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Abstract

Background: The 5-hydroxymethylcytosine (5hmC) DNA modification is an epigenetic marker involved in a range of
biological processes. Its function has been studied extensively in tumors, neurodegenerative diseases, and atherosclerosis.
Studies have reported that 5hmC modification is closely related to the phenotype transformation of vascular smooth
muscle cells and endothelial dysfunction. However, its role in coronary artery disease (CAD) has not been fully studied.

Results: To investigate whether 5hmC modification correlates with CAD pathogenesis and whether 5hmC can be used as a
biomarker, we used a low-input whole-genome sequencing technology based on selective chemical capture (hmC-Seal) to
firstly generate the 5hmC profiles in the circulating cell-free DNA(cfDNA) of CAD patients, including stable coronary artery
disease (sCAD) patients and acute myocardial infarction (AMI) patients. We detected a significant difference of 5hmC
enrichment in gene bodies from CAD patients compared with normal coronary artery (NCA) individuals. Our results showed
that CAD patients can be well separated from NCA individuals by 5hmC markers. The prediction performance of the model
established by differentially regulated 5hmc modified genes were superior to common clinical indicators for the diagnosis of
CAD (AUC = 0.93) and sCAD (AUC = 0.93). Specially, we found that 5hmC markers in cfDNA showed prediction potential for
AMI (AUC = 0.95), which was superior to that of cardiac troponin I, muscle/brain creatine kinase, and myoglobin.

Conclusions: Our results suggest that 5hmC markers derived from cfDNA can serve as effective epigenetic biomarkers for
minimally noninvasive diagnosis and prediction of CAD.
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Background
Coronary artery disease (CAD) remains a leading cause of
mortality worldwide and was responsible for an estimated
8.14 million deaths (16.8%) in 2013 [1]. Clinical diagnosis
of CAD is currently based on symptoms, electrocardio-
grams (ECGs), cardiac markers, stress testing, coronary
computed tomographic angiography (CTA), and coronary
angiography (CAG) are used for [2–4]; however, all these
methods have limitations. Invasive CAG is regarded as the
diagnostic “gold standard” [5]; however, specialized tech-
nology and high cost limit CAG to a selected population
[2]. In addition, many individuals who undergo invasive
CAG are found to have normal coronary arteries [6].
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Symptom-based diagnosis might sometimes be inaccurate
with episodes of myocardial ischemia or infarction occur-
ring after atypical symptoms in some patients with CAD,
especially in patients who are elderly or have diabetes [7].
In other noninvasive approaches to diagnose CAD, such
as CTA, high sensitivity can only be achieved in the case
of severe coronary stenosis, while early-stage atheroscler-
osis cannot be diagnosed. In addition, there are potential
risks of radionuclide radiation-induced damage. The de-
pendence on particular equipment and requirement for
experience in interpreting the results also limits the large-
scale use of these techniques.
As for cardiac markers, such as cardiac troponin I (cTnI),

muscle/brain creatine kinase (CK-MB), and myoglobin
(MYO), they are widely used for diagnosis and prediction of
acute myocardial infarction (AMI) and also analyzed in this
study. CTnI is considered as a crucial biomarker for diagno-
sis of myocardial damage [8, 9]. Indeed, elevated cTnI was
also detected during reversible cellular injury while there is
no myocardial necrosis [10]. The specificity and sensitivity
of CK-MB are much lower than that of cTnI, and the inter-
pretation of elevation of CK-MB alone is not reliable [11–
13]. Myoglobin (MYO) is highly sensitive but not cardios-
pecific [11]. In addition, so far, there is no effective method
that can be used to early warning of CAD. Thus, a method
capable of diagnosis and prediction of CAD with high spe-
cificity and sensitivity is still highly desirable.
In recent years, increasing attention has been paid to 5-

hydroxymethylcytosine (5hmC), an relative stable derivative
produced in the demethylation process of 5-methylcytosine
(5mC) mediated by ten-eleven translocation (TET) protein
family. To allow obtaining the genome-wide 5hmC distri-
bution and base-resolution analysis of 5hmC, two sensitive
and selective approaches have been established by our
group, including selective chemical labeling (hmC-Seal)
technology and Tet-assisted bisulfite sequencing [14, 15].
Genome-wide mapping of 5hmC distributions and dynam-
ics in various human tissues has shown that it is mainly
enriched in gene bodies, promoters, and enhancers and has
a potential role in gene regulation in mammalian develop-
ment and cell differentiation [16, 17]. 5hmC modification
has been implicated in a wide range of biological processes,
including brain development [17], neurodegenerative dis-
eases [18, 19], and cancers [20, 21]. There is a study have
shown that 5hmC involves in cardiomyocyte heart develop-
ment and hypertrophy in mouse [16]. Besides, accumulat-
ing evidence suggest that 5hmC and its TET2 enzyme, one
member of the TET family, play an important role in ath-
erosclerosis and are not only involved in the regulation of
vascular smooth muscle cell phenotype, but also closely re-
lated to endothelial dysfunction and inflammatory immune
response [22–26]. It was also found that 5hmC and TET2
were markedly absent in atherosclerotic plaque, and the
level of deletion was positively correlated with the degree of

injury [22]. 5hmC may play an important role in the patho-
logical process of atherosclerosis.
Recently, considerable interest has focused on 5hmC

modification in cell-free circulating DNA (cfDNA) because
it may provide a liquid biopsy-based approach for noninva-
sive diagnosis and prediction of human diseases [27, 28].
cfDNA comprises fragments of genomic DNA (gDNA)
contained in plasma, which are derived from various apop-
totic and necrotic cells [28]. Recent studies have found that
cardiomyocyte death can be detected by cfDNA in ST-
elevation myocardial infarction and sepsis or septic shock
[28]. Optimized chemical labeling detection methods based
on hMe-Seal with high sensitivity and specificity have been
established to capture 5hmC modification even at 1 ng of
cfDNA [29–32]. Using these optimized procedures, previ-
ous studies have confirmed that the performance of 5hmC
in cfDNA is comparable to which in gDNA in tissue biopsy
samples for cancer diagnosis [29, 32]. Both can serve as
biomarkers for cancer diagnosis, while the former may be
used for minimally invasive diagnosis and prediction of hu-
man cancers. Since non-invasive biomarkers for CAD diag-
nosis and prediction are needed and 5hmC is involved in
atherosclerosis, we investigate whether 5hmC modification
correlates with CAD pathogenesis and whether 5hmC in
cfDNA can be used as a biomarker.
Here, we employed hmC-Seal sequencing method for

rapid, reliable, and precise sequencing of 5hmC in plasma
cfDNA from 111 patients with CAD and 56 normal cor-
onary artery (NCA) individuals. Our results demonstrated
that CAD patients and NCA individuals had distinct dif-
ferences in 5hmC enrichment. 5hmC markers derived
from plasma cfDNA can be used to noninvasively diag-
nose of CAD, particularly used to predict AMI.

Methods
Participants and study design
Participants over 18 years old with complete information
on medical history and clinical and biochemical parameters
were recruited between October 2017 and March 2018
from Fuwai Hospital, the National Center for Cardiovascu-
lar Diseases of China. On the basis of clinical symptoms,
signs, laboratory tests, ECG, and CAG results, which
showed the extent of arterial blockage and myocardial in-
jury, participants were divided into three groups. Patients
with no plaques or stenosis in coronary arteries that in-
cluded unexplained chest pain constituted the NCA group.
Patients were considered eligible for the stable CAD
(sCAD) group if coronary angiography showed ≥ 50% of
the luminal diameter of at least one native coronary vessel.
Patients hospitalized for myocardial infarction were ex-
cluded. The patients in the AMI group had ischemic chest
pain and increased values of cardiac enzymes, with or with-
out ST-T changes on the ECG. Patients admitted with
chest pain and suspected of AMI were submitted to
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conventional ECG. They were also assessed using point-of-
care testing, including cTnI, MYO, and CK-MB, 1, 3, and 6
h after admission to the emergency room. Blood samples
were collected in EDTA. All enrolled participants in the
NCA group, sCAD group, and AMI group who were sus-
pected of CAD underwent CAG and had no history of un-
stable angina, myocardial infarction, stroke, cancers, or
coronary revascularization. The angiographic data were
confirmed independently by two observers in this study. Fi-
nally, 167 patients were enrolled, including 56 NCA indi-
viduals, 53 sCAD patients, and 58 AMI patients.

Assessment of clinical and biochemical parameters
Height was measured to the nearest 0.1 cm using a tape
rule, and weight was measured to the nearest 0.1 kg using
calibrated platform scales. Body mass index was calculated
as body weight (kg) divided by the square of height (m2).
Smoking was defined as smoking for at least one cigarette
per day for over a year. Alcohol consumption was defined
as at least 20 g/day for men and 10 g/day for women for
over a year. Blood pressure was measured using a mercury
sphygmomanometer. Readings of systolic blood pressure
and diastolic blood pressure were taken twice at a five-
minute interval, during which the participants had rested
on a chair. The average of these two readings was used for
current analyses. Notably, an additional reading would be
taken in the presence of an over 5 mmHg discrepancy be-
tween these two measurements. The average of these three
readings was used for further analyses. Arterial hyperten-
sion was defined as a systolic pressure of ≥ 140 mmHg or a
diastolic pressure of ≥ 90 mmHg. Other biochemical vari-
ables were measured at the central laboratory.

Peripheral blood collection and preparation of cfDNA
Peripheral blood from patients and NCA individuals was
collected for cfDNA preparation. Briefly, 8 ml of periph-
eral blood was collected into Cell-Free DNA Collection
Tubes (Roche). Within 4 h, plasma was prepared by cen-
trifuging twice at 1350×g for 12 min at 4 °C and 13,
500×g for 12 min at 4 °C. cfDNA was extracted using
the Quick-cfDNA Serum & Plasma Kit (ZYMO) and
then stored at − 80 °C. The fragment size of all the
cfDNA samples was verified by nucleic acid electrophor-
esis before library preparation.

5hmC library construction and high-throughput
sequencing
5hmC libraries for all samples were constructed with high-
efficiency hmC-Seal technology [14]. First, 1–10 ng cfDNA
extracted from plasma was end-repaired, 3′-adenylated
using the KAPA Hyper Prep Kit (KAPA Biosystems) and
then ligated with the Illumina compatible adapters. The li-
gated cfDNA was added in a glucosylation reaction in 25
μl solution containing 50 mM HEPES buffer (pH 8.0), 25

mM MgCl2, 100 μM UDP-6-N3-Glc, and 1 μM β-
glucosyltransferase (NEB) for 2 h at 37 °C. Next, 1 μl
DBCO-PEG4-biotin (Click Chemistry Tools, 4.5 mM stock
in DMSO) was directly added to the reaction mixture and
incubated for 2 h at 37 °C. Then, the DNA was purified
using the DNA Clean & Concentrator Kit (ZYMO). The
purified DNA was incubated with 2.5 μl streptavidin beads
(Life Technologies) in 1× buffer (5 mM Tris pH 7.5, 0.5
mM EDTA, 1 M NaCl, and 0.2% Tween 20) for 30 min.
The beads were subsequently washed eight times for 5 min
with 1× buffer. All binding and washing steps were per-
formed at room temperature with gentle rotation. Then,
the beads were resuspended in RNase-free water and amp-
lified with 14–16 cycles of PCR amplification. The PCR
products were purified using AMPure XP beads (Beckman)
according to the manufacturer’s instructions. The concen-
tration of libraries was measured with a Qubit 3.0
fluorometer (Life Technologies). Paired-end 39 bp high-
throughput sequencing was performed on the NextSeq
500 platform.

Mapping and differentially modified regions detection
All sequencing raw data were trimmed using trim_galore
(version 0.6.0) [33]. Adaptor sequences and low-quality se-
quences at the end of the sequences (quality score < 30,
Q30) were trimmed off, and only the reads with a length
greater than 20 bp were retained (parameters used: --paired
--quality 30 --length 20). The remaining paired-end reads
were mapped to the human genome (version hg19) using
Bowtie 2 (version 2.1.0) [34], and then filtered with SAM-
tools (version 1.9) (parameters used: samtools view -f 2 -F
1548 -q 30) [35]. Only reads with Mapping Quality Score
(MAPQ) > 30 were retained for the subsequent analysis.
Then, samples sequencing depth with greater than 100× or
unique mapping rate greater than 80% were selected. Fea-
tureCounts of Subread version v1.5.3 was used to to count
for overlap with genomic features [36]. Then, 5hmC-
enriched regions (hMRs) were identified with MACS2
based on Poisson algorithm [37]. Genomic annotations of
hMRs were performed by HOMER (version v4.10) [38]. All
paired-end reads were converted into the bedgraph format
normalized by bam2bedgraph (version 1.0.4) [39] and the
genome wide distribution of 5hmC was visualized using the
Integrated Genomics Viewer (IGV) (version 2.5.3) [40,
41].The metagene profile was generated using ngsplot (ver-
sion 2.61). The 5hmC fragments per kilobase of transcript
per million mapped reads (FPKM) of hMRs was calculated
using the fragment counts in each hMR region obtained by
bedtools [42].

Detection of differential genes and functional enrichment
analysis
After filtering out genes in chromosomes X and Y, differ-
ential modified genes in the autosomes between samples
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from CAD (sCAD + AMI) patients and NCA individuals
were identified using DESeq2 (v1.24.0) package in R (ver-
sion 3.6.0) [43, 44]. The differential modified 5hmC re-
gions (differentially 5hmC enriched regions, DhMRs) in
each comparison of two groups were obtained respectively
with the criterion log2foldchange > 1 and P value < 0.05.
Among them, CAD group contained sCAD and AMI
group was compared with NCA group, sCAD group was
compared with AMI group, NCA group was compared
with sCAD group or AMI group. Unsupervised hierarch-
ical clustering and heatmap analysis were performed by
Pheatmap (version 1.8.0) in R package. Principal compo-
nent analysis (PCA) was performed for the analysis of
DhMRs using prcomp function in R package, with 80%
confidence interval drawing core region. Functional and
pathway enrichment analysis of differential 5hmc modified
genes were performed by KOBAS (version 3.0) [45], which
is a web server for gene/protein functional annotation
mainly based on hypergeometric test. Subsequently, top
10 KEGG pathways or top 10 GO terms associated with
human cardiovascular function were selected to display.
The findMotifsGenome.pl of HOMER (version 4.11) was
performed to find the corresponding binding proteins tar-
geted to DhMRs of each two group comparison (e.g.,
NCA vs CAD; sCAD vs AMI, etc.). And motif information
was obtained from the Homer motif database internally.
For the result of motif enrichment in DhMRs, according
to the enriched P value and the percentage of target se-
quences enriched with the binding motif which indicated
transcription factor, top enriched known transcription fac-
tor binding motifs were shown which followed the ap-
proach of Zhang et al. [46].

Feature selection and classifier construction
The Boruta (version 6.0.0) package in R was used to select
the important 5hmC features in all detected DhMRs based
on the random forest classifier, and then the randomFor-
est package (version 4.6-14) in R was used to construct
the classification model for 100 times [47]. The prediction
effect of the model was evaluated by the area under the re-
ceiver operating characteristic curve (AUC), and the opti-
mal score threshold is selected by the ROCR package in R
to calculate the corresponding specificity and sensitivity
[48]. The training and validation datasets of all differential
genes were selected randomly with the proportion of 7:3.
In other words, in each case, the model was trained on
70% of the data and results refer to the remaining 30% of
the data which was used to test the performance of the
model. The out-of-bag (OOB) error was used to optimize
the parameter and evaluate the stability of the model. To
further select the most reliable hydroxymethylation
marker genes, both mean decrease accuracy (MDA) and
the significance (P value) of two-tailed t tests were used to
filter top candidate genes to show the classification

capabilities of 5hmC marks which followed the approach
of Zhang et al [46]. Briefly, the MDA of each gene which
showed feature importance and contribution to the model
was calculated internally by the model, and high MDA
values referring to greater importance. Subsequently, the
criterion with MDA > 2 and the P value < 0.01 of two-
tailed t tests which were calculated by t test of R (version
3.6.) were leveraged to filter top potential gene marks.

Statistical analysis
All continuous variables are presented as mean ± SD,
and analysis of variance was used to compare means
across four groups. Noncontinuous and categorical vari-
ables are presented as frequencies or percentages and
were compared by using the χ2 test. A two-sided P value
of < 0.05 was considered to indicate statistical signifi-
cance. Statistical analysis was performed using SPSS ver-
sion 23.0 (IBM Corp. Released 2016. IBM SPSS Statistics
for Mac, Version 23.0. Armonk, NY, USA).

Results
Genome-wide 5hmC profiles of cfDNA differ among
sCAD, AMI, and NCA groups
We firstly used a low-input whole-genome sequencing
technology based on hmC-Seal technology [14] to gener-
ate the 5hmC profile in cfDNA of CAD patients. Baseline
characteristics and laboratory data are shown in Table 1.
Among the three groups, significant differences were de-
tected in Gender (p = 0.014), age (p = 0.012), drinking (p
= 0.004), smoking (p < 0.0001), hypertension (< 0.0001),
diabetes mellitus (< 0.0001), hyperlipemia (< 0.0001), sys-
tolic blood pressure (p = 0.003), hemoglobin (p < 0.0001),
fasting blood glucose (p < 0.0001), hemoglobin A1c (p =
0.019), serum creatinine (p < 0.0001), lactate dehydrogen-
ase (p < 0.0001), aspartate transaminase (p < 0.0001), uric
acid (p = 0.032), total cholesterol (TC) (p = 0.029), high-
sensitive C-reactive protein (p < 0.0001), creatine kinase
(p < 0.0001), CK-MB (p < 0.0001), cTnI (p < 0.0001), and
MYO (p < 0.0001). No significant difference was found in
Body mass index (p = 0.889), high-density lipoprotein
cholesterol (p = 0.482), low-density lipoprotein cholesterol
(LDL-C) (p = 0.093), and triglycerides (0.635). According
to the unique mapping rate, there were good sequencing
quality observed among the all samples and no apparent
difference observed among the three groups (Additional
file 2: Figure S1A and S1B).
To ask whether or not the genome-wide 5hmC profiles

of plasma cfDNA had difference in sCAD, AMI, and NCA
groups, we first compared the distribution of 5hmC along
the gene bodies of the three groups and found that the
overall normalized read density of cfDNA 5hmC were sig-
nificantly different (Fig. 1a). AMI group showed the lowest
5hmC level in gene bodies among the three groups. And
there was a comparable 5hmC level in sCAD and NCA
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group. Then, we analyzed 5hmC enrichment in different
genomic characteristic regions by HOMER [38] and the
overall genomic distribution of 5hmC-enriched regions
(hMRs) in all samples were showed in Fig. 1b. The
genome-wide analysis of hMRs of NCA, sCAD, and AMI
groups showed that hMRs were mostly enriched in tran-
scription start site (TSS) and non-coding region in gene
bodies, whereas fewer hMRs were found in intergenic re-
gions (Fig. 1c), which was consistent with previous studies
showing that the majority of 5hmC in mammals is
enriched in the intragenic and promoter regions and cor-
related with gene expression [31, 46].
Next, to further explore the 5hmC signal changes among

coronary artery diseases, we identified the differentially

regulated 5hmc modified genes (genes with differential
5hmC levels) in all CAD patients (sCAD patients + AMI
patients) and NCA individuals by DESeq2 package (P value
< 0.05, log2foldchange > 1). We detected 170 upregulated
5hmc modified genes and 421 downregulated 5hmc modi-
fied genes based on the fragments per kilobase of transcript
per million mapped reads (FPKM) of each gene in the all
CAD group compared with the NCA group (Additional file
2: Figure S1C). Total upregulated and downregulated
5hmC gene id for each group were presented a supplemen-
tary excel sheet (Additional file 1: Table S1).
The results suggested that cfDNA 5hmC profiles of

NCA individuals, sCAD, and AMI patients indeed dis-
played significant differences. To evaluate the classification

Table 1 Baseline characteristics

Total (n = 167) NCA (n = 56) sCAD (n = 53) AMI (n = 58) P value

Demographic characteristics

Age 57.76 ± 11.80 54.23 ± 12.5 58.30 ± 11.41 60.67 ± 10.73 0.012

Gender/Male (%, M) 125 (74.9%) 35 (62.5%) 40 (75.5%) 50 (86.2%) 0.014

Clinical characteristics

BMI, kg/m2 25.18 ± 3.19 25.22 ± 2.70 25.01 ± 3.05 25.30 ± 3.76 0.889

Smoking (%, Y) 95 (56.9%) 17 (30.4%) 34 (64.2%) 44 (75.9%) < 0.0001

Drinking (%, Y) 72 (43.1%) 15 (26.8%) 31 (58.5%) 26 (44.8%) 0.004

Diabetes mellitus (%, Y) 46 (27.5%) 4 (7.1%) 21 (39.6%) 21 (36.2%) < 0.0001

Hyperlipemia (%, Y) 101 (60.5%) 20 (35.7%) 41 (77.4%) 40 (69.0%) < 0.0001

Laboratory characteristics

Hemoglobin, g/L 134.68 ± 18.37 142.31 ± 16.84 134.26 ± 19.38 127.68 ± 16.11 < 0.0001

FBG, mmol/L 6.58 ± 2.61 5.35 ± 1.04 7.04 ± 2.60 7.34 ± 3.21 < 0.0001

HbA1c, % 6.30 ± 1.29 5.91 ± 0.87 6.55 ± 1.51 6.44 ± 1.34 0.019

Scr, μmol/L 83.59 ± 17.90 75.72 ± 16.22 87.21 ± 18.87 87.87 ± 16.23 < 0.0001

Uric acid, μmol/L 331.47 ± 86.72 324.13 ± 79.45 356.62 ± 86.68 315.58 ± 89.76 0.032

LDH, IU/L 276.64 ± 237.57 171.68 ± 37.18 188.83 ± 44.50 458.24 ± 331.19 < 0.0001

hsCRP, mg/L 3.86 ± 5.12 1.94 ± 2.41 2.78 ± 3.57 6.69 ± 6.81 < 0.0001

ALT, IU/L 35.04 ± 32.59 30.09 ± 30.37 35.64 ± 38.92 39.28 ± 27.91 0.320

AST, IU/L 55.25 ± 80.02 23.29 ± 13.74 25.998 ± 16.53 112.95 ± 114.11 < 0.0001

HDL-C, mmol/L 1.22 ± 1.15 1.19 ± 0.31 1.10 ± 0.35 1.36 ± 1.90 0.482

LDL-C, mmol/L 2.56 ± 0.97 2.79 ± 0.87 2.48 ± 1.09 2.42 ± 0.91 0.093

TC, mmol/L 4.29 ± 1.16 4.62 ± 0.92 4.07 ± 1.37 4.17 ± 1.09 0.029

TG, mmol/L 2.12 ± 5.98 1.83 ± 1.19 1.76 ± 0.88 2.73 ± 10.08 0.635

NT-proBNP, pg/mL 496.40 ± 1504.93 86.25 ± 221.68 224.41 ± 396.73 1140.94 ± 2397.50 < 0.0001

CK, IU/L 372.70 ± 659.52 99.80 ± 57.03 118.38 ± 134.82 868.59 ± 929.25 < 0.0001

cTnI, ng/mL 8.64 ± 20.38 0.15 ± 0.30 0.89 ± 2.94 23.92 ± 28.94 < 0.0001

MYO, ng/mL 256.08 ± 572.39 28.26 ± 11.63 48.63 ± 47.83 665.59 ± 830.84 < 0.0001

CK-MB, ng/mL 34.05 ± 65.07 3.42 ± 4.95 7.06 ± 21.94 88.30 ± 85.29 < 0.0001

Data are means ± SD or number (percentage) of subjects. BMI body mass index, FBG fasting blood glucose, HbA1c hemoglobin A1c, Scr serum creatinine, LDH
lactate dehydrogenase, hsCRP hypersensitive C-reactive protein, ALT alanine aminotransferase, AST aspartate transaminase, HDL-C high-density lipoprotein
cholesterol, LDL-C low-density lipoprotein cholesterol, TC total cholesterol, TG triglycerides, NT-proBNP N-terminal pro-brain natriuretic peptide, CK creatine kinase,
cTnI cardiac troponin I, MYO myoglobin, CK-MB MB isoenzyme of creatine kinase, NCA normal coronary artery, sCAD stable coronary artery disease, AMI acute
myocardial infarction. The chi-squared test was used for comparison of categorical variables and one-way analysis of variance (one-way ANOVA) was used for
continuous variables. The P value<0.05 was regarded as statistically significant
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Fig. 1 (See legend on next page.)
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effects of 5hmC signals for NCA, sCAD, and AMI samples,
we carried out the principal component analysis (PCA) for
genes with differentially regulated 5hmC levels and found
that CAD samples (sCAD samples + AMI samples)
showed prominent signatures and could be readily sepa-
rated from NCA samples (Fig. 1d). However, there were
few different signatures showed in sCAD and AMI samples
and they could not be separated from each other (Fig. 1d).
Then, we clustered the top 200 differentially regulated
5hmc modified genes (100 up and 100 down) detected
from all CAD patients and NCA individuals by unsuper-
vised hierarchical clustering method. Similarly, the results
showed that the majority of CAD samples were well sepa-
rated from NCA samples; meanwhile, AMI, sCADs, and
NCA samples just tended to differentiate from each other
(Fig. 1e). Thus, the above results meant that differentially
regulated 5hmc modified genes may have the potential to
distinguish CAD patients from non-CAD patients.

5hmC markers derived from cfDNA can be used to
separated CAD patients from non-CAD patients
We found that the average profile of the 5hmC level
showed obvious 5hmC loss in the CAD group (Additional
file 2: Figure S1D). Thus, we speculated 5hmC characteris-
tics detected in cfDNA can be utilized for CAD classifica-
tion. The PCA analysis result preliminarily demonstrated
that CAD samples could be readily separated from NCA
samples by genes with differentially regulated 5hmC levels
(Fig. 2a). To evaluate the classification effects of 5hmC sig-
nals for CAD and non-CAD samples, we extracted the top
30 mean decrease Gini (MDG) differentially 5hmC markers
by Boruta to construct a classification model based random
forest classifier. With the tree numbers of the model in-
creasing, out-of-bag (OOB) error rates decreased and
tended to be stable at ~ 500 (Additional file 2: Figure S1E).
According to the result, the prediction performance of the
model achieved 82% sensitivity and 89% specificity (AUC =
0.93) for patient classification in validating set (19 NCA in-
dividuals vs. 37 CAD patients, Fig. 2b). Then, we compared
the performance of the model with that of clinical cardio-
vascular risk factors and indicators, including TC, LDL-C,
cTnI, CK-MB, and MYO. We chose 5.98 mmol/L, 1.8
mmol/L, 0.08 ng/mL, 6 ng/mL, and 70 ng/mL, respectively,
as the cutoff points for TC, LDL-C, cTnI, CK-MB, and

MYO, according to the testing standards of Fuwai Hospital.
The AUC values of TC, LDL-C, cTnI, CK-MB, and MYO
were 0.6, 0.58, 0.93, 0.83, and 0.79, indicating lower sensitiv-
ity and specificity than that of 5hmC classification model
(AUC = 0.93), except for cTnI (Fig. 2b). The results sug-
gested that cTnI did have a good diagnostic performance
for coronary heart disease, and differentially 5hmC markers
also showed a diagnostic performance comparable to that
of cTnI.
Next, we used both MDG (MDG > 2) and the signifi-

cance (P value) of two-tailed t tests (P value < 0.01) to fil-
ter the top 30 genes to find out the most reliable 5hmC
marker genes. There were six genes that satisfy this condi-
tion (Additional file 2: Figure S1F). Besides, we performed
KEGG functional enrichment analysis to study the bio-
logical significance of differentially 5hmC markers. We
found that genes with upregulated 5hmC signal were
mainly distributed in CAD-related pathways, such as
PI3K-Akt signaling pathway, Platelet activation, apoptosis,
Ras signaling pathway, AMPK signaling pathway (Fig. 2c).
Genes with decreased 5hmC signal were enriched in sev-
eral CAD-related pathways including metabolic pathways,
cardiac muscle contraction, fatty acid degradation, and
NF-kappa B signaling pathway (Fig. 2d).
Finally, motif enrichment analysis in DhMRs was per-

formed to display the correlation of 5hmC changes with
potential interactions of binding proteins. Our results
showed that the motif of transcriptional enhancer factor
TEF-3 (TEAD4) was significantly enriched in 5hmC gain
regions (P ≤ 0.01) (Fig. 2e), which was a transcriptional fac-
tor regulating gene expression in muscle and to control cell
proliferation and associated with coronary artery disease
risk [49]. On the contrary, the motif of SRY-type box 9
(SOX9) was significantly enriched in 5hmC loss regions (P
= 1E-4) (Fig. 2e). SOX9 was a common transcriptional
regulator of a large portion of the heart valve development
related and fibrosis-related genes, which was activated
under conditions of ischemic injury and was considered to
be a potential therapeutic target for cardiac fibrosis [50,
51]. Thus, our results indicated that CAD patients could
be readily separated from NCA individuals by differentially
regulated 5hmc-modified genes. CAD patients and NCA
individuals showed apparent differences in both 5hmC en-
richment and potentially interacting binding proteins.

(See figure on previous page.)
Fig. 1 Genome-wide distribution of 5hmC in plasma samples of sCAD, AMI patients, and NCA individuals. a Metagene profiles of cell free 5hmC
in NCA, sCAD and AMI samples. b The pie chart shows the overall genomic distribution of hMRs in cfDNA. c Normalized enrichment score of
hMRs across distinct genomic regions relative to that expected in NCA, sCAD, and AMI samples, with positive values indicating enriched more
than expected. d Principle component analysis (PCA) plot of 5hmC FPKM in cfDNA from CAD (AMI + sCAD) and NCA samples. e Heatmap of the
top 200 potential 5hmC markers in CAD and NCA groups. Unsupervised hierarchical clustering was performed across genes and samples. CAD
coronary artery disease, NCA normal coronary artery, AMI acute myocardial infarction, sCAD stable coronary artery disease, TSS transcription start
site, TTS transcription termination site, FPKM fragments per kilobase of transcript per million mapped reads

Dong et al. Clinical Epigenetics           (2020) 12:17 Page 7 of 13



Fig. 2 (See legend on next page.)

Dong et al. Clinical Epigenetics           (2020) 12:17 Page 8 of 13



5hmC markers from plasma cfDNA distinguish sCAD
patients from NCA individuals with high specificity and
high sensitivity
Although there was no significant difference in 5hmC level
between the sCAD group and NCA groups, we detected
85 upregulated 5hmc modified genes and 804 downregu-
lated 5hmc modified genes in sCAD group compared with
NCA group (Additional file 2: Figure S1C). In addition, the
PCA analysis indicated that differential 5hmC markers
could distinctly separate these two groups (Fig. 3a). To fur-
ther evaluate the performance of these differentially 5hmC
markers in distinguishing sCAD samples from NCA sam-
ples, we then also extracted the top 30 MDG differentially
5hmC markers to construct a classification model. With
the tree numbers of the model increasing, OOB error rates
decreased accordingly and tended to be stable at ~ 600
(Additional file 3: Figure S2A). The prediction performance
of the model reached an AUC value of 0.93, with a sensitiv-
ity of 93% sensitivity, and a specificity of 80% specificity for
sCAD patient classification in validating set (18 sCAD pa-
tients vs. 19 NCA individuals) (Fig. 3b). Then, we com-
pared the diagnostic performance of differentially 5hmC
markers with that of TC and LDL-C in discriminating
NCA from sCAD using plasma samples. The AUC values
of TC and LDL-C were 0.65 and 0.62 (Fig. 3b), respectively,
indicating much lower performance than that of differen-
tially 5hmC markers in cfDNA (AUC = 0.93). These results
suggested that differentially 5hmC markers in cfDNA may
be effective epigenetic markers for minimally noninvasive
diagnosis of sCAD.
In addition, six genes of the above 30 genes satisfied

both MDG > 2 and the two-tailed t tests P value < 0.01
(Additional file 3: Figure S2B). KEGG functional enrich-
ment analysis showed that genes with significant 5hmC
gain or loss in the sCAD group were mainly enriched in
Ras signaling pathway, Chemokine signaling pathway,
AMPK signaling pathway, vascular smooth muscle con-
traction, VEGF signaling pathway, apoptosis, HIF-1 sig-
naling pathway, and platelet activation, which are closely
associated with the occurrence and development of
sCAD (Additional file 3: Figure S2C and S2D).

5hmC markers from plasma cfDNA show prediction
potential for acute myocardial infarction superior to that
of cTnI, CK-MB, and MYO
The enrichment level of 5hmC in cfDNA was signifi-
cantly different between sCAD group and AMI group.
Therefore, we speculated that 5hmC features may have
the potential to differentiate these two groups. We car-
ried out the PCA analysis and found that AMI samples
showed obvious signatures and could be readily sepa-
rated from sCAD samples (Fig. 3c). Then, we sought to
estimate the performance of differentially 5hmC markers
for patient classification. We also utilized the top 30
MDG differentially 5hmC markers to construct a classi-
fication model based random forest algorithm. With the
tree numbers of the model increasing, OOB error rates
decreased and tended to be stable at ~ 600 (Additional
file 4: Figure S3A). The prediction performance of the
model achieved a sensitivity of 93% and a specificity of
86% (AUC = 0.95) in the validating set (19 AMI patients
vs. 18 sCAD patients), which was superior to that of
cTnI (AUC = 0.90), MYO (AUC = 0.88), and CK-MB
(AUC = 0.90) (Fig. 3d).
In addition, we found five potential gene were both

MDG > 2 and the two-tailed t tests P value < 0.01 (Add-
itional file 4: Figure S3B). To further investigate whether
the potential marker genes are associated with the occur-
rence of AMI, we performed KEGG functional enrichment
analysis. The results showed that genes with significant
5hmC gain or loss in the AMI group were mainly enriched
in apoptosis, vascular smooth muscle contraction, VEGF
signaling pathway, platelet activation, HIF-1 signaling
pathway, cardiac muscle contraction, and metabolic path-
ways, which are closely associated with acute myocardial
infarction (Additional file 4: Figure S3C and S3D).

Discussion
5hmC, as a novel epigenetic biomarker, plays a critical
role in gene expression regulation and involves in vari-
ous biological processes, including tumors, cardiovascu-
lar, neurological diseases, and metabolic diseases [52].
Although the signal of cfDNA 5hmC in the blood is low,

(See figure on previous page.)
Fig. 2 Performance of potential 5hmC markers for identification of CAD patients and non-CAD patients. a Principle component analysis (PCA)
plot of 5hmC FPKM in cfDNA from CAD and NCA samples. b Receiver operating characteristic (ROC) curve of the classification model with
potential 5hmC markers and clinical indicators, including LDL-C, TC, cTnI, MYO, and CK-MB in the validating set (19 NCA vs. 37 CAD samples). The
true positive rate (sensitivity) is plotted in function of the false positive rate (specificity). c KEGG functional enrichment analysis of genes with
significant 5hmC increase in CAD samples. d KEGG functional enrichment analysis of genes with significant 5hmC decrease in CAD samples. e
Top enriched known transcription factor binding motifs detected in DhMRs in CAD and NCA groups (left: 5hmC gain; right: 5hmC loss). Motif
information was obtained from the Homer motif database. The value in parenthesis represents the percentage of target sequences enriched with
the binding motif of the indicated transcription factor. CAD coronary artery disease, NCA normal coronary artery, TSS transcription start site, TTS
transcription termination site, FPKM fragments per kilobase of transcript per million mapped reads, AUC area under the curve, TC total cholesterol,
LDL-C low-density lipoprotein cholesterol, cTnI cardiac troponin I, MYO myoglobin, CK-MB MB isoenzyme of creatine kinase, DhMRs differentially
hydroxy methylated regions, PAX5 paired box protein Pax-5, TEAD4 transcriptional enhancer factor TEF-3, transcriptional enhancer factor TEF-5,
SOX9 SRY-type box 9, HIF-1b hypoxia-inducible factor 1 beta, Smad3 mothers against decapentaplegic homolog 3
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it has the potential to be biomarkers in different cancer
types [53]. More recently, a diagnostic model based on
features from cfDNA 5hmC in the blood showed the po-
tential for early detection of hepatocellular carcinoma
[54]. So the signal features of cfDNA 5hmC in the blood
could be reliable biomarkers for different diseases. In
this study, we utilized hmC-Seal sequencing method to
detected cfDNA 5hmC of CAD patients to, so as to try
to uncover reliable biomarkers for CAD.
First, we found that CAD patients and NCA individuals

had prominent differences in 5hmC enrichment in plasma
cfDNA (Figs. 1a, d and 2a). Second, our results showed that

CAD patients can be well separated from non-CAD pa-
tients by 5hmC markers derived from cfDNA (Fig. 2b). The
prediction performance of the model established by 5hmC
markers were superior to TC, LDL-C, CK-MB, and MYO
for the diagnosis of CAD (Fig. 2b). Third, 5hmC markers
derived from cfDNA can use to diagnose sCAD with high
sensitivity and specificity (Fig. 3b). In addition, we found
that 5hmC markers derived from cfDNA could pre-
warning the occurrence of AMI and the prediction poten-
tial was superior to that of cTnI, CK-MB, and MYO (Fig.
3d). Furthermore, we found that 5hmC markers mainly dis-
tributed in pathways which were highly correlated with the

Fig. 3 Performance of potential 5hmC markers for diagnosis and prediction of stable coronary artery disease and acute myocardial infarction. a
Principle component analysis (PCA) plot of 5hmC FPKM in cfDNA from sCAD and NCA samples. b Receiver operating characteristic (ROC) curve of
the classification model with potential 5hmC markers and clinical indicators, including TC and LDL-C in the validating set (18 sCAD patients vs. 19
NCA individuals). The true positive rate (sensitivity) is plotted in function of the false positive rate (specificity). c Principle component analysis
(PCA) plot of 5hmC FPKM in cfDNA from AMI and sCAD samples. d Receiver operating characteristic (ROC) curve of the classification model with
potential 5hmC markers and clinical indicators, including cTnI, MYO and CK-MB in the validating set (19 AMI patients vs. 18 sCAD patients). The
true positive rate (sensitivity) is plotted in function of the false positive rate (specificity). NCA normal coronary artery, sCAD stable coronary artery
disease, AMI acute myocardial infarction, FPKM fragments per kilobase of transcript per million mapped reads, AUC area under the curve, TC total
cholesterol, LDL-C low-density lipoprotein cholesterol, cTnI cardiac troponin I, MYO myoglobin, CK-MB MB isoenzyme of creatine kinase
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pathogenesis of CAD (Fig. 2c, d). The potentially interacting
binding proteins targeted to differentially modified 5hmC
regions played an important role in CAD (Fig. 2e). Taken
together, these findings indicated that 5hmC markers de-
rived from cfDNA can serve as effective epigenetic bio-
markers for minimally noninvasive diagnosis for CAD and
prediction of AMI.
The occurrence of AMI is very fatal. If the risk of AMI

can be predicted, early intervention may significantly im-
prove the prognosis of patients. However, there is still no
effective method to alert its occurrence. In our study, we
firstly found that 5hmC markers derived from cfDNA
could pre-warning the occurrence of AMI and the predic-
tion potential was superior to that of cTnI, CK-MB and
MYO. If these findings are supported by further expanded
studies, it may offer promising prediction strategies for
AMI.
Previous studies have showed that 5hmC is enriched in

contractile VSMCs but reduced in dedifferentiated VSMCs
and improves endothelial cell function via upregulation of
autophagy [22, 55, 56]. Recent study analyzing 5hmC on a
genome-wide scale in cardiomyocytes has shown that
5hmC modification plays an important role in myocardial
pathophysiology [16]. In our study, we also found that
5hmC markers in plasma cfDNA were enriched in various
CAD-related signaling pathways and the potential interact-
ing binding proteins targeted to differential modified 5hmC
regions played an important role in CAD. For example,
SOX9 is a regulator of a large portion of the fibrosis-related
genes that become activated under conditions of ischemic
injury and associated with CAD [50, 51]. RUNX2 is closely
associated with calcification of vascular smooth muscle cells
[35]. Interestingly, we found that most genes of the top 30
MDG differentially 5hmC markers were pseudogenes. The
experimental data obtained during recent years indicate this
understanding of the nature of pseudogenes is not entirely
correct, and many pseudogenes are functionally significant
elements of the genome and may play a regulatory role in
the form of non-coding RNA [57–59]. Thus, we speculated
that 5hmC regulated gene expression by regulating the pro-
duction of pseudogene RNA.
Nevertheless, our research still has some limitations.

One of the limitations of our research is that we do not
know the source of the cfDNA. Cell-free DNA (cfDNA) in
the circulating blood originates from dying cells from dif-
ferent tissues, which release DNA into the peripheral
bloodstream upon degradation after cell death [60]. A re-
cent study has shown, beyond blood cells, that cfDNA is
derived from vascular endothelial cells, hepatocytes, and
other cells in healthy individuals [61]. So it could reflect
multi-organ processes in the body. Secondly, the sample
size of our research is still relatively small. Recently, 5hmC-
Seq has been applied in clinical research and shown the
potential for diagnostic and prognostic in different disease

[53]. In addition, it has shown high sensitivity and specifi-
city in the early detection of gastrointestinal tumors and
liver cancer compared with the clinical gold standard [54].
Thus, 5hmC has emerged to be a novel class of cancer epi-
genetic biomarkers with promise in precision medicine.
Therefore, the next step we should do is to increase the
amount of samples to find more efficient biomarkers of
5hmC in CAD. Thirdly, many factors, like age, smoking,
drinking, diabetes, etc., may affect the enrichment of 5hmC
and may need further perform stratification and correlation
analysis of key factors. Besides, since it was a cross-
sectional study, this study could not observe in prospective
way and thus could not identify the causal effect. Study
duration should be extended to perform longitudinal stud-
ies, which will be more convinced to confirm the relation-
ship between 5hmC and CAD. Finally, the regulatory
mechanism of 5hmC and these CAD-related genes and
pathways is still unclear. We speculate that the mechanism
may be related to the regulation of downstream transcripts
or the chromatin spatial structure [62]. Thus, prospective
studies are really required for further study.

Conclusions
Our results suggest that 5hmC markers derived from
cfDNA can serve as effective epigenetic biomarkers for
minimally noninvasive diagnosis and prediction of CAD,
and show prediction potential for acute myocardial in-
farction superior to that of cTnI, CK-MB, and MYO.
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MDG and the significance of two-tailed t-tests for the top 30 potential
markers in the CAD and NCA groups. Red dots refer to significant differ-
ential genes.

Additional file 3: Figure S2. Pathways and genes with 5hmC variations
between sCAD and NCA groups. a Out-of-bag (OOB) error rates in sCAD
and NCA groups by different trees Random-Forest built. b Scatterplot
showing the MDG and the significance of two-tailed t-tests for the top
30 potential markers in the sCAD and NCA groups. Red dots refer to sig-
nificant differential genes. c KEGG functional enrichment analysis of genes
with significant 5hmC increase in sCAD samples. d KEGG functional en-
richment analysis of genes with significant 5hmC decrease in sCAD
samples.

Additional file 4: Figure S3. Pathways and genes with 5hmC variations
between sCAD and AMI groups. a Out-of-bag (OOB) error rates in sCAD
and AMI groups by different trees Random-Forest built. b Scatterplot
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showing the MDG and the significance of two-tailed t-tests for the top
30 potential markers in the sCAD and AMI groups. Red dots refer to sig-
nificant c KEGG functional enrichment analysis of genes with significant
5hmC increase in AMI samples. d KEGG functional enrichment analysis of
genes with significant 5hmC decrease in AMI samples.
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