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Abstract 

Background: Liver metastases can occur even in CRC patients who underwent curative surgery. While evidence sug-
gested that adjuvant chemotherapy can help to reduce the occurrence of liver metastases for certain patients, it is not 
a recommended routine as the side effects outweigh the potential benefits, especially in Stage II CRC patients. This 
study aims to construct a model for predicting liver metastasis risk using differential methylation signals in primary 
CRC tumors, which can facilitate the decision for adjuvant chemotherapy.

Methods: Fifty-nine stage I/II and IV CRC patients were enrolled. Primary tumor, adjacent normal tissue, and meta-
static tumor tissues were subject to targeted bisulfite sequencing for DNA methylation. The Least Absolute Shrinkage 
and Selection Operator (LASSO) algorithm was used to identify potential DMRs for predicting liver metastasis of CRC.

Results: We identified a total of 241,573 DMRs by comparing the DNA methylation profile of primary tumors of 
stage II patients who developed metastasis to those who were metastasis-free during the follow up period. 213 DMRs 
were associated with poor prognosis, among which 182 DMRS were found to be hypermethylated in the primary 
tumor of patients with metastases. Furthermore, by using the LASSO regression model, we identified 23 DMRs that 
contributed to a high probability of liver metastasis of CRC. The leave-one-out cross validation (LOOCV) was used to 
evaluate model predictive performance at an AUC of 0.701. In particular, 7 out of those 23 DMRs were found to be in 
the promoter region of genes that were previously reported prognostic biomarkers in diverse tumor types, including 
TNNI2, PAX8, GUF1, KLF4, EVI2B, CEP112, and long non-coding RNA AC011298. In addition, the model was also able to 
distinguish metastases of different sites (liver or lung) at an AUC of 0.933.

Conclusion: We have identified DNA methylation biomarkers associated with the risk of cancer liver metastasis in 
early-stage CRC patients. A risk prediction model based on those epigenetic markers was proposed for outcome 
assessment.
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Background
Colorectal cancer (CRC) is one of the most common 
malignancies worldwide and causes the fifth top cancer 
mortality in China [1, 2]. The incidence of CRC is asso-
ciated with age-increasing and a slightly higher risk is 
found in men than women [3]. The 5-year survival rate 
for patients with localized CRC is optimistic, while it 
drops dramatically when distant metastases are devel-
oped [4]. Among all possible metastatic sites, liver is the 
most popular one due to the connection between the 
intestinal mesenteric drainage and the hepatic portal 
venous system [5]. Surgical resection is the only treat-
ment needed for stage I CRC [4]. Considering the side 
effects and the potential benefits, adjuvant chemotherapy 
is not a recommended routine use in stage II CRC as the 
overall survival and disease-free survival were not signifi-
cantly improved, but a decreased trend of tumor relapse 
was observed [6, 7]. Therefore, it is still debatable about 
the administration of adjuvant chemotherapies to post-
operative stage II CRC patients. According to NCCN 
Guidelines, the risk assessment for adjuvant-treatment-
decision is mainly based on clinical prognosis features 
such as poorly differentiated histology and lymphatic/
vascular invasion. However, this may lead to overtreat-
ment or miss the best timing of treatment as these fea-
tures are insufficient for early prediction of metastasis. 
Identification of predictive biomarkers or high-risk 
molecular features to closely monitor disease progres-
sion and metastasis which are critical for determining 
whether the adjuvant therapy should be administrated is 
urgent for stage II CRC.

Next-generation sequencing is now playing an essential 
role in early disease detection and precision medicine. 
Besides genomic alterations, it has been applied to study 
the epigenetic changes during carcinogenesis and tumor 
metastasis. DNA methylation (DNAm) is one of the most 
investigated epigenetic mechanisms which establishes 
the genomic imprinting marks together with histone 
modifications and non-coding RNAs [8]. DNAm mainly 
occurs to the cytosine bases in the ‘CpG’ sites, which are 
enriched in gene promoters [9]. By pre-treating DNA 
with bisulfite, DNAm can be examined at a single-base 
resolution using high-throughput sequencing [10]. As 
aberrant DNAm patterns are considered to be associated 
with cancer and other diseases, researchers have put a lot 
of effort into identifying differentially methylated regions 
(DMRs) to investigate pathology and establish reliable 
biomarkers for prognosis prediction.

DMRs are widely studied as potential biomarkers for 
the diagnosis, prognosis, and treatment response in mul-
tiple cancer types. For instance, OPCML (opioid-binding 
cell adhesion molecule) and FLRT2 (fibronectin leucine-
rich transmembrane protein 2) were identified as novel 
DMRs to distinguish prostate tumors and normal tissues 
[11]. Similar results were found in lung cancer as well, 
where a list of DMR genes was identified in two patients 
by comparing tumor and normal tissue specimens [12]. 
The DNAm levels of a number of genes might contribute 
to the prediction of tumor progression in gastric cancer 
[13]. In ovarian cancer, hypermethylation of DMRs were 
detected in several tumor suppressor genes such as ARHI 
and PEG3 [14]. While in CRC, a hypomethylated DMR in 
IGF2 was reported to be associated with poor prognosis 
[15]. And a comprehensive methylation analysis of DMRs 
in CRC revealed the higher susceptibility of hypermethyl-
ation than hypomethylation in tumor tissues [16]. In this 
study, we sought to comprehensively study the DMR sta-
tus in early-stage CRC patients and extracted dominant 
ones to establish a pilot model to predict liver metastases 
in stage II CRC.

Methods and materials
Patients recruitment and sample collection
We retrospectively studied CRC patients who received 
surgery on either primary or metastatic tumor at the 
Cancer Hospital, Chinese Academy of Medical Sciences 
between 2012 and 2018. An average 5-year follow-up 
evaluation was performed for each patient to confirm 
the status of liver metastasis till December 31, 2019. 
All patients have provided written informed consent. 
In total, 81 samples including tumor and tumor adja-
cent, were collected from 59 patients. All samples were 
shipped to the central laboratory of a clinical testing 
center (Nanjing Geneseeq Technology Inc., China) for 
targeted bisulfite sequencing.

Targeted bisulfite sequencing and identification 
of differentially methylated region (DMR)
To construct the sequencing libraries, 1  μg of DNA 
per formalin-fixed paraffin-embedded (FFPE) sample 
was extracted and then treated with bisulfite. Targeted 
bisulfite sequencing was then performed on Illumina 
Hiseq platform (Illumina, San Diego, CA) using prede-
signed probes (SeqCap Epi CpGiant, Roche), which tar-
geted a total of ~ 2.7 ×  106 CpG sites within ~ 80.5 Mb of 
genome region. Raw sequencing data were first demulti-
plexed by bck2fastq and then trimmed by Trimmomatic 
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as part of the quality control (QC) protocol [17]. The 
qualified reads were then mapped onto the human refer-
ence genome (GRCh37/UCSC hg19) using the bisulfite 
sequence aligner Bismark [18] after PCR duplicates 
removal by Picard toolkit (http:// broad insti tute. github. 
io/ picard/).

The methylKit package (version 1.12.0) was used to 
identify DMRs in R (version 3.6.3) [19]. CpG clusters 
were tiled into 1000  bp windows with a minimum cov-
erage ≥ 2 to ensure better detection of DMRs based on 
parameters which were previously reported by Ziller 
et al. [20]. The methylation level of each DMR was calcu-
lated using the total methylated cytosines divided by the 
total CpGs within each window. Logistic regression was 
applied to calculate the methylation difference as well as 
the false discovery rates (FDR) between the test and con-
trol groups.

Identification of prognostic DMRs in stage II CRC patients
To identify potential methylation markers discriminating 
between stage II patients with favorable and unfavora-
ble prognoses, we first identified DMRs using 38 stage 
II tumor samples (21 favorable vs 17 unfavorable). The 
DMRs, which were significantly different between sam-
ples with favorable and unfavorable prognoses (methyla-
tion differences ≥ 10%, q value ≤ 0.05), were selected for 
downstream analysis. We then annotated these DMRs 
using the latest gene annotation from the GENCODE 
project (release 19 for GRCh37/UCSC hg19) [21] and 
chose only DMRs located within the promoter regions, 
which were defined as 1500  bp upstream and 500  bp 
downstream of the transcription start sites, using BED-
Tools (version 2.26.0) [22]. Finally, we performed a Jonck-
heere trend test on the methylation levels of these DMRs, 
to identify any DMRs showing a significant trend in dif-
ferent cancer stages, including tumor-adjacent, stage I, II 
and IV. A total of 70 samples, which included the 38 stage 
II tumor samples as well as 32 additional samples (11 pri-
mary tumor adjacent, 11 stage I and 10 stage IV), were 
used and the final prognostic DMRs were selected if the 
trend was statistically significant (p value ≤ 0.05).

Model predicting liver metastasis using primary CRC tumor 
samples
We used a total of 59 primary tumor samples to con-
struct a model for predicting liver metastasis (LIM) in 
CRC patients. These 59 patient samples, as shown in 
Additional file 3: Table S1, included 22 patients with LIM 
and 37 patients without LIM during the follow-up. The 
machine learning approach was based on the stacked 
generalized linear model (GLM) of three based models 

using gradient boosting (GBM), Random Forest and 
Deep learning algorithms.

To increase the performance of our base model, we 
have performed tenfold cross-validation based on the 
training dataset to optimize the base models as well 
as the GLM stacked model. Each sample was used as a 
validation set for the LASSO model during the LOOCV, 
while the rest 58 samples were kept as the training set. 
The DMRs between primary tumor samples from LIM 
patients and LIM-free patients were identified using 
the training dataset only. A selective number of DMRs 
(methylation differences ≥ 20%, q value ≤ 0.05) were then 
used as candidates for identifying diagnostic DMRs. 
XGBoost was used to predict the performance of diag-
nostic DMRs, and the probability score for the validation 
set was calculated [23]. In total, the LASSO model was 
performed 59 times, and the Receiver Operating Char-
acteristic (ROC) curve was constructed using probability 
scores of all 59 samples.

After the LOOCV was finished, the LASSO model was 
applied using the entire 59 primary tumor samples. A 
total of 105 DMRs between patients with/without LIM 
were identified using the aforementioned 59 primary 
tumor samples. After applying the LASSO algorithm, we 
were able to identify 23 DMRs from the total 105 candi-
date DMRs as the optimal diagnostic markers.

Model evaluation using liver/lung metastasis tumor 
samples
To further evaluate the predicting power of our model, 
we used 6 liver metastasis tumor samples and 5 lung 
metastasis tumor samples from CRC patients. Among 
these 11 metastasis tumor samples, 21 of the 23 previ-
ously identified diagnostic markers were available. The 
probability scores of these 11 samples were calculated 
using the aforementioned predictive model. A ROC 
curve was constructed to evaluate the performance of 
the predictive model by examining if the liver metastasis 
status were correctly identified for the metastasis tumor 
samples.

Results
Clinical characteristics of the 59 CRC patients
In this study, a total of 59 patients who were diagnosed 
as CRC and treated at the Cancer Hospital, Chinese 
Academy of Medical Sciences were recruited. The gen-
eral clinical characteristics of the cohort are summa-
rized in Table  1. There were more male (36/59, 61.0%) 
than female (23/59, 39.0%) patients and the median age 
was 61  years old. The majority patients (42/59, 71.2%) 
were non-smokers. Nearly two-thirds (38/59, 64.4%) 
were initially diagnosed as stage II and 17 of them devel-
oped lung or liver metastasis (LIM:11, LUM: 6) during 
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the follow-up period. Metastasis was also developed in 
two of the 11 stage I patients (LIM:1, LUM:1). All of the 
stage IV patients (N = 10) were initially diagnosed with 
LIM; meanwhile, LUM was found in two of them. To 
sum up, LIM were found in 22 of the 29 patients (75.9%) 
with metastatic tumors, making it more dominant than 
LUM (31.0%, 2 patients have both LIM and LUM). The 
median liver-metastasis-free survival time for these 59 
patients was 2000 days, while the 1-year liver-metastasis-
free rate was 81.4%, as shown in Additional file 1: Figure 
S1. A total of 81 tissue samples were collected from the 
entire cohort including 59 primary CRC tumor samples, 
11 tumor-adjacent samples, and 11 metastatic tumor 
samples (6 LIM and 5 LUM) and the detailed information 
was summarized in Additional file 3: Table S1.

Identify potential DMRs as prognostic markers
To identify any DMRs markers associated with prognosis, 
we sought to analyze the methylation status of primary 

tumor samples, which were grouped based on prognosis. 
To reduce the disturbance of stages, we only focused on 
the 38 stage II patients in which the number of favorable 
and unfavorable prognosis were similar.

These 38 stage II patients were grouped into a test 
and control group to identify DMRs using the methyl-
kit package (version 1.12.0) in R (version 3.6.3) [19]. The 
test group was comprised of 17 patients with unfavorable 
prognosis, who developed either LIM or LUM during the 
follow-up period. The other 21 patients without metas-
tases were grouped into the control group. The primary 
tumor samples of these 38 stage II CRC patients were 
used to identify DMRs as described in Fig.  1. We were 
able to identify a total of 241,573 DMRs (detail data not 
shown) between the test group and the control group.

To better understand their potential functional impact, 
we then annotated our identified DMRs against the lat-
est gene annotation for GRCh37/UCSC hg19 from the 
GENCODE project (release 19) [21]. In total, 85,668 
DMRs were found to be overlapping with a promoter 
region (Fig. 2B), which was defined as 1500 bp upstream 
to 500  bp downstream of a transcription start site. We 
then performed a pathway enrichment test using a sub-
set of 26,105 DMRs, of which the q values met the cut-
off of 0.05 (Fig. 2A). These 26,105 DMRs overlapped with 
the promoter regions of 19,809 genes, which were then 
used as the input for the enrichment analysis of disease-
gene associations in the R package clusterProfiler [24]. 
The top 20 enriched disease terms are shown in Fig. 2A. 
These enriched terms included precancerous conditions 
and disseminated malignant neoplasm, which could be 
linked to the development of metastatic tumors. It was 
worth noting that cirrhosis, which was evidently diag-
nosed within patients with liver tumors [25], was also 
found among the enriched terms in our results. This 
was possibly contributed by the fact that the majority 
(64.7%, 11/17) of the unfavorable prognosis patients were 
diagnosed with LIM instead of LUM (Additional file  3: 
Table S1).

To further validate the prognostic power of these 
DMRs, we then performed the Jonckheere trend 
test using methylation value in the 59 primary tumor 
samples of different cancer stages as well as in the 11 
tumor-adjacent samples from the 59 CRC patients. For 
the trend test, these 70 samples were clustered into 4 
groups based on their TNM stage information (tumor 
adjacent, stage I, II and IV, respectively). We used 
241,199 DMRs from the total 241,573 DMRs, which 
had methylation values available in all 70 samples 
(detail data not shown). For each DMR, a Jonckheere 
trend test was performed and 15,015 DMRs which were 

Table 1 Clinicopathological characteristics of the 59 CRC 
patients

a Two patients have both liver and lung metastases

Characteristic Number (%)

Overall 59

Median age (range) 59 (40–78)

 < 60 32 (54.2)

 ≥ 60 27 (45.8)

Sex
Male 36 (61.0)

Female 23 (39.0)

Smoke history
Smoker 16 (27.1)

Non-smoker 42 (71.2)

Unknown 1 (1.7)

Stage
I 11 (18.7)

II 38 (64.4)

IV 10 (16.9)

Metastasis
Stage I

LIM 1 (9.1)

LUM 1 (9.1)

Stage II

LIM 11 (28.9)

LUM 6 (15.8)

Stage IV

LIM 10 (100) a

LUM 2 (20) a

All stages

No metastasis 30 (50.8)
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showing statistical significance were selected for down-
stream analysis (Fig. 2B). We then selected 8,311 candi-
date DMRs, which were showing significant differences 
(q value ≤ 0.05, methylation differences ≥ 10%) between 
methylation values of the test group and the control 
group, from the total 241,573 DMRs for further analy-
sis (Fig. 2B).

A final set of 213 DMRs (Additional file  3: Table  S2), 
which met all three of the aforementioned filtering cri-
teria, were selected as the prognostic DMR markers, 
as shown by the Venn diagram in Fig.  2. We then con-
structed a heatmap using the methylation values of 
these 213 DMRs in the 38 stage II primary tumor sam-
ples. As shown in Fig.  2C, there was noticeable differ-
ences between the group of unfavorable prognosis and 
favorable prognosis. These 213 DMRs between the 17 
unfavorable prognosis and 21 favorable prognosis sam-
ples, as shown in Additional file  3: Table  S2, included 
182 hypermethylated and 31 hypomethylated DMRs. 
The overwhelming number of hypermethylated DMRs in 
our results was consistent with the current understand-
ing that DNA hypermethylation associated with can-
cer are mostly found in gene regions, despite there are 
more hypomethylation compared to hypermethylation 
in general [26]. The targeted bisulfite sequencing was 
performed using SeqCap Epi CpGiant probes, which is 
biased toward finding hypermethylation as it focused 
more on genic regions compared to the whole genome 
bisulfite sequencing approach.

Additionally, the 213 prognostic DMRs have been fil-
tered against gene region and are overlapping with pro-
moter regions, which can enhance such bias. Figure  3 
shows the comparison of methylation rate of nine ran-
domly chosen prognostic DMRs between favorable and 
unfavorable prognosis groups. All of them were suscep-
tible to be hypermethylated when metastasis was devel-
oped later on and mostly located in promoter regions 
of genes which had confirmed associations with certain 
type of cancer.

We then performed statistical analysis to investigate 
the potential impact of age and smoking history had 

on the 213 identified prognostic DMRs. The 38 stage II 
patients were first split into two different groups com-
paring their age toward the group median (< 60 years old 
and ≥ 60 years old, 16 and 22 patients, respectively). For 
each of the 213 DMRs, raw methylation rates for the 38 
stage II patients were used for wilcoxon test to compare 
if the two groups are significantly different (fdr adjusted 
p value or q value < 0.1). None of the 213 DMRs showed 
any statistical significance differences between the two 
groups, as shown in Additional file 3: Table S3. Similar to 
the age test, these patients, excluding one patient without 
smoking history information, were subsequently grouped 
into smoking [11] and non-smoking [26] groups. The 
Wilcoxon tests shown that none of these DMRs had sig-
nificant differences based on patients smoking history (q 
value < 0.1, Additional file 3: Table S3).

Construct a pilot model for predicting the liver metastasis 
based on DMRs in primary colorectal tumor
Since LIM is the more dominant type of metastasis 
among CRC patients, we set to explore the possibility 
to predict LIM status using the primary tumor samples. 
The total 59 primary tumor samples were used to con-
struct a pilot model for predicting the LIM status in these 
CRC patients. A total of 105 DMRs (methylation differ-
ences ≥ 20%, q value ≤ 0.05) were identified between the 
22 patients with LIM and 37 patients without LIM dur-
ing the follow-up. These DMRs were then used as candi-
dates for the predictive model. By utilizing LOOCV and 
LASSO model as described in Fig.  4A, we were able to 
generate the probability scores for all 59 samples. A ROC 
curve was constructed, as shown in Fig. 4B, using these 
probability scores, yielding an Area Under Curve (AUC) 
score of 0.7015 (sensitivity = 72.7%, specificity = 70.3%, as 
shown in Additional file 3: Table S4). The model was then 
applied to the total 59 primary samples, and 23 out of the 
105 DMRs were identified as optimal predictive mark-
ers (shown in Table 2). 7 of 23 (30.4%) were overlapped 
with a promoter region and 6 (26.1%) were located within 
the coding region. The rest 7 DMRs were involved in the 

(See figure on next page.)
Fig. 1 Flowchart for identifying prognostic and predictive DMRs. Targeted bisulfite sequencing was performed on a total of 81 samples containing 
59 primary CRC tumor samples (11 stage I, 38 stage II, 10 stage IV), as well as 11 tumor-adjacent samples and 11 metastatic tumor samples. Aim 1. 
prognostic marker selection: DMRs were identified between the stage II unfavorable group (17 samples) and the stage II favorable prognosis group 
(21 samples). Jonckheere trend test was performed on 70 samples including 11 tumor adjacent and 59 primary samples. 213 DMRs were selected 
as the final prognostic markers. Aim 2: LIM predictive marker selection: a LASSO-based LOOCV was applied to a training cohort of 59 primary 
CRC tumor samples to identify a final selection of 23 DMR markers. These 23 markers were then validated by a dataset of 6 LIM and 5 LUM tumor 
samples. LIM: liver metastasis; LUM: lung metastasis
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intergenic regions. Wilcoxon test results shown that none 
of these 23 DMRs were significantly different between 
different age/smoking group within these patients (q 
value < 0.1, Additional file 3: Table S5).

To explore the utility of the established model in dis-
criminating metastatic sites, we generated another ROC 
curve using the 23 predictive markers on 11 metastatic 
tumor samples (6 LIM and 5 LUM). The model was 
showing an excellent performance in discriminating the 
LIM samples against the LUM samples (AUC = 0.9333, 
sensitivity = 83.3%, specificity = 100%, Fig.  4C). Fur-
thermore, a Kaplan–Meier curve of LIM-free survival 
suggested that the patient predicted as LIM positive 
had a significantly shorter LIM-free survival compared 
to the LIM predicted negative (Log-rank p = 0.0037, 
Fig.  4D). We also constructed a Principal Component 
Analysis (PCA) with the total 81 samples including 11 
tumor-adjacent samples, 59 primary tumor samples and 
11 metastatic tumor samples. As illustrated by the PCA 
(Fig. 4E), the LIM positive and LIM negative groups in 
the primary tumor samples were separated from each 
other. Similarly, the LIM positive and negative samples 
from the metastatic tumor can be distinguished. The 11 
tumor-adjacent samples were placed closer to the pri-
mary without LIM samples yet with trend of separation. 

Finally, visible differences can be observed in the heat-
map generated using these 23 DMRs in the 59 primary 
tumor samples (Fig. 4F). Finally, an external validation 
cohort, which consist of primary tumor samples from 
8 CRC patients (4 LIM and 4 LIM-free), was used to 
further evaluate the model performance. As shown in 
Additional file  2: Figure S2, our model showed great 
performance in differentiating the LIM samples from 
the LIM-free samples (AUC = 0.875, sensitivity = 100%, 
specificity = 75.0%).

Discussion
Despite detail mechanisms not being completely under-
stood, DNAm are believed to have the ability of altering 
downstream gene expression by affecting the binding of 
transcription factors and their target sites[27]. Addition-
ally, evidence suggest that DNAm within the gene body, 
especially the first exon, can be associated with tran-
scriptional silencing[28]. DNAm now is an emerging 
biomarker for cancer diagnosis and prognosis prediction 
which plays an important role in establishing epigenetic 
imprints.

Here we investigated the different DNAm status in 
CRC patients with and without metastasis within the 
follow-up period. Using targeted bisulfite sequencing, 

Fig. 2 DMR analysis of Stage II CRC prognosis. A Dotplot of enriched terms using DMRs among Stage II favorable prognosis and Stage II 
unfavorable prognosis tumor samples. A total of 19,809 genes which had DMR in the promoter regions were used for the enrichment analysis of 
disease-gene associations. B Venn diagram for selecting the final 213 prognostic DMR markers. a) 8,311 candidate DMRs between Stage II favorable 
and unfavorable prognosis samples (q value ≤ 0.05 & methylation differences ≥ 10%); b); 15,015 DMRs shown statistic significances (p value ≤ 0.05) 
in Jonckheere trend test among 59 CRC tumor and 11 tumor -adjacent samples; c) 85,668 DMRs overlapping with a gene promoter region (1500 bp 
upstream/500 downstream of transcription start site); C Heatmap of the final 213 prognosis marker methylation values in 21 Stage II favorable and 
17 unfavorable prognosis tumor samples
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we initially identified over 24 thousand of DMRs by 
comparing the primary tumor samples of 38 stage II 
patients. With several steps of data filtration, we even-
tually selected 213 candidate DMRs which might serve 
as metastasis predictors and the majority were hyper-
methylated in the unfavorable prognosis group. Evi-
dence suggested that, while there are more cancer-related 
hypomethylation than hypermethylation in the inter-
genic region, DNAm associated with cancer found in 
genic regions were mostly hypermethylation [26, 29]. 
A recent study in 2018 by Hidaka et. al has focused on 
genes expression regulated by DMRs in 106 CRC patients 
and found an overall trend toward hypermethylation in 

CRC tissue samples [16]. This agrees with the fact that we 
had more hypermethylation in our results, which were all 
located within promoter regions further enhancing such 
bias.

Through literature searching, we found that many 
of them were associated with cancer-related genes. 
For example, our results suggested that the unfavora-
ble prognosis group were hypermethylated compared 
to the favorable prognosis group within the region 
chr1:118147001–118148000. Such hypermethylation 
in the promoter region would in theory result in down-
regulation of the FAM46C gene, which was acting as an 
onco-suppressor gene in multiple myeloma [30]. Simi-
larly, our data suggested that the promoter regions of 
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Fig. 3 Methylation values of nine DMRs in Stage II favorable and unfavorable prognosis primary tumor samples. Data were analyzed using student t 
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SORCS3 − AS1 were differentially methylated among the 
two groups of different prognoses. Interestingly, Sch-
neider et al. reported in 2015 that the methylation level 
of SORCS3 gene can be associated with tumor progres-
sion in gastric cancer [13]. The promoter region of HLA-
DQA1 gene, which was part of the human leukocyte 
antigen (HLA) complex, was differentially methylated 
and labeled as a prognostic marker in our result. Intrigu-
ingly, the expression of HLAB gene, which was also part 
of the HLA complex, was reportedly associated with 
tumor progression in CRC [31]. Furthermore, ARHGEF1, 
CFAP65, PDGFRB and CLEC5A were labeled as prog-
nostic marker by the Human Protein Atlas in renal and 
breast cancer, endometrial cancer, renal and urothelial 
cancer, and ovarian cancer, respectively [32, 33].

The predictive model established through LASSO and 
LOOCV was based on 23 DMRs, most of them were 
located in the gene coding or promoter regions. The 
seven genes whose promoter contained these DMRs 
were either previously reported as prognostic markers 
or showed the predictive potential in multiple cancers. 
For example, PAX8 and GUF1 were reported as prog-
nostic markers for endometrial cancer, renal cancer and 

thyroid cancer, respectively [33]. Both KLF4 and EVI2B 
were identified by the Human Protein Atlas as markers 
for renal cancer prognoses (favorable and unfavorable, 
respectively) [33]. Furthermore, TNNI2 was reported 
to have predictive power for metastatic tumor develop-
ment in gastric cancer [34]. A recent study suggested 
that the centrosomal protein 112 (Cep112) was able to 
act as an oncogene by interacting with genomic instabil-
ity inducing RNA [35]. Finally, the long non-coding RNA 
AC011298 was among the six identified prognostic mark-
ers identified in a bladder cancer study [36].

In clinical setting, the postoperative treatment-deci-
sion for early-stage CRC is challenging. The high odd of 
metastasis development especially to liver dramatically 
decreases the five-year survival rate. Therefore, early-
prediction of liver metastasis could be powerful to 
improve prognosis for early-stage CRC patients. Many 
biomarkers have been investigated for the possibility of 
predicting metastasis such as microRNAs [37] and spe-
cific gene expression level [38]. Nowadays, epigenetic 
information has drawn a broad attention as predictive 
biomarkers and DNAm status is the most investigated. 
Previous studies have identified hundreds of DMRs by 
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comparing different conditions such as stage, progno-
sis, and histology. However, no solid predictive model 
has been established. Herein, we sought to explore the 

possibility of predicting liver metastasis based on the 
primer tumor DNAm profiles. Taking advantages of 
the surgery resected tissue biopsy to predict the pos-
sibility of metastasis could reduce overtreatment and 
provide valuable information to guide treatment. We 
explored the DNAm profiles of the primary tumors to 
characterize novel DMRs features by comparing favora-
ble and unfavorable stage II CRC patients. By identify-
ing potential DMR markers which could reflect the risk 
of liver metastasis, we aimed to eventually establish a 
model to predict the metastasis risk by detecting the 
primary tumor DMRs. However, due to the restricted 
cohort size, we could only perform the LOOCV for 
model selection and validated the predictive model 
based on the metastatic tumor samples and a small 
external validation cohort. A larger cohort with meth-
ylation values in primary CRC samples would be a great 
value for DMRs identification and modelling which 
remained to be completed in the future. Therefore, in 
the present study, we have identified DNAm biomark-
ers associated with the risk of cancer liver metastasis 
in early-stage CRC patients and proposed a pilot risk 
prediction model based on those epigenetic markers for 
outcome assessment.
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Table 2 Annotation of the 23 predictive DMRs identified using 
59 primary CRC tumor samples

Genome position Gene context Gene name Type of DMR

chr11:1861001–
1862000

Promoter TNNI2 hypo

chr2:113994001–
113995000

Promoter PAX8 hypo

chr2:241626001–
241627000

Promoter AC011298 hypo

chr4:44679001–
44680000

Promoter GUF1 hyper

chr9:110248001–
110249000

Promoter KLF4 hyper

chr17:29641001–
29642000

Promoter EVI2B hyper

chr17:63739001–
63740000

Promoter CEP112 hypo

chr1:200977001–
200978000

Gene body KIF21B hypo

chr12:66765001–
66766000

Gene body GRIP1 hyper

chr13:111289001–
111290000

Gene body NAXD hypo

chr19:39314001–
39315000

Gene body ECH1 hypo

chr2:136279001–
136280000

Gene body ZRANB3 hyper

chr7:51148001–
51149000

Gene body COBL hypo

chr8:72468001–
72469000

Gene body RP11-1102P16.1 hyper

chr8:99394001–
99395000

Gene body KB-1458E12.1 hypo

chr16:1344001–
1345000

Gene body RP11-616M22.7 hypo

chr11:12097001–
12098000

Intergenic N/A hyper

chr12:90907001–
90908000

Intergenic N/A hypo

chr2:75504001–
75505000

Intergenic N/A hypo

chr22:18530001–
18531000

Intergenic N/A hyper

chr4:153039001–
153040000

Intergenic N/A hypo

chr7:34344001–
34345000

Intergenic N/A hyper

chr9:139591001–
139592000

Intergenic N/A hypo
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