‑
tion related to the protocols of the techniques used in the development 
of this study.

Additional file 13. Excel document containing the clinical information of 
the patients grouped in the different cohorts that were included for the 
translational phase of the study.
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