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Abstract 

Background: Cardiovascular disease (CVD) is the leading cause of mortality among US adults. African Americans 
have higher burden of CVD morbidity and mortality compared to any other racial group. Identifying biomarkers for 
clinical risk prediction of CVD offers an opportunity for precision prevention and earlier intervention.

Results: Using linear mixed models, we investigated the cross-sectional association between four measures of 
epigenetic age acceleration (intrinsic (IEAA), extrinsic (EEAA), PhenoAge (PhenoAA), and GrimAge (GrimAA)) and ten 
cardiometabolic markers of hypertension, insulin resistance, and dyslipidemia in 1,100 primarily hypertensive Afri-
can Americans from sibships in the Genetic Epidemiology Network of Arteriopathy (GENOA). We then assessed the 
association between epigenetic age acceleration and time to self-reported incident CVD using frailty hazard models 
and investigated CVD risk prediction improvement compared to models with clinical risk scores (Framingham risk 
score (FRS) and the atherosclerotic cardiovascular disease (ASCVD) risk equation). After adjusting for sex and chrono-
logical age, increased epigenetic age acceleration was associated with higher systolic blood pressure (IEAA), higher 
pulse pressure (EEAA and GrimAA), higher fasting glucose (PhenoAA and GrimAA), higher fasting insulin (EEAA), lower 
low density cholesterol (GrimAA), and higher triglycerides (GrimAA). A five-year increase in GrimAA was associated 
with CVD incidence with a hazard ratio of 1.54 (95% CI 1.22–2.01) and remained significant after adjusting for CVD 
risk factors. The addition of GrimAA to risk score models improved model fit using likelihood ratio tests (P = 0.013 for 
FRS and P = 0.008 for ASCVD), but did not improve C statistics (P > 0.05). Net reclassification index (NRI) showed small 
but significant improvement in reassignment of risk categories with the addition of GrimAA to FRS (NRI: 0.055, 95% CI 
0.040–0.071) and the ASCVD equation (NRI: 0.029, 95% CI 0.006–0.064).

Conclusions: Epigenetic age acceleration measures are associated with traditional CVD risk factors in an African-
American cohort with a high prevalence of hypertension. GrimAA was associated with CVD incidence and slightly 
improved prediction of CVD events over clinical risk scores.

Keywords: Age acceleration, DNA methylation, Epigenetic age, Cardiovascular disease, Clinical risk scores, 
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Background
Cardiovascular disease (CVD) is the leading cause of 
mortality among US adults [1]. African Americans have 
the highest CVD morbidity and mortality burden, a trend 
which has been consistent over the last few decades 
[2]. Underlying this higher CVD prevalence is a greater 
burden of a number of risk factors, including hyperten-
sion, type 2 diabetes, and obesity [3–5]. Yet a focus on 
established risk factors and their management has failed 
to fully reduce the excess CVD burden among African 
Americans. Identification of novel biomarkers that go 
beyond traditional ones may help better identify at-risk 
individuals, advance precision medicine, and inform 
efforts to reduce CVD burden.

Epigenetic aging, based on DNA methylation (DNAm) 
at CpG dinucleotides, is a novel measure of biological 
aging that offers the opportunity to identify molecular 
markers of disease risk. The first generation of epigenetic 
aging measures, the HorvathAge [6] and HannumAge 
[7] epigenetic clocks, were trained on chronological age 
and are estimated based on 363 and 71 CpG sites selected 
using elastic net regression modeling, respectively. Hor-
vathAge was trained using multi-tissue samples from 
children and adults, while HannumAge was trained using 
a single tissue (whole blood) from adults. Modified ver-
sions of these two measures were later derived to account 
for confounding by blood cell composition: intrinsic epi-
genetic age acceleration (IEAA) based on HorvathAge 
explicitly adjusts for blood cell composition, and extrinsic 
epigenetic age acceleration (EEAA) based on the Han-
numAge is a composite measure that includes a weighted 
average of cell counts known to vary strongly with age 
[8]. PhenoAge, a more recent measure based on whole 
blood from adults, was estimated using 513 CpG sites 
and was trained on a composite clinical measure of phe-
notypic age that is based on chronological age and nine 
biomarkers including albumin, creatinine, serum glucose, 
and white blood cell counts [9]. The biomarkers were 
selected for their association with the hazard of mortal-
ity using a Cox penalized regression model. GrimAge is 
another recent measure constructed based on the linear 
combination of 1030 CpG sites that represent DNAm-
based surrogate measures for a number of plasma pro-
teins and smoking pack-years [10]. Like PhenoAge, it is 
based on whole blood from adults. In addition to chrono-
logical age, both PhenoAge and GrimAge account for 
physiological dysfunction among individuals of the same 
chronological age in their selection of CpGs. For each of 
these measures, epigenetic age acceleration is defined as 
the discrepancy between epigenetic age and chronologi-
cal age. These four epigenetic age acceleration measures 
are hypothesized to be capturing different aspects of 
aging and are based mostly on unique CpG sites [11].

A growing body of literature has examined the associa-
tion between epigenetic age acceleration and CVD and 
its risk factors, such as blood pressure and lipids, but the 
overall evidence remains inconclusive likely due to het-
erogeneity in study design, the specific outcomes exam-
ined, and the epigenetic aging measures used [12–21]. 
PhenoAge and GrimAge are more recently developed 
measures, and so validation of their associations and 
comparisons to the first-generation measures are in early 
stages. Two recent studies in participants of European 
ancestry show that GrimAA outperforms other measures 
in its association with CVD incidence after adjusting for 
CVD risk factors [21, 22], and additional studies report 
similar findings with all-cause mortality [21–24]. Yet it 
is unclear whether epigenetic age acceleration measures 
could be used to improve CVD prediction in a clinical 
setting.

In this study, we investigated the relationship between 
four epigenetic age acceleration measures and ten car-
diometabolic markers of hypertension, insulin resistance, 
and dyslipidemia in 1,100 primarily hypertensive Afri-
can Americans in the Genetic Epidemiology Network of 
Arteriopathy (GENOA) study. We additionally assessed 
the association between four epigenetic age accelera-
tion measures and incident CVD. Finally, we exam-
ined whether epigenetic age acceleration measures can 
improve the predictive accuracy of two clinically-used 
CVD risk scores: the Framingham risk score (FRS) [25] 
and the more recently developed atherosclerotic cardio-
vascular disease (ASCVD) risk equation [26].

Results
Descriptive statistics
Baseline characteristics of the participants are shown 
in Table  1. The 1,100 participants from 530 sibships 
had a mean age of 57.1  years, and 71% were women. 
About 60% were never smokers and mean alcohol 
consumption was 0.66 drinks per week. About 70% of 
the participants had hypertension and 20% had type 
2 diabetes at baseline. At baseline, 91 participants 
had prevalent CVD and another 72 developed inci-
dent CVD over 8,161 person-years of follow-up. The 
mean Framingham risk score (FRS) was 14.4% and the 
mean of the atherosclerotic cardiovascular disease 
(ASCVD) risk equation was 11.6%. FRS and ASCVD 
were positively and significantly correlated (r = 0.94, 
P = 2.2 ×  10–16). Additional file  1: Fig.  1  shows the 
scatterplots for each of the DNAm age measures 
with chronological age. As previously reported, all of 
the DNAm age measures were strongly and signifi-
cantly correlated with chronological age (all r > 0.8, 
Additional file  1: Table  1) [27]. The means of the age 
acceleration measures ranged between 0.11  years for 
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GrimAA and 0.38  years for PhenoAA. The accelera-
tion measures were not strongly correlated with each 
other (r range 0.19–0.50), nor where they correlated 
with chronological age (Additional file  1: Table  1, 
Additional file 1: Fig. 2). 

Association between epigenetic age acceleration 
and cardiometabolic risk factors
Table  2 shows the regression results from linear mixed 
models for the univariate associations between the epige-
netic age acceleration measures and cardiometabolic risk 
factors with beta coefficients for 1-year increase in epi-
genetic age acceleration after adjusting for age, sex, and 
familial relatedness. Effect sizes are also reported below 
per 5-year increase, which is equivalent to approximately 
one standard deviation of the epigenetic acceleration 
measures. At P < 0.05, IEAA, EEAA, and PhenoAA were 
each associated with four cardiometabolic risk factors, 
while GrimAA was associated with five.

IEAA was associated with higher systolic blood pres-
sure (SBP), and both EEAA and GrimAA were associated 
with higher pulse pressure after accounting for multiple 
testing. A 5-year increase in IEAA was associated with 
an approximately 1.85  mmHg increase in SBP (95% CI 
0.55–3.14). For EEAA and GrimAA, a 5-year increase 
was associated with a 1.20 mmHg (95% CI 0.41–2.0) and 
a 1.75 mmHg (95% CI 0.73–2.72) increase in pulse pres-
sure, respectively.

GrimAA was associated with higher fasting glucose 
levels and EEAA was associated with higher fasting insu-
lin levels after accounting for multiple testing. A 5-year 
increase in GrimAA was associated with a 4.08% increase 
(95% CI 1.51–6.18%) in glucose levels. EEAA was the 
only measure associated with insulin, where a 5-year 
increase was associated with a 5.13% increase (95% CI 
2.53–10.5%).

Only GrimAA was associated with any of the lipid 
traits examined after accounting for multiple test-
ing. A 5-year increase in GrimAA was associated with 
a 3.85  mg/dl (95% CI − 6.50 to − 1.20) decrease in low 
density lipoprotein (LDL-C) and a 5.13% (95% CI 3.05–
8.87%) increase in triglyceride levels. The associations 
between the lipid measures and GrimAA remained sig-
nificant after excluding participants who were not fasting 
for at least 10 h (β = − 1.01, P = 0.001, N = 863 for LDL-C 
and β = 0.011, P = 0.001, N = 881 for triglycerides).

Additional file  1: Table  2 shows the adjusted linear 
mixed model regression results for associations sig-
nificant at P < 0.05 from Table  2. Although some of the 
nominally significant associations fully attenuated after 
adjusting for education, smoking status, body mass index 
(BMI), and alcohol consumption (Model 2), all of the 
associations that were significant after multiple testing in 
the base model (Bonferroni-corrected P < 0.05) remained 
significant at P < 0.05. When we further adjusted Phe-
noAA and GrimAA associations for white blood cell 
counts (Model 3), all of the associations became less 
significant, and the associations between PhenoAA 
and glucose and GrimAA and pulse pressure were fully 

Table 1 Descriptive characteristics of GENOA African Americans 
(N = 1,100)

Cardiovascular disease (CVD) was defined as self-reported myocardial infarction, 
coronary artery revascularization, cerebrovascular events, or surgical carotid 
artery revascularization

SD, standard deviation; IEAA, intrinsic epigenetic age acceleration; EEAA, 
extrinsic epigenetic age acceleration; BMI, body mass index; HDL-C, high density 
lipoprotein; LDL-C, low density lipoprotein; CVD, cardiovascular disease; ASCVD, 
Atherosclerotic cardiovascular disease
† Total N = 991 at Phase II and N = 496 at Phase III with DNAm measures

Mean (SD) or N (%)

Female 781 (71.0%)

Age (years) 57.1 (10.6)

Education (years) 12.3 (3.5)

Smoking status

 Never 666 (60.5%)

 Former 255 (23.2%)

 Current 179 (16.3%)

Alcohol consumption (drinks/week) 0.66 (2.6)

BMI (kg/m2) 31.20 (6.6)

Type 2 diabetes 216 (19.6%)

Anti-hypertensive medication use 649 (59.0%)

Hypertension 771 (70.1%)

Epigenetic age acceleration

 IEAA (years) (N = 1099) 0.15 (4.8)

 EEAA (years) 0.27 (5.9)

 PhenoAA (years) (N = 1099) 0.38 (7.2)

 GrimAA (years) (N = 1099) 0.11 (5.0)

Cardiometabolic parameters

 Systolic blood pressure (mmHg) 133.8 (21.6)

 Diastolic blood pressure (mmHg) 77.7 (11.9)

 Mean arterial pulse pressure (mmHg) 96.4 (13.5)

 Pulse pressure (mmHg) 56.2 (17.7)

 Glucose (mg/dl) (N = 883) 109.2 (42.1)

 Insulin (mIU/l) (N = 882) 11.5 (13.4)

 Total cholesterol (mg/dl) (N = 1098) 204.3 (45.2)

 HDL-C (mg/dl) 55.2 (17.9)

 LDL-C (mg/dl) (N = 1076) 120.8 (41.5)

 Triglycerides (mg/dl) (N = 1099) 146.0 (82.1)

CVD 10-year risk scores

 Framingham risk score (%) (N = 945) 14.4 (12.7)

 ASCVD risk equation (%) (N = 988) 11.6 (11.1)

Prevalent CVD at baseline 91 (8.3%)

Incident CVD at follow-up 72 (8.8 per 1000 person-years)
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attenuated (P = 0.100 and P = 0.054, respectively). Gri-
mAA, however, remained significantly associated with 
glucose, LDL-C, and triglycerides (P < 0.05).

Epigenetic age acceleration associations with clinical 
cardiovascular risk scores and incident CVD
All epigenetic age acceleration measures were sig-
nificantly associated with the FRS and the ASCVD risk 
equation, except for IEAA with FRS. The effect estimates 

from the linear mixed models were in the expected direc-
tion with increased biological aging associated with an 
increase in the predicted 10-year risk of CVD (Table 3). 
The largest effect estimate was observed for GrimAA, 
where a 5-year increase in epigenetic age acceleration 
was associated with a 2.9% (95% CI 2.2–3.6%) and a 2.2% 
(95% CI 1.7–2.8%) increase in the 10-year CVD risk using 
the FRS and ASCVD equations, respectively.

Fig. 1 Boxplots of standardized GrimAge components by incident CVD status. CVD, cardiovascular disease. Cardiovascular disease (CVD) was 
defined as self-reported myocardial infarction, coronary artery revascularization, cerebrovascular events, or surgical carotid artery revascularization. † 
GrimAge components significantly associated with incident CVD in models adjusted for age, sex, and familial relatedness (P < 0.05)
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When we examined whether epigenetic acceleration 
measures were associated with time to first CVD event, 
a similar trend emerged with GrimAA showing the only 
significant association with indicent CVD. Table 4 shows 
the hazard ratios (HR) and 95% confidence intervals 
estimated from Cox proportional hazards models with 
a frailty term for the associations of the four epigenetic 
age acceleration measures with incident CVD. A 5-year 
increase in GrimAA was associated with a HR of 1.54 
(95% CI 1.22–2.01) in the base model (adjusted for age, 
sex, and familial relatedness). Further adjusting for tradi-
tional CVD risk factors (education, alcohol consumption, 
body mass index, total cholesterol, HDL-C, anti-hyper-
tensive medication use, SBP, smoking status, and type 
2 diabetes status) only slightly attenuated the associa-
tion (HR per 5-year increase in GrimAA: 1.47, 95% CI 
1.05–2.01, P = 0.024). Additionally adjusting for white 
blood cell counts did not attenuate the association (HR 
per 5-year increase in GrimAA: 1.54, 95% CI 1.10–2.19, 
P = 0.01). Findings were similar when time to CVD was 
modeled using interval censoring. Last, we examined the 
association between the individual components compris-
ing GrimAge and incident CVD to identify components 
that may be driving the association between GrimAA 
and CVD or that outperform the overall GrimAA meas-
ure itself (Additional file  1: Table  3). Adrenomedullin 
(ADM), smoking pack-years, and plasminogen activa-
tor inhibitor antigen type 1 (PAI-1) were associated with 
incident CVD (P < 0.05) in the base model after further 
adjustment for white blood cell types, with HRs only 
slightly lower than that of GrimAA. Figure  1 shows the 
box plots of the standardized DNAm surrogate measures 
of the 7 plasma protein and smoking pack-years in Grim-
Age by incident CVD status. The means of ADM, smok-
ing pack-years, and PAI-1 were higher among those with 
incident CVD.

Evaluating the performance of epigenetic age acceleration 
measures in CVD prediction
Likelihood ratio (LR) tests of nested models showed 
that GrimAA improved model fit when added to a 
model with age, sex, and FRS (HR per 1-year increase 
in GrimAA: 1.07, 95% CI 1.02–1.13, P for LR test of 
model fit = 0.013) or the ASCVD equation (HR per 
1-year increase in GrimAA: 1.08, 95% CI 1.02–1.13, 
P for LR test = 0.008) (Table 5). None of the other age 
acceleration measures improved model fit.

Since GrimAA improved model fit, we next evalu-
ated whether it could improve CVD risk prediction 
compared with the FRS and ASCVD risk equations 
using the C-statistic and the net reclassification index 
(NRI). The C-statistic is the probability that a randomly 
selected participant who experienced the CVD event 

will have a higher predicted probability of having the 
event compared to a randomly selected participant 
who did not experience the event. Table  6 shows the 
C-statistics for the performance of GrimAA in predict-
ing incident CVD. The addition of GrimAA to a model 
with each risk score increased the C-statistic to 0.698 
for FRS and to 0.685 for the ASCVD risk equation (all 
P > 0.05). Additional file  1: Fig.  3 shows the receiver 
operator characteristic (ROC) curves for the risk scores 
before and after adding GrimAA to the model.

Next, we compared the classification of CVD events 
with and without GrimAA using the NRI, an index of 
the net improvement in reassignment of the risk cat-
egories [28]. The FRS categorized 36.5% of the GENOA 
cohort as low risk (≤ 7.5%) while the ASCVD equation 
categorized 47.2% of the cohort as low risk. Net reclas-
sification for CVD was small but significant  with the 
addition of GrimAA to a model of age, sex, and FRS 
(NRI: 0.055, 95% CI 0.040–0.071, P < 0.0001), and with 
the addition of GrimAA to a model of age, sex, and the 
ASCVD equation  (NRI: 0.029, 95% CI 0.006–0.064, 
P = 0.0011). Additional file  1:  Fig.  4 shows the reclas-
sification tables of predicted CVD based on the NRI 
for models with FRS or ASCVD and GrimAA. The 
improvement in risk prediction was driven by the clas-
sification of CVD nonevents as low risk.

When we excluded participants taking lipid-lower-
ing statin medications, improvement in risk prediction 
in models with GrimAA was almost identical to that 
of the full sample. GrimAA remained associated with 
incident CVD after adding it to a base model with FRS 
and ASCVD (HR: 1.08 in both models, P = 0.004 and 
P = 0.003, respectively). As in the full sample, addition 
of GrimAA to a model with FRS or the ASCVD equa-
tion increased the C-statistics, but the increases were not 
significant at P < 0.05. The NRIs with the addition of Gri-
mAA to the risk scores were also similar (NRI: 0.052 for 
FRS, NRI: 0.030 for the ASCVD equation).

Discussion
In this study of primarily hypertensive African-Amer-
ican participants from GENOA, we showed that 
increased biological aging is associated with a worse 
cardiometabolic risk profile, although the associations 
with specific cardiometabolic risk factors varied across 
the age acceleration measures. All of the epigenetic 
acceleration measures were correlated with risk of CVD 
onset as modeled by clinical CVD risk scores (FRS 
and ASCVD equation). GrimAA outperformed IEAA, 
EEAA, and PhenoAA in predicting CVD incidence, and 
the association remained significant after adjusting for 
traditional CVD risk factors. The addition of GrimAA 
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to FRS or ASCVD did not improve the C-statistics of 
CVD risk prediction; however, the NRIs showed small 
but significant improvement in the reassignment of risk 
categories.

Differences in the cardiometabolic risk factor and CVD 
incidence associations among the various epigenetic 
clocks may be attributed to a number of factors. IEAA, 
EEAA, and PhenoAA share only between 5 and 36 CpG 
sites [9]. Information on the CpGs included in Grim-
Age are not publicly available, so we cannot assess how 
many CpG sites this measure shares with the other three. 
In addition to differences in training algorithms (chron-
ological age for IEAA and EEAA vs. aging correlates 
and outcomes for PhenoAA and GrimAA), the second 
generation of epigenetic measures (PhenoAA and Gri-
mAA) were trained using longitudinal data [29]. This is 

Table 3 Association between epigenetic age acceleration and clinical CVD risk scores in GENOA African Americans

Models are adjusted for age, sex, and familial relatedness

IEAA, Intrinsic epigenetic age acceleration; EEAA, extrinsic epigenetic age acceleration

FRS and ASCVD are modeled as continuous predictors

Effect sizes (β) correspond to the change in predicted 10-year risk of CVD using the FRS or ASCVD risk equation associated with 1-year increase in the epigenetic age 
acceleration measure

Cardiovascular disease (CVD) was defined as self-reported myocardial infarction, coronary artery revascularization, cerebrovascular events, or surgical carotid artery 
revascularization

Associations significant at P < 0.05 are shown in bold

Epigenetic age acceleration 
(Predictor)

Framingham risk score (FRS) (N = 945) Atherosclerotic cardiovascular disease equation 
(ASCVD) (N = 988)

β (95% CI) P value β (95% CI) P value

IEAA 0.12 (− 0.02–0.26) 0.088 0.17 (0.06–0.29) 0.004
EEAA 0.21 (0.10–0.32) 3.77 × 10–4 0.23 (0.13–0.33) 3.85 × 10–6

PhenoAA 0.15 (0.06–0.24) 0.001 0.18 (0.10–0.26) 4.78 × 10–6

GrimAA 0.58 (0.44–0.71) 4.53 × 10–16 0.44 (0.33–0.56) 2.38 × 10–13

Table 4 Incident CVD hazard ratios for epigenetic age 
acceleration in GENOA African Americans

Models are adjusted for age, sex and familial relatedness

CVD, cardiovascular disease; HR, hazard ratio; IEAA, intrinsic epigenetic age 
acceleration; EEAA, extrinsic epigenetic age acceleration

Hazard ratios correspond to the risk of a CVD event associated with a 1-year 
increase in the epigenetic age acceleration measure

Cardiovascular disease (CVD) was defined as self-reported myocardial infarction, 
coronary artery revascularization, cerebrovascular events, or surgical carotid 
artery revascularization

Associations significant at P < 0.05 are shown in bold

Epigenetic age acceleration 
(predictor)

HR (95% CI) P value

IEAA 0.97 (0.93–1.02) 0.300

EEAA 1.04 (1.00–1.08) 0.057

PhenoAA 1.00 (0.97–1.04) 0.810

GrimAA 1.09 (1.04–1.15) 4.20 × 10–4

Table 5 Incident CVD hazard ratios for GrimAA and clinical CVD risk scores in GENOA African Americans

Models consisted of clinical risk scores with and without GrimAA. All models were adjusted for age, sex, and familial relatedness

Adjusted hazard ratios correspond to the risk of a CVD event associated with a 1-unit increase in the clinical risk score or the epigenetic age acceleration measure

Cardiovascular disease (CVD) was defined as self-reported myocardial infarction, coronary artery revascularization, cerebrovascular events, or surgical carotid artery 
revascularization

CVD, cardiovascular disease; HR, hazard ratio; FRS, Framingham risk score; ASCVD, atherosclerotic cardiovascular disease

Predictor Adjusted HR (95% CI)

FRS only (N = 945) ASCVD only (N = 988) FRS + GrimAA (N = 945) ASCVD + GrimAA (N = 988)

FRS 1.03 (1.02–1.05) 
P = 9.5 ×  10–6

– 1.03 (1.01–1.05) P = 4.7 ×  10–4 –

ASCVD – 1.04 (1.02–1.06) 
P = 2.7 ×  10–5

– 1.03 (1.01–1.05) P = 9.8 ×  10–4

GrimAA – – 1.07 (1.02–1.13) P = 0.011 1.08 (1.02–1.13) P = 0.007
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particularly relevant for studies assessing their prediction 
of aging-related outcomes. The use of cross-sectional 
training data may have biased the algorithm as individu-
als with accelerated aging rates will have a higher moral-
ity burden and may have been selected out from the 
training samples [29, 30]. Nevertheless, an analysis of the 
transcriptional profiles of IEAA, EEAA, and PhenoAge 
shows that they have relatively similar transcriptional sig-
natures [11].

Our study found cross-sectional associations between 
epigenetic age acceleration and a number of cardiomet-
abolic risk factors. Out of the 10 cardiometabolic  risk 
factors  examined in the base model, GrimAA was associ-
ated with 4 of the measures, EEAA with 2 measures, and 
IEAA and PhenoAA with 1 measure after accounting for 
multiple testing. Some of the associations were unique to 
one specific cardiometabolic feature such as the associa-
tion between GrimAA and lipid traits. For the significant 
associations between the acceleration measures and car-
diometabolic risk factors, the effect directions were as 
expected with the exception of the association between 
GrimAA and LDL-C. Higher epigenetic acceleration, 
indicative of tissue aging faster than expected by chrono-
logical age, was associated with worsening outcomes as 
measured by cardiometabolic risk factors. Increased tis-
sue aging in blood is accompanied by changes in cell-type 
composition [31]. However, the associations between 
GrimAA and cardiometabolic risk factors were not atten-
uated after adjusting for blood cell composition, with the 
exception of the association between GrimAA and pulse 
pressure. This suggests that the associations observed are 

not due to age-related changes in blood cell composition 
and that GrimAA is capturing cell-intrinsic properties 
or innate changes related to aging rather than changes in 
immune cell composition.

In our study, IEAA was associated with SBP, and both 
EEAA and GrimAA were associated with pulse pressure. 
Previous studies on the association between IEAA and 
EEAA and cardiometabolic measures show inconsistent 
findings [13, 20, 32, 33]. A previous study of IEAA and 
EEAA in the Women’s Health initiative (WHI) found no 
associations with systolic or diastolic blood pressure after 
adjusting for diet and metabolic syndrome symptoms 
[32]. However, in a smaller sample of African Americans 
from the Bogalusa Heart Study (N = 288), both IEAA and 
EEAA were associated with hypertension [20]. Another 
study of approximately 5,000 individuals from the Gen-
eration Scotland: Scottish Family Health Study found 
evidence of an association between EEAA and high 
blood pressure, but not IEAA [34]. A previous analysis 
in GENOA found no association between blood pressure 
measured at Phase II and IEAA or EEAA [35], although 
significant associations were detected in this study using 
concurrently measured blood pressure (Phase I). Phe-
noAA and GrimAA were more recently developed, so 
fewer studies have assessed their associations with car-
diometabolic risk factors. However, in WHI, both Phe-
noAA and GrimAA were significantly correlated with 
SBP but not DBP [9, 10].

In this study, we also found evidence of associations 
between PhenoAA and GrimAA and glucose, and EEAA 
and insulin. GrimAA was the only measure associated 
with any of the lipid traits. In WHI, no associations 
between measures of insulin resistance and dyslipidemia 
(HDL-C and triglycerides) were detected with IEAA or 
EEAA, except for an association between EEAA and tri-
glycerides (β = 0.004, P value = 0.04) [20]. However, other 
studies have reported an inverse association between 
fasting HDL-C levels and EEAA [13] and IEAA [34]. 
Cross-sectional examination of WHI revealed correla-
tions between both PhenoAA and GrimAA and insulin, 
glucose, triglycerides, and HDL-C [9]. PhenoAA, but 
not GrimAA, was also correlated with LDL-C [10]. As in 
our study, GrimAA was associated with lower total cho-
lesterol and LDL-C in a cross-sectional analyses of 709 
individuals from the Lothian Birth Cohort [36]. Another 
study in the Methyl Epigenome Network Association and 
a Spanish cohort found significant correlations between 
GrimAA and glucose levels, HDL-C, and triglycerides 
[37].

In our analyses, higher GrimAA was the only meas-
ure associated with CVD incidence in GENOA African 
Americans independent of CVD risk factors. Adjust-
ment for white blood cell counts did not attenuate the 

Table 6 C-statistics evaluating the predictive performance of 
GrimAA on incident CVD in GENOA African Americans

The C statistics associated with a set of nested models for time to CVD events are 
shown. All models are adjusted for familial relatedness

Cardiovascular disease (CVD) was defined as self-reported myocardial infarction, 
coronary artery revascularization, cerebrovascular events, or surgical carotid 
artery revascularization

CVD, cardiovascular disease; FRS, Framingham risk score; ASCVD, atherosclerotic 
cardiovascular disease

Model C-statistic 95% CI

N = 945

Base model (age + sex) 0.595 0.525–0.664

Age + sex + GrimAA 0.643 0.576–0.709

Age + sex + FRS 0.687 0.624–0.749

Age + sex + FRS + GrimAA 0.698 0.637–0.759

N = 988

Base model (age + sex) 0.588 0.521–0.656

Age + sex + GrimAA 0.636 0.571–0.701

Age + sex + ASCVD 0.670 0.606–0.728

Age + sex + ASCVD + GrimAA 0.685 0.625–0.746
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association. Neither EEAA nor IEAA were associated 
with incident coronary heart disease in WHI [20]. How-
ever, among Black participants from the Atherosclero-
sis Risk in Communities (ARIC) study, epigenetic age 
acceleration based on the Horvath and Hannum meas-
ures were both associated with increased hazard of fatal 
coronary heart disease (HR: 1.17, 95% CI 1.02–1.33 and 
HR: 1.22, 95% CI 1.04–1.44, respectively) [17]. A German 
case-cohort study reported an increase in the hazard of 
cardiovascular mortality associated with Horvath age 
acceleration [38], while a study in the Melbourne Col-
laborative Cohort found no association with the Horvath 
or Hannum measures [16]. Increased PhenoAA, but not 
HorvathAA, was also associated with increased risk of 
cardiovascular mortality in 500 males from the US Nor-
mative Aging Study [39].

Our findings are in line with the literature in cohorts of 
European ancestry, showing that GrimAA outperforms 
other measures in its association with CVD incidence 
[21, 22]. The effect size of GrimAA on CVD incidence 
appears to be remarkably similar across studies in Euro-
pean ancestry, and similar to our estimate in African 
Americans. Comparing the same four measures of epi-
genetic acceleration that we investigated, Hillary et  al. 
found that over thirteen years of follow-up, GrimAA 
outperforms the other measures in terms of its associa-
tion with incidence of heart disease (HR: 1.41, 95% CI 
1.18–1.68, per 1 SD) [21]. Wang et al. found that a 1 SD 
increase in GrimAA was associated with elevated risk of 
myocardial infarction (HR: 1.44, 95% CI 1.16–1.79) and 
stroke (HR: 1.42, 95% CI 1.06–1.91) in a study of elderly 
participants from the Normative Ageing Study and the 
Cooperative Health Research in the Region of Augsburg 
(KORA) study [22].

To our knowledge, no previous study has assessed the 
performance of the epigenetic age acceleration meas-
ures in improving the predictive accuracy of clinical risk 
scores of CVD. GrimAA appears to marginally improve 
prediction of CVD events beyond traditional risk fac-
tors when assessed using NRI but not using changes in 
the area of the ROC curves. The gains in risk prediction 
were mostly due to down-classification of non-cases as 
low risk. More studies are needed to validate and repli-
cate these findings. However, GrimAA may be a promis-
ing biomarker since it is a composite measure of multiple 
plasma proteins, some of which have been shown to be 
independent biomarkers that can improve CVD predic-
tion [40–43]. Additionally, for some of the components of 
GrimAge (PAI-1, TIMP-1, and cystatin C), DNAm-based 
surrogates were found to outperform the observed bio-
markers [10]. Lu et al. found that DNAm smoking pack-
years was a more significant predictor of lifespan than 
self-reported smoking and that it predicted mortality 

even among non-smokers. This may be related to errors 
in self-reporting or because DNAm pack-years may cap-
ture intrinsic variation across individuals with lasting 
biological damage related to smoking [10].

Our study has a number of limitations. Our findings 
were based on self-reported events, with only the year of 
the event reported, which could be subject to recall bias. 
We also note that there was loss to follow-up between 
baseline and Phases II and III. Those lost to follow-up 
between baseline and Phase III were 1.63 years older and 
had 3.5  mmHg higher systolic blood pressure on aver-
age (P = 0.014). Additionally, individuals lost to follow-
up had higher GrimAA, FRS, and ASCVD risk scores 
(all P < 0.05). This indicates that participants at greater 
risk of CVD events were more likely to be lost to follow-
up. Another limitation is that although we adjusted for 
a number of important confounders, we lacked infor-
mation on dietary data in GENOA African Americans. 
Finally, our sample is predominantly hypertensive and 
has an overrepresentation of women, so our findings may 
not be representative of other cohorts. A strength is that 
our study provides insights on the association between 
four different epigenetic aging measures and cardiometa-
bolic risk factors and CVD in a relatively large cohort of 
older African Americans. In addition, we also explored 
improvement of CVD risk prediction by incorporating 
epigenetic aging measures in clinical risk equations and 
investigated potential molecular drivers of the observed 
associations.

Conclusions
Epigenetic information is an important molecular read-
out of lifetime exposures. We have shown that epigenetic 
aging measures are associated with some cardiometa-
bolic risk factors in this relatively large cohort of African 
Americans. GrimAge acceleration was the only measure 
associated with CVD incidence after adjusting for CVD 
risk factors. Further studies are needed to replicate and 
further investigate potential improvement of clinical risk 
prediction using GrimAge acceleration.

Methods
Study sample
Genetic Epidemiology Network of Arteriopathy 
(GENOA) is a community-based study in Rochester, 
MN and Jackson, MS that was established to identify 
genes influencing blood pressure and development of 
target organ disease [44]. In the first phase of GENOA 
(Phase I: 1996–2001), sibships with at least two adults 
with clinically diagnosed essential hypertension before 
age 60 were recruited, and all siblings in the sibship were 
invited to participate regardless of hypertension status 
[20]. Exclusion criteria included secondary hypertension, 
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alcoholism or drug abuse, pregnancy, insulin-dependent 
diabetes mellitus, or active malignancy. In Phase I (i.e., 
baseline), a total of 1,583 non-Hispanic whites (Roch-
ester, MN) and 1,854 African Americans (Jackson, MS) 
were enrolled. In the second phase (Phase II: 2001–2005), 
all participants were invited for a second examination. 
Eighty percent of African Americans (N = 1,482) and 
75% of non-Hispanic whites (N = 1,213) from Phase 
1 returned. At Phase III (2009–2011), 752 African 
Americans returned for a third examination. This study 
includes African-American participants who had their 
DNA methylation profiles measured in whole blood 
samples collected at Phase I. Demographic information, 
medical history, clinical characteristics, lifestyle factors, 
and blood samples were collected in each phase. Writ-
ten informed consent was obtained from all participants 
and approval was granted by participating institutional 
review boards (University of Michigan, University of 
Mississippi Medical Center, and Mayo Clinic).

DNA methylation and epigenetic age acceleration 
measures
The methods of DNA methylation processing have been 
previously described [45]. Briefly, genomic DNA from 
1,106 African-American participants from Phase I and 
304 from Phase II was extracted from stored periph-
eral blood leukocytes using AutoGen FlexStar (Auto-
Gen, Holliston, MA). Sex mismatches and outliers were 
excluded using the shinyMethyl R package [46], probes 
with detection P-value <  10–16 were considered to be 
successfully detected [47] and both samples and probes 
that failed a detection rate of at least 10% were removed. 
The Noob method was used for individual background 
and dye-bias normalization [48] and the Regression on 
Correlated Probes method was used to adjust for the 
probe-type bias in the data [49]. White blood cell type 
proportions within the blood sample were estimated 
using Houseman’s method [50].

After quality control, a total of 1,100 samples from 
Phase I and 294 from Phase II were available for assess-
ment of epigenetic age acceleration; however, only Phase 
I measures were included in this study. Methylation beta 
values were uploaded to the online Horvath epigenetic 
age calculator to calculate DNAm Age [51]. Four meas-
ures of epigenetic age (HannumAge, HorvathAge, Phe-
noAge, and GrimAge) were estimated for the current 
analysis. IEAA based on the Horvath measure are the 
regression residuals after adjusting for chronological age 
and blood cell count [6–8]. EEAA was calculated using 
the Hannum epigenetic age after incorporating weighted 
averages of three white blood cell types (naïve cytotoxic 
T cells, exhausted cytotoxic T cells, and plasmablasts) [7, 
8]. PhenoAge and GrimAge are considered to be extrinsic 

measures of aging because they capture both cell intrin-
sic methylation changes as well as extracellular changes 
in blood cell composition [9, 10, 31]. We also estimated 7 
DNAm based surrogate plasma proteins (adrenomedul-
lin (ADM), beta-2-microglobulin, cystatin C, GDF-15, 
leptin, plasminogen activator inhibitor antigen type 1 
(PAI-1), tissue inhibitor metalloproteinases 1 (TIMP-1)), 
and smoking pack-years that comprise GrimAge in order 
to identify individual components that may drive associa-
tions or that are more predictive than the overall measure 
itself [10].

Cardiometabolic risk factors
Resting systolic blood pressure (SBP) and diastolic blood 
pressure (DBP) were measured by a random zero sphyg-
momanometer and a cuff appropriate for arm size. The 
second and third of three readings, after the participant 
sat for at least 5  min, were averaged for analysis [52]. 
Mean arterial pressure (MAP) was calculated as the 
weighted average of SBP and DBP (1/3*SBP + 2/3*DBP) 
and pulse pressure (PP) was calculated as the difference 
between SBP and DBP (SBP–DBP). Information on cur-
rent anti-hypertensive medication use and lipid-lowering 
statin medication use were collected. Hypertension was 
defined as SBP ≥ 140  mmHg, DBP ≥ 90  mmHg, or anti-
hypertensive medication use. Smoking was categorized 
as current, former, or never. Blood glucose and insulin 
levels were measured for participants fasting for at least 
10  h. Serum total cholesterol, HDL-C, and triglycerides 
(TGs) were measured by standard enzymatic methods on 
a Hitcahi 911 Chemistry Analyzer (Roche Diagnostics, 
Indianapolis, IN). LDL-C was calculated using the Friede-
wald formula [LDL in mg/dl = TC–HDL-C–(TGs/5)] 
[53] and individuals with triglycerides levels ≥ 400  mg/
dl were excluded from LDL-C association analysis. Type 
2 diabetes was defined as fasting serum glucose concen-
tration > 126 mg/dl or self-reported physician-diagnosed 
diabetes and current medication use (insulin or hypogly-
cemic agents). Educational attainment was based on self-
reported years of education. Alcohol consumption was 
calculated as the number of drinks per week based on 
aggregated measurements of a variety of alcoholic drinks. 
Height was measured by stadiometer and weight by elec-
tronic balance and body mass index (BMI) was calculated 
as weight in kilograms divided by the square of height in 
meters.

CVD events and risk scores
Framingham risk score (FRS), predicting the 10-year risk 
of a CVD (defined as coronary death, myocardial infarc-
tion, coronary insufficiency, angina, ischemic stroke, 
hemorrhagic stroke, transient ischemic attack, periph-
eral artery disease, and heart failure), was estimated 
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using age, sex, total cholesterol, HDL-C, anti-hyper-
tensive medication use, SBP, smoking status, and type 
2 diabetes status after limiting the sample to individu-
als aged between 30 and 74 years (N = 945, events = 69, 
person-years = 7874.9) [25]. While FRS was developed 
in participants of European ancestry, the more recently 
described  ASCVD risk equation  [26]  was developed 
using a pooled community-based population cohort with 
a higher proportion of African Americans and has been 
validated for prediction of clinical events in more race/
ethnically diverse cohorts. The ASCVD risk equation is 
based on the same covariates as those in the FRS and it 
predicts  the  10-year risk of developing a first ASCVD 
event, defined as nonfatal myocardial infarction or coro-
nary heart disease death or fatal or nonfatal stroke. Using 
sex- and race-specific parameters,  we estimated the 
ASCVD risk equation, after limiting the sample to those 
between the ages of 20–79  years (N = 988, events = 71, 
person-years = 8115.5). Risk scores were modeled as 
continuous variables and as categorical predictors where 
they were used to group participants into low risk (10-
year risk ≤ 7.5%) or high risk (> 7.5%) groups [26].

Information about CVD, as reported by participants, 
was collected at baseline and at each subsequent follow-
up phase. An event was defined as myocardial infarction, 
coronary revascularization (stenting, balloon angioplasty, 
or coronary artery bypass grafting), stroke (ischemic or 
hemorrhagic events), or surgical carotid artery revascu-
larization. Participants only reported the year of CVD 
events. Time to CVD was modeled by setting the CVD 
event time at the mid-point of the year in which par-
ticipants reported an event. For censored participants, 
follow-up time was set at the time point they were last 
interviewed.

Statistical analysis
Outliers at more than 5 standard deviations from the 
mean were removed for the cardiometabolic outcomes 
and the epigenetic age acceleration measures. Glucose, 
insulin, HDL-C, and triglycerides were natural log-trans-
formed as ln(measure + 1). Linear mixed models that 
account for familial relatedness were used to assess the 
cross-sectional univariate association between each epi-
genetic age acceleration measure (predictor) and each 
cardiometabolic risk factor (outcome) at Phase I. Base 
models were adjusted for age and sex (Model 1). In sub-
sequent models, we additionally adjusted for education, 
smoking status, body mass index, and alcohol consump-
tion (Model 2) and white blood cell counts for PhenoAA 
and GrimAA to assess confounding by changes in cell 
composition (Model 3). For LDL-C and triglycerides, 
we performed sensitivity analyses excluding participants 

who were not fasting for at least 10  h before the blood 
draw.

After excluding participants with baseline CVD 
events, associations with time to first CVD event 
(incident CVD) were assessed using Cox proportional 
hazards models, and hazard ratios (HR) and 95% con-
fidence intervals were estimated. A simple random 
effects (frailty) term in the Cox model was included 
to take into account family structure [54]. We next 
adjusted for traditional CVD risk factors (age, sex, edu-
cation, body mass index, alcohol consumption, total 
cholesterol, HDL-C, anti-hypertensive medication use, 
SBP, smoking status, and type 2 diabetes status). Finally, 
we adjusted for white blood cell counts. The propor-
tional hazard assumption was evaluated using Schoen-
feld residuals, and all models satisfied the assumption. 
As a sensitivity analysis, we additionally modeled time 
to CVD using interval censoring using the iceReg pack-
age [55].

Likelihood ratio (LR) testing of nested models (addi-
tion of epigenetic age acceleration to a base model with 
either FRS or ASCVD) was used to assess improvement 
in model fit. For measures with P < 0.05, we assessed 
improvement in risk prediction of incident CVD by 
adding the epigenetic age acceleration measure to the 
base model with the clinical risk scores. We assessed 
the improvement in CVD risk prediction using C-sta-
tistics computed from Cox proportional hazards mod-
els of time to CVD events and risk scores as continuous 
predictors [56]. We additionally used the net reclassifi-
cation index (NRI) to assess net improvement in reas-
signment of the risk categories [28]. Categorized CVD 
risk scores were used in the base model and improve-
ment in risk reassignment was then assessed after the 
addition of epigenetic acceleration measures. For this 
analysis, we also examined the associations excluding 
individuals taking lipid-lowering statin medications 
(N = 40).

Statistical tests were two-sided and a P value of < 0.05 
was considered nominally associated. We also applied 
a Bonferroni threshold for statistical significance 
(0.05/10 = adjusted P < 0.005) to account for multiple 
testing in assessing the association between epigenetic 
acceleration measures and the 10 cardiometabolic 
traits. For NRI, bootstrapping (10,000 interations) 
was used to compute 95% confidence intervals, and an 
empirical P < 0.05 was considered significant. Analyses 
were performed using R (Version 4.0.2) [57] and the 
following packages: lme4 [58], survival [59, 60], nri-
cens, and DescTools.
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