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Abstract

Background: The genetic risk associated with rheumatoid arthritis (RA) includes genes regulating DNA methylation,
one of the hallmarks of epigenetic re-programing, as well as many T-cell genes, with a strong MHC association, pointing
to immunogenetic mechanisms as disease triggers leading to chronicity. The aim of our study was to explore DNA
methylation in early, drug-naïve RA patients, towards a better understanding of early events in pathogenesis.

Result: Monocytes, naïve and memory CD4+ T-cells were sorted from 6 healthy controls and 10 RA patients. DNA
methylation was assessed using a genome-wide Illumina 450K CpG promoter array. Differential methylation was
confirmed using bisulfite sequencing for a specific gene promoter, ELISA for several cytokines and flow cytometry for
cell surface markers. Differentially methylated (DM) CpGs were observed in 1047 genes in naïve CD4+ T-cells, 913 in
memory cells and was minimal in monocytes with only 177 genes. Naive CD4+ T-cells were further investigated as
presenting differential methylation in the promoter of > 500 genes associated with several disease-relevant pathways,
including many cytokines and their receptors. We confirmed hypomethylation of a region of the TNF-alpha gene in
early RA and differential expression of 3 cytokines (IL21, IL34 and RANKL). Using a bioinformatics package (DMRcate)
and an in-house analysis based on differences in β values, we established lists of DM genes between health and RA.
Publicly available gene expression data were interrogated to confirm differential expression of over 70 DM genes. The
lists of DM genes were further investigated based on a functional relationship database analysis, which pointed to an
IL6/JAK1/STAT3 node, related to TNF-signalling and engagement in Th17 cell differentiation amongst many pathways.
Five DM genes for cell surface markers (CD4, IL6R, IL2RA/CD25, CD62L, CXCR4) were investigated towards identifying
subpopulations of CD4+ T-cells undergoing these modifications and pointed to a subset of naïve T-cells, with high
levels of CD4, IL2R, and CXCR4, but reduction and loss of IL6R and CD62L, respectively.

Conclusion: Our data provided novel conceptual advances in the understanding of early RA pathogenesis, with
implications for early treatment and prevention.
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Background
Rheumatoid arthritis (RA) is a chronic condition with
substantial impact on the lives of millions of people
worldwide. RA patients present with symmetrical joint
inflammation, which, if inadequately treated, results in
severe disability and substantial pain, fatigue, depression,
and adverse social consequences with a significantly
increased risk of mortality [1, 2].
Epigenetic modifications are characterising diverse path-

ologies, including cancer and autoimmune diseases (AIDs).
In cancer, CpG methylation patterns often affect large re-
gions of DNA being activated or silenced. Such epimuta-
tions are considered as critical as genetic mutations but
importantly, were shown to occur before the onset of the
latter [3]. In AIDs, similar changes were identified, although
on a smaller scale [4]. In RA, synovial fibroblasts and T-
cells harbour alterations in DNA methylation profiles, while
whole blood analysis associated changes in methylation (be-
tween baseline and 4 weeks) in 2 CpGs, with response to
methotrexate in early RA [5–8]. We hypothesised that such
changes may indeed occur at the earliest stages of RA
progression, under the influence of environmental triggers
notably inflammation [9], representing an opportunity to
explore molecular mechanisms mediating transition to
chronicity.
Thus, we investigated whether differential methylation

(DM) could be detected in early RA patients with < 6
months symptom duration (drug naïve). We selected 2 cir-
culating cell types implicated in RA pathogenesis [4],
namely T-cells (segregating naïve and memory subsets) and
monocytes, and compared DNA methylation patterns be-
tween RA and healthy controls (HC) using a 450K-CpG
genome-wide array. Herein, we describe our dataset and
then the application of strategies to prioritise DM-CpG
sites, extrapolating these to genes and pathways modulated
in early RA.

Results
Preliminary exploration of DNA methylation data
DNA methylation profile of 6 HC and 10 RA patients from
naïve and memory CD4+ T-cells and monocytes was ana-
lysed using a workflow shown in Figure S1. Multidimen-
sional scaling (MDS) established the main discriminants
between samples, and clustered data tightly by cell types
(Fig. 1a) but not by gender or between RA and HC (supple-
mentary Figure S2). We explored levels of methylation for
each CpG by t-tests (false discovery rate correction was not
applied). Manhattan plots displaying p values in an ordered
manner along chromosomes, identified thresholds of sig-
nificance for p values, separating DM-CpGs from the back-
ground: high (p ≤ 0.0001), medium (0.0001 < p ≤ 0.001) and
low (0.001 < p ≤ 0.01; Fig. 1b, naïve T-cells, supplementary
Figure S2, memory T-cell and monocyte). This preliminary

data mining strategy identified distinct numbers of DM-
CpGs for the 3 cell types (Table 1).

DM CpG distributions in the 3 cell subsets
In naïve T-cells, the number of DM CpGs (18,020, p ≤
0.01) was the highest representing 4.09% of all tested
CpGs. Of this number, 3.11%, 16.04% and 80.84% were
categorised as of high, medium, and low significance, re-
spectively. Using annotation, we analysed the distribution
of DM CpGs with respect to their location in gene struc-
tures for (i) core of CpG islands (ii) shelves/shore of an is-
land or (iii) in open sea (i.e. outside of a defined island).
We observed approximately 1/3 of all DM CpG in each
category. We also observed similar proportion of hypo and
hyper-methylation, with a slight bias toward hypomethyla-
tion. In memory T-cells, the main difference observed was
that DM preferably occurred in the core of islands (50%)
and were mostly hyper-methylation (93% of DM CpGs)
which may suggest more generalised gene silencing in RA
memory T-cells. In monocytes, DM was of lower signifi-
cance altogether (Table 1). Overall, these data demonstrate
distinct methylation changes between cell types. This was
confirmed using unsupervised hierarchical clustering
displayed as heatmap (Fig. 1c), showing clear segregation
of patients and HC, as well as major hyper-methylation in
memory T-cells.

Differential methylation patterns
To evaluate the effect of DM on gene expression, we
manually inspected selected CpGs, chosen from the top of
the p-value lists. Three typical patterns were identified
(supplementary Figure S3). First, DM at a single CpG usu-
ally located in the core of an island, possibly modulating
transcription factor binding sites (island a). Second, pat-
terns showing clusters of DM CpGs potentially mediating a
cumulative local effect (island b). Third, an isolated CpG in
open sea (not always associated with a specific gene) pos-
sibly part of an enhancer region (example c), although these
were not meant to be targeted by the 450K bead array.

Exploration of clusters of DM CpG in the 3 cell subsets
We ranked clusters automatically using an in-house R-
code, selecting only the highly significant DM CpGs and
taking into account significantly DM CpGs in their proxim-
ity in a region of ± 1500 bp (supplementary Figure S3; R-
code available on request). In monocytes, most clusters
only showed the initial selecting CpG associated with only
1 other DM CpG (final score = 2). In contrast, in naïve T-
cells, some clusters showed up to 7 selecting CpGs and
scores up to 16, suggesting much larger effects on a wider
region of the DNA. Intermediate results were observed in
memory T-cells (score up to 9). The number of DM CpG
clusters with a score of > 2 are listed in Table 1. DM CpG
clusters and isolated DM CpG were associated with genes
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via annotation and lists were drawn. Six hundred forty eight
DM genes were observed in naïve T-cells (Table 1: 354 hy-
pomethylation and 294 hypermethylation), 605 for memory
T-cells and only 58 for monocytes. Of note, the second
highest score for hypomethylated DM CpG cluster in naïve
T-cells was for the tumour necrosis factor gene (TNF-
alpha, Fig. 2, which presents no DM in memory cells or
monocytes). For isolated DM CpGs (only p < 0.001, Table
1), using ranking based on p value, 266 hypomethylated
genes and 133 hypermethylated for naïve T-cells. Full list of
genes are available in supplementary files (Data S1-3).
Of note, we only observed 1 DM CpG cluster common

to 3 cell types (supplementary Figure S3), associated
with the 4-aminobutyrate aminotransferase (ABAT)

gene and none for isolated DM CpGs. We considered
whether this finding may be an artefact but note that
this gene is associated with clusters of 9 DM CpGs in
naïve cells, 6 in memory cells and 4 in monocytes.

DM of cytokines/chemokines/receptors in the 3 cell
subsets
Many of the DM genes described above were cytokines/
chemokines (IL1beta, IL6, IL12, IL13, IL15, IL17, IL21 and
more as well as TNF, TGF-beta1 and many more mem-
bers of their families; several CCLs and CXCLs) as well as
their receptors (IL2RA/RB, IL6R, IL10RA, IL15R, IL17Rs,
TNFRs and more, chemokine receptors) all listed in Table
2. Many of these factors were showed to be upregulated at

Fig. 1 Preliminary exploration of data. a MDS plot segregating samples based on cell subset identity. b Manhattan plots for -Log10(p values)
against position on chromosome of ~480,000 individual CpG. c Heat map displaying DM CpG for the 3 cell subsets (p < 0.01)
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Table 1 Summary of differential methylation at individual CpG level and summary of the prioritisation of clusters of DM CpG and
associated genes

Naïve CD4 Memory CD4 Monocytes

T-cell T-cell

Number (%) of differentially methylated / total probes tested (440 490), p≤ 0.01 18020 (4.09%) 14197 (3.22%) 6490 (1.47%)

Number (%)* of probes with

High significance (p≤ 0.0001) 561 (3.11%) 440 (3.10%) 130 (2.00%)

Medium significance (0.0001 < p ≤ 0.001) 2891 (16.04%) 1885 (13.28%) 672 (10.35%)

Significance (0.001 < p≤ 0.01) 14568 (80.84%) 11872 (83.62%) 5688 (87.64%)

Number and (%)*of probe associated with

Core island 6141 (34.08%) 7120 (50.15%) 1985 (30.59%)

Shelves/shore island 5873 (32.59%) 3948 (27.81%) 2060 (31.74%)

Outside of CpG island 6006 (33.33%) 3129 (22.04%) 2445 (37.67%)

Hypermethylation in RA (%)* 8425 (46.75%) 13218 (93.10%) 3525(54.31%)

Hypomethylation in RA (%)* 9595 (53.25%) 979 (6.9%) 2965 (45.69%)

Number of probe (%)** associated with an

Island/shelve/shore

Hypermethylated 1201 (34.79%) 1842 (79.23%) 209 (26.06%)

Hypomethylated 1111 (32.18%) 114 (4.9%) 310 (38.65%)

Outside of an island (Open sea)

Hypermethylated 176 (5.10%) 299 (12.86%) 190 (23.69%)

Hypomethylated 964 (27.93%) 70 (3.01%) 93 (11.60%)

DM CpG clusters

Number of CpG with a score ≥ 3

Hypermethylated 143 305 6

Hypomethylated 197 0 15

Number of CpG with a score = 2

Hypermethylated 277 414 15

Hypomethylated 223 7 33

Score ≥ median (range)

Hypermethylated 3.65 (3–9) 3.73 (3–9) 3 (3–4)

Hypomethylated 4.15 (3–16) Na 3 (3–4)

Corresponding number of genes (all clusters)

Hypermethylated 354 600 19

Hypomethylated 294 5 39

Isolated DM CpG

Number of CpG/gene associated with

Island/shelve/shore

Hypermethylated 121 249 34

Hypomethylated 139 24 58

In Open sea

Hypermethylated 12 18 14

Hypomethylated 127 17 13

* (%) of all probes with p ≤ 0.01, ** (%) of all probes with p ≤ 0.001
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Fig. 2 DNA bisulfite sequencing of the TNF-alpha promoter region. a CpGs present in the TNF-alpha gene were ordered on Chromosome 6. At
most CpG positions, the median β values in naïve CD4+ T-cells show significant hypomethylation in RA (red) compared to HC (blue). b Median β
values in the similar region of chromosome 6 in memory cells and monocytes. There was no DM between HC and RA in both cell types. c A
region of 273 bp was amplified for direct bisulfite sequencing, containing 3 of the array CpGs. This region is highly demethylated in memory cells
but highly methylated in monocytes. Results of the sequencing covering 8 CpG displayed as pie chart for the percentage of methylated (blue)/
demethylated (orange) DNA, showing on average ~45% demethylation in HC (n = 7) and ~90% in RA (n = 9)
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the protein levels in early RA patients [10–12], notably in-
cluding IL6 for which this was also associated with DM of
the gene and mRNA levels [13]. We chose 3 cytokines for
which no data were available in early RA (IL21, IL34 and
RANKL) and measured protein levels in serum samples
using ELISA. All 3 cytokines showed higher levels in early
RA (all p < 0.001, data shown in supplementary Figure S4-
A). We also have data similar to those widely reported,
showing higher levels of IL1-beta, IL6, IL10, IL12, IL17A,
IFN-gamma and TNF-alpha (all p < 0.001), recapitulated
in supplementary Figure S4 B.

Validation of DM regions using publicly available R
packages for the naïve T-cell dataset
There are R packages publicly available to analyse DNA
methylation gene arrays. We ran our dataset using
DMRcate, an R-package aiming to find DM region (DMR)
[14], which uses moderated t-tests and a function to ag-
glomerate neighbouring CpGs. It relies on 3 main parame-
ters. The first one allows to modulate the acceptable FDR.

The second modulates the length of the region to consider.
The third modulates a threshold in difference in β values
(Δβ values), with the options to use the average (standard/
default) or the maximum difference (notably in small data
set). DMRs can then be annotated to the associated gene.
Running this analysis using the recommended/default set-
tings (FDR ≤ 0.05, 1000 bp, average Δβ value ≥ 0.05), only 2
genes were DM in RA, CUTA (CutA divalent cation toler-
ance homolog), and B3GALT4 (Beta-1,3-Galactosyltrans-
ferase 4).
In assessing whether DM are relevant, Δβ values ap-

pear quite important. We therefore analysed our dataset
considering the distribution of β value observed. We fil-
tered out 3778 CpGs with poor reproducibility (i.e. >
10% difference between Min and Max β values). We
then analysed the distribution of Δβ values for each
GpG. Allowing for positive/negative differences, 2.5% on
each side of the distribution suggested a cut-off at −
0.04612 and + 0.04432 Δβ values (supplement Figure
S5A). We therefore used a ± 0.05 cut-off to customise

Table 2 DM genes for cytokine/chemokines and their receptor in early RA

Gene Symbol Naive cells Memory cells Monocytes

Interleukin family

Cluster IL6, IL12A, IL13, IL21, IL25, IL31, IL34,
IL36G,
IL1RAPL2, IL5RA, IL6R, IL10RA, IL12RB1,
IL15RA, IL17RC, IL17RE, IL17REL, IL27RA

IL1B, IL6, IL12A, IL15, IL17F, IL17D, IL24, IL37,
IL1R2, IL4R, IL6R, IL12RB1, IL15RA, IL17RB,
IL17RC, IL17RD, IL17REL, IL20RB, IL21RAS1

IL16, IL37,
IL1RN IL17RC

Isolated CpG IL1B, IL5, IL10, IL15, IL16, IL17C, IL17D,
IL19, IL25, IL36B,
IL17RA, IL18RAP, IL18BP, IL1R1, IL1R2,
IL1RN, IL2RA, IL2RB

IL17RA IL12

Tumour necrosis growth factor family

Cluster TNF, TNFAIP8, TNFSF10, TNFSF12,
TNFSF14,
TNFRSF1A, TNFRSF1B, TNFRSF6,
TNFRSF8, TNFRSF10B, TNFRSF13B,

TNFRSF10C, TNFAIP8, TNFAIP8L3,TNFAIP8L1,
TNFRSF9, TNFRSF10B, TNFRSF18, TNFRSF19,
TNFRSF25

TNFAIP2, TNFAIP3,
TNFRSF18, TNFRSF19,
TNFRSF25

Isolated CpG TNFSF4, TNFSF10, TNFSF12,

TNFRSF10A

TNFRSF13B, TNFRSF13C TNFRSF1B

Interferon family

Cluster IFNA2,
IFNGR2

IFNGR2, IFNGR1

Isolated CpG IFNL4

Transforming growth factor family

Cluster TGFBR1, TGFBR2, TGFBR3 TGFB3 TGFB1,
TGFBR2, TGFBR3,

TGFB1, TGFB2AS1

Isolated CpG TGFA, TGFB2-AS1 TGFBR3L TGFA

Chemokine families

Cluster CCL5, CCL16, CCL25, CCL27,
CXCL12
CCR3, CCR5, CCR7, CCR9,CCRL2,
CXCR4

CXCL2,CXCL5 CCL24, CXCL3, CXCL12,
CCR3, CCR9

Isolated CpG CCL2, CCL8, CCL20, CCL24, CXCL11
CXCR1, CXCR5

CCL23, CCL25, CCL28, CXCL1, CXCL3, CXCL11,
CXCL14, CXCL12, CXCL16, CCR3, CCR6, CCR9,
CCR10, CCRL2, CXCR1, CXCR2, CXCR4

CCL3, CXCL1, CXCL16,
CCR7, CXCR1, CXCR4
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DMRcate settings, allowing for small size sample by using
maximum Δβ values. The package allowed for a list of
genes to be drawn (FDR at ≤ 0.10), including 105 and 98
genes, hypo and hypermethylated respectively (LIST-1,
supplementary material). The most immediately recognis-
able genes were TNF/TNFRs, some IFN signalling-related
genes, HLA-related genes, STAT5, some integrin.
Alternatively, the top ± 2.5% of the Δβ value distribution

represents ~20.000 CpG (Supplementary Figure S5A, on
each side of the distribution) of which ~10% were signifi-
cantly DM (p ≤ 0.001, 1297 hypomethylated and 336 hyper-
methylated). We annotated these for gene symbols (some
had more than 1 DM CpG/gene), which resulted in LIST-2
comprising 1217 genes (952 hypo and 265 hypermethy-
lated, including 26 microRNA). This LIST-2 showed an
overlap of 122 genes with LIST-1 (supplementary Figure
S6). A more stringent list for the most highly DM genes
was further drawn, by using a cut-off for maximum Δβ
values set at 0.10 (LIST-3), including 355 genes (262 hypo
and 93 hypermethylated). This comprised again TNF/TNF-
R, IFN signalling-related genes, HLA-related genes, STAT5,
integrin and, additionally, some cytokines/chemokines/re-
ceptors. LIST-1 and LIST-3 had 78 genes in common (sup-
plementary Figure S6). For illustration, the volcano plot
(-log p value vs Δβ values) for all CpG and the DM-CpG
using a Δβ values cut-off set at 0.05 (LIST-2) and at 0.10
(LIST-3) can be found in supplementary Figure S5C.

Bisulfite sequencing of the TNF gene promoter in CD4+ T-
cells
Some of the genes highlighted above (notably TNF [15])
were shown to be DM in RA (early or established) using
bisulfite sequencing [13] and pyrosequencing [16], al-
though not in early, drug-naïve disease. These included
notably IL6, IL6R [13, 17, 18]. We selected the TNF gene
for further validation based on its known relationship with
RA pathogenesis. In naïve cells, the region between − 850/
+ 2000 bp from the transcriptional start of the TNF gene
showed partial demethylation (Fig. 2a) with an average β
value of 50% methylation). In RA naïve CD4+ T-cells, DM
was observed with consistent hypomethylation of the
whole region with an average of − 7.1% difference in β
values (range − 2.3% to − 20.8%). In contrast, this region is
almost fully demethylated (average 22%) in memory cells
(Fig. 2b), while in the monocyte, the region was also fully
demethylated (average 8%) but on a much shortened scale
between − 175/+ 343 bp while the rest of the region was
highly methylated.
A 273 bp regions encompassing 8 CpGs (including 3

CpGs from the array) was sequenced from total CD4+

T-cell DNA following cell sorting using magnetic beads
(n = 16, average 97.5% purity). In HC 50%/50% methyl-
ated/demethylated DNA was observed (Fig. 2c, n = 7),
suggesting 2 subpopulations of CD4+ T-cells, one with

methylated and one with unmethylated DNA. In RA
(n = 9), 90% of unmethylated DNA was observed at all
CpGs, showing that most CD4+ T-cells have altered
their TNF gene, early in the RA disease process. In this
region of the promoter, memory T-cells show highly
demethylated CpGs with no significant difference be-
tween HC and RA but contributing to the intermediate
levels of total demethylation observed (50%) when com-
bined with naïve cells. In RA, our data therefore confirm
that a large proportion of naïve T-cells have hypomethy-
lated the TNF gene-promoter compared to HC, totalling
90% of demethylated DNA in that region.

Differential gene expression compared to differential
gene methylation in CD4+ T-cells
We selected two gene expression datasets on CD4+ T-cell
from early drug-naïve RA patient and HC [19, 20] (no
dataset available for naïve CD4+ T-cells). After normalisa-
tion and aggregation of the 2 datasets (supplement Figure
S7A), we obtained a list of differentially expressed genes
(DEG; with adjusted p value ≤ 0.05, fold change ≥ 1.5, FDR
≤ 0.05) between HC and RA. These genes included JAK1,
TNF-family, ICOS, CD69, several MAP-kinases and their
regulators, TGF-beta1, c-FOS and JUN, HLA-related mol-
ecules, several IFN signalling genes (IRFs, IFITMs), some
TLRs, cytokines/chemokines, their receptors and PADI4.
From the lists of DM genes (LIST-3), 70 gene symbols

could be matched with DEGs (after removing microRNA
and ambiguous symbols, supplement Figure S7B). Taking
the top genes based on fold differences in gene expression
between RA and HC, the DM/DEG genes associated with
known RA pathological pathways pointed again to JAK1,
STATs, TNF-family, IFN signalling genes.

In silico functional interactions between products of DM
genes in naïve CD4+ T-cells
We next explored whether DM genes would point to
specific pathways and/or functions in naïve CD4+ T-cells
that could be further associated with pathogenesis. We
selected the STRING database [21] for known and pre-
dicted physical interactions and/or functional associa-
tions between gene products (i.e. proteins) from
knowledge databases (including experimental data, com-
putational prediction methods and public text collec-
tions using a number of functional classification systems
such as GO, Pfam and KEGG). We used the 70% confi-
dence in interactions setting but rejected co-expression
therefore allowing mainly for functional interactions.
We generated a network based on LIST-1. This pointed

to an initial system of nodes based on TNF/TNF-R1, IFN-
signalling (IFITM1, IRF4), STAT5, integrins (ITGB2,
ITGAL), HLAs and HDAC; however, 123 of the 203 sym-
bols submitted remained outside of the network.
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LIST-2 was too large to fit into the STRING model.
Using LIST-3 (excluding microRNA), the same system
of nodes was generated however, further enforced by
several novel association/interaction becoming visible:
the TNF/TNF-R1 node included 3 more TNF-super
family genes, creating further associations; the IFN sig-
nalling node was enriched with 4 more genes linked to
several others; the STAT5 node was linked to IL2/IL2R
and IL10R. Additional small networks were created re-
lated to ubiquitination and DNA methylation and a
SMAD/TGF association appeared.
The software suggested manual addition of several

genes to strengthen certain nodes: some of these genes
were present on LIST-1/2, some were reported on the
cytokine/receptor (Table 2). We therefore manually in-
terrogated methylation data for all suggested genes.
LIST-2 genes were accepted (for Δβ values ≥ 0.05, FDR
≤ 0.10, p ≤ 0.001). We included or rejected other genes
based on whether they had (i) a Δβ value of ≥ 0.05 but a
p ≤ 0.005 (mainly from Table 2) or (ii) whether they were
central protein in a node bringing together more inter-
action with DM genes present on LIST-1 or 3 (3 genes,
displayed as grey bubbles on the model). Overall, the
added genes included cytokines/chemokines and their
receptors, STATs molecules and a few others (final gene
list in supplementary files: STRING LIST-4).
Our final potential interaction model (Fig. 3) displays 3

main JAK1/STATs nodes, an inflammatory node associating
IL1R/IL6-IL6R/JAK1/STAT3 signalling (green), a second
node for JAK1/STAT2 linked to interferon signalling-related
genes (orange), and a third centred on IL2R/IL15R/JAK1/
STAT5 (dark blue). Many other associations were suggested,
in relation with IL6, including TNF family (purple), the
IL10R and DNA methylation-related genes and targets. An
IL17/IL25 loop (duck green) was more directly related to
JAK1 signalling, and last DNA modification enzymes them-
selves (HDAC and other in yellow). Other additions (not
displayed on Fig. 3 to simplify the overall network) impli-
cated a further node for IL18/JAK1/STAT4, added more
members of the TNF superfamily, linked IL4R and IL13 to
STAT5 and created a link between IL1 and IL36.
A similar analysis was performed on memory and

monocyte. IL6 also appears central to the memory T-cell
networks via a molecule called EP300 (E1A-associated
protein p300, a histone acetyltransferase) associated with
IL6-signalling [22] (Supplementary Figure S8). Although
the IL6R/IL6 genes were not directly DM in monocytes
(neither was TNF), again EP300 appears central. We
subsequently analysed the IL6 and TNF signalling cas-
cades in more detail (Supplementary Figure S9 A, B).
Many components directly involved in the TNF signal-
ling cascade showed DM CpGs, however not prioritized
in the STRING network figure (Fig. 3), while similar
and/or additional genes showed the same for the IL6

pathway. We also aligned DEG onto these two signalling
cascades, which highlighted JAK1 and STAT3/4 and
many more genes, with concomitant DM at DNA level
(p ≤ 0.01, Figure S9 C, D).

Characterisation of a subpopulation of cells based on DM
of cell surface marker
Considering that methylation is a binary event at each
CpG position, the differences in β values observed on
the array suggests the emergence of a subpopulation of
cells that have altered their methylation status at such
positions. The amplitude of these differences (i.e. Δβ
values) reflects the proportion of cells that have achieved
that change in HC or RA. In order to identify such sub-
population, we hypothesised that these changes could
affect cell surface molecules allowing for a subset of
naïve CD4+ T-cells to be defined.
We analysed the total CD4+ T-cell gene expression

dataset for HC (n = 16) for expressed gene with an asso-
ciated protein localisation in the cell membrane. Using
the top 25% quartile of the mRNA levels distribution, >
1000 genes were selected as highly expressed. Using the
GO-term database, 302 of these were annotated as cell
surface proteins. We then cross this list with LIST-2 and
Table 2 and obtained 32 potential DM cell surface
markers. These included CD4 itself, markers associated
with the naïve/memory phenotype, cytokine receptors,
chemokine receptor, TLRs and others, that could help
identify subpopulation(s) of naïve cells.
Blood samples from 10 HC and 35 RA patients were

collected. We first used CD45RA+ and CD45RO− to
identify naïve (Fig. 4a, red square) and memory (green
circles) cells. Both populations were homogenous in HC
and in RA (representative individuals). The expression of
5 surface markers was then analysed (Fig. 4b). CD4,
IL6R, IL2R, CD62L and CXCR4 were tested (IL7R was
used as no-DM control, data not shown) initially on
CD45RA+ naïve cells, measuring mean fluorescence in-
tensity (MFI) of expression. CD4, CXCR4 and IL2R ex-
pression were significantly higher in RA (p < 0.0001) but
not IL6R, which expression was very variable compare
to HC. The expression of CD62L was either positive
(Fig. 4c red circle, best example RA patient displayed on
figure) or negative (blue square). The percentage of
CD62L− naïve CD4+ T-cells was significantly higher in
RA (median 1.3%, p < 0.0001) compared to HC (median
0.15%). This was particularly clear in 3 patients with
high CRP (55, 75 and 178mg/L) where the CD62L− cells
represented 11, 13 and 18% of the total CD4+ T-cells, re-
spectively. This subpopulation of CD62L− naïve cells
(Fig. 4d, blue line) was then analysed in these 3 RA pa-
tients, compared to CD62L+ naive cells (red line) and
memory cells (green line) for 3 markers. The expression
of CD4 showed no significant difference (n = 3) between
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the 2 subpopulations of naïve cells or in memory cells,
although the MFI was lower for CD62L− naïve cells
compared to naïve cells and memory cells (see details on
Fig. 4d legend). The expression of the IL-6R was clearly
reduced on CD62L− compared to CD62L+ naive cells as
well as on memory cells. The IL2R expression was nega-
tive on CD62L+ naïve cells but presented 2 populations
(− and +) for CD62L− naïve cells. Memory cells were
mainly positive.

Discussion
Our results demonstrate highly cell-specific changes in
DNA methylation in early RA in circulating leukocytes.
These differences are both qualitative (for example the ex-
cess of hypermethylation in memory T-cells) and quantita-
tive (more marked in naïve, then memory then monocytes).
The lack of gene commonly affected in the 3 subsets con-
firm that changes are cell specific [6]. These data were vali-
dated in silico, using publicly available data matching DM-

Fig. 3 STRING analysis. The Final STRING model includes genes symbol/proteins from the LIST-3 and some manually added genes as
suggested by the program when present on Table 2 and LIST-1/2 and, if generating many associations in the network (3 grey gene
bubbles). The network analysis displays 3 main JAK1/STATs nodes, an inflammatory node associating IL1R/IL6-IL6R/JAK1/STAT3 signalling
(green), a second node for JAK1/STAT2 linked to interferon signalling related genes (orange), and a third centred on IL2R/IL15R/JAK1/
STAT5 (dark blue). Many other associations were suggested in relation with IL6, including TNF family (purple), the IL10R and DNA-
methylation related genes and targets (HDAC and other in yellow). An IL17/IL25 loop (duck green) was more directly related to JAK1
signalling. Additional genes (forming a STAT4 node) were omitted for simplicity

Pitaksalee et al. Clinical Epigenetics           (2020) 12:54 Page 9 of 16



gene and DEG and we also confirmed directly the DM of
the TNF gene promoter and the higher expression of 3
DM-cytokine levels. Focussing on naïve CD4+ T-cells, a
functional network analysis suggested a central role of IL1-

IL6/JAK1/STAT3 with links to TNF and IL17. A second
set of genes suggests a role for IL2-IL15/JAK1/STAT5 and
finally a JAK1/STAT2-interferon-signalling gene set node.
Finally, we confirmed differential expression of CD4,

Fig. 4 Flow cytometry validation of differential expression. Flow cytometry was performed using standard cell surface staining protocol using fresh
EDTA blood, following red cell lysis. a CD3+CD4+ T-cells (top left panels orange gate) were first gated. Naïve cells were then gated as CD45RA+/
CD45RO- (red square) and memory cells as CD45RA−/CD45RO+ (green circle) in a representative HC and RA patient. b The expression of CD4, IL6R,
IL2R and CXCR4, were measured using Mean fluorescence intensity (MFI). Results are shown as box plot for 11 HC and 35 RA patients. CD62L was
either positive or negative and percentage of naïve CL62L− cells was recorded and displayed. Significant differences (Mann–Whitney U-test, p < 0.05)
are highlighted by stars. c CD45RB and CD62L were further used to refine the phenotype of naïve CD4+ T-cells. CD45RB expression was consistently
high in naïve cells but declined in experienced cells and was low in memory cells (green circles), with no major difference between HC and RA for this
subset. CD62L expression is positive on naïve cells (red circle, consistently in HC) but was either positive (red circle) or negative (blue square) in RA
defining an subpopulation of naïve CD62L− cells also expressing reduced levels of CD45RB (blue circle). d Differential levels of expression for CD4, IL6R
and IL2R are shown in a RA patients with a raised CD62L− naïve cells subpopulation (best representative patient displayed) for naïve (red) memory
(green) and IRC (blue) cells. Levels of CD4 were not significantly different (n = 3) but a lower MFI was observed for CD4 expression on CD62L-naïve
cells (2250) compared to CD62L+ naïve cells (2850) and memory cells (2700). The expression of the IL-6R was lower on CD62L− (MFI 7300) compared
to CD62L+ naive cells (17,600) as well as on memory cells (11,400). The IL2R expression was negative on CD62L+ naïve cells but presented 2
populations (negative < 1000 fluorescence units and + fractions > 1000) for CD62L− naïve cells. Memory cells were mainly positive (72% of cells)
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CXCR4 and CD25 on naïve CD4+ T-cells and reduced
CD4, IL6R and increased CD25 expression on a subset of
CD62− naïve CD4+ T-cells.
Our DNA methylation workflow used standard proce-

dures and an in-house analysis prioritising DM higher Δβ
values. High-throughput genomic data usually corrects for
FDR controlling the family-wise error. Correcting with a
FDR ≤ 0.05 in our dataset left very few CpGs, so we
accepted a FDR ≤ 0.010, considering our study exploratory
with some false-positive results being the risk (LIST-1).
The Δβ values relied on a t-test (p ≤ 0.001) selecting the
highest differences (LIST-3). Within the limitation of each
analysis, the overlap between lists and Table 2 generated
association of genes in several pathways which relevance to
RA is high.
The only commonly DM gene to all 3 subsets was

ABAT, 4-aminobutyrate aminotransferase enzyme, respon-
sible for the catabolism of gamma-aminobutyric acid
(GABA), an essential inhibitory neurotransmitter, reducing
neuronal excitability and directly responsible for the regu-
lation of muscle tone. T-cells express the GABA receptor
and exposure to GABA is involved in regulatory loop redu-
cing inflammation and promoting ‘regulatory’ responses
[23, 24]. As such, GABA has been implicated in AIDs
animal models including arthritis [25]. DM in ABAT may
therefore contribute to alteration of GABA’s regulatory
effect in all blood cell types, promoting inflammation and
autoimmunity.
Our data suggest that naïve T-cell in early RA are

prompted towards differentially methylating the IL17/
IL17R genes potentially towards Th17 development
(more clearly observed in memory cells). The RORC
gene itself was also MD in naïve cells (> 5% Δβ values at
2 CpG sites). It remained unclear how de novo differen-
tiation of Th17-cells is stimulated in vivo, but in vitro, it
can be induced by combinations of cytokines (IL1β,
IL21, IL23, IL6 with/without TGF-β) [26–30]. Import-
antly, IL6/IL21/IL21R and TGF-beta-1 were DM in RA
naïve cells. Th2 differentiation appears intact in RA [31];
however, Th1 polarisation is compromised by a deficit
in Tbet engagement [32, 33] (also confirmed in our data
with hypermethylation 6.85% Δβ values). Deficient Th1
polarisation in early RA could be a mechanism resulting
in Th17-cells developing preferentially.
An IFN signalling node was also highlighted. Dysregula-

tion of type-I INFs are often observed in autoimmunity
and chronic inflammatory diseases [34–37]. In a study of
at-risk individual for RA, IFN signalling genes were indica-
tive of progression to the inflammatory stage [38–40];
however, IFN signatures were no longer reported predict-
ive later in the disease course [35, 41, 42]. As supported
by our data, this suggests that IFN signalling is associated
with early pathogenesis, independently of whether this can
be exploited clinically later in the disease. Furthermore,

links between IL6 signalling/production and type-I IFN-
gene signatures (and vice versa) were also observed in
other inflammatory diseases [43, 44], supporting a possible
link in early RA development.
IL6’s importance is well recognised in RA [18, 45, 46].

Our data suggest a potentially central role for this pathway.
Several studies have also reported specific DM in the IL6
and IL6R genes in established RA patients’ PBMC, T-cells
or synovial fibroblast [13, 17, 18]. IL6 has been shown to in-
duce changes in DNA methylation in cancer and SLE [47–
49]. Recent gene expression analysis in CD4+ T-cells also
suggested a role for IL6 signalling in early RA [19]. IL6
levels in serum are also well known for being increased in
early RA (shown here and by others [10–12]. The effects of
IL6 on CD4+ T-cells have been explored extensively
(reviewed in [50]. Specifically in naïve CD4+ T-cells, IL6 in-
duces survival [51], proliferation [52] while memory CD4+

T-cells respond by expanding [53]. IL-6 also has a role in
the balancing CD4+ T-cell differentiation between Treg/
Th17 cells [54–56]. Importantly, T-cell migration into IL6-
producing tissues is prevented by the expression of
selectin-L (SELL/CD62L) [57], which is directly downregu-
lated by IL6 [58], while favoured by upregulation of
CXCR4/CXCR5/CCR3, which we previously showed to be
increased on CD62-naïve CD4+ T-cells in RA [59]. The
IL6R flow cytometry strategy that we used may have been
impacted by the biology of the IL6R itself. Binding of IL6 to
IL6R triggers a complex formation with gp130, leading to
activation JAK/STAT signalling. However, it is also accom-
panied by the internalization of the IL-6/IL-6R/gp130-com-
plex [60, 61]. Therefore, levels of the IL6R at the cell
surface may reflect a balanced between recently and past
IL6-activated cells, as well as resting cells. As such, it may
not be surprising that we observed such a large distribution
of results on total naïve cells. On the other hand, we
showed clear differences in levels of expression on the sub-
sets of CD62L− naïve cells. From our analysis of DM sur-
face molecules aiming at identifying the subpopulation of
cells that underwent DM, we confirmed that the CD62L−

subpopulation of naive cells also expressed different cell
surface levels of DM genes (CD4, CD25). The SELL gene
itself was too modestly DM to be considered on LIST-2,
but it was directly functionally linked to the IL6/STAT3
node [62]. Furthermore, we previously reported on a simi-
lar CD62L− subset differentiated from naive CD4+ T-cell
[63] which were hypothesised to results from exposure to
IL6 (amplified by IL2/TNF) [58], with clinical significance
in relation to the progression of RA from preclinical and
early inflammatory stages [59, 64, 65].
Follicular T-cell (TFh) were also described recently [66].

These are also indirectly induced by IL6, via IL21. These
TFh cells display CXCR5+/PD1high phenotype [67, 68].
They have recently been observed in RA [69]. Both these
markers were also modestly DM, and we previously
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reported high CXCR5 expression specifically on CD62L−

naïve cells in RA [59]. These data support the potential of
IL6/IL21 in generating CXCR5+ cells that may correspond
to (i) CD62L− naïve cells, and/or (ii) TFh also considering
the IL21 ELISA results.
We therefore built an updated version of the model of

T-cell differentiation proposed in 2002 (Fig. 5) in which
we showed that differentiation was perturbed in early
RA, possibly as a result of IL-6 activation of naïve T-
cells [63], also observed by others [58, 70] and supported
further [71]. We identified a subset of CD45RA+ cells
which had lost CD62L expression (Fig. 5, grey box), in
direct relationship with levels of inflammation [63]. This
subset remains naïve with respect to antigen stimulation
but showed hyper-responsiveness to stimulation (*) [63]
and expression of chemokine receptors for trafficking to
disease sites ($), notably CXCR4/CXCR5/CCR3 [59].
The data presented here allows us to refine our original
model, adding a possible mechanism for the IL-6 medi-
ated effects via alterations in DNA methylation (as

reported in other conditions) [47, 58, 59, 63]. DM in
genes may allow several pathways to become more ac-
cessible/primed (polarisation of Th17 cells), and modu-
late other signalling pathways (TNF, TGF, IL2/15/21).
The effects of these changes combined with functional
alteration in naïve CD62L− T-cells may then allow these
to migrate to the joints and contribute to the develop-
ment of chronicity via the acquisition of resistance to
apoptosis as previously suggested [72, 73] and the local
maturation of Th17 cells.

Conclusion
Altogether, our data point to a role for IL6 signalling in
early RA pathogenesis, with a central role in diversifica-
tion towards other pathways (notably TNF, IFN-
signalling, Th17 differentiation) very early in the disease
course, which may already contribute to patient hetero-
geneity at this stage. Biological therapies approved for
RA notably target TNF-α, IL6 and more recently JAKs.
Our data showing a central role for JAK1/STAT3/IL6

Fig. 5 Hypothetical model of how CD4+ T-cell may contribute to the development of chronicity
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also suggest that it may be relevant to use anti-IL6 and
JAK-inhibitors as early as possible in the course of RA,
maybe at a stage when it may still be possible to prevent
the acquisition of further epigenetic changes.

Material and methods
Patients and ethics
Blood samples were obtained from patients recruited
from an Early Inflammatory Arthritis clinic (Ethically ap-
proved REC: 09/H1307/98) including HCs. For the DNA
methylation array, Patients were selected on the basis of
fulfilling EULAR-2010 classification criteria, with < 6-
month symptoms, naïve for anti-rheumatic drug, with
active disease and at least 2 swollen joints and a CRP >
10mg/L. For bisulfite sequencing, ELISA and flow cy-
tometry, we used consecutive drug-naive RA patients at-
tending the early arthritis clinic for the first time
(diagnosed RA at first visit). Each participant gave in-
formed written consent. Supplementary Tables S1 pro-
vide demographic and clinical details of the patients and
controls used in the different lines of work.

Experimental workflow (all details provided in
supplementary material)

� PBMC were recovered from 30 ml of EDTA blood
(using standard lymphoprep procedures) and naïve
(CD45RA+ CD45RO−) and memory (CD45RA−

CD45RO+) CD4+ T-cell and monocytes (CD14+)
were purified by cell sorting.

� Bisulfite converted DNA was hybridised to the
Illumina Human Methylation 450K Beadchips.

� A standard CpG methylation data normalisation
pipeline was applied.

� Different strategies to prioritise differentially
methylated (DM) CpGs were applied to identify DM
CpGs or DM regions and the associated genes.

� Commercial ELISAs were used to confirm the
differential expression of 3 cytokines whose genes
were DM (IL21, IL34 and RANKL).

� The TNF gene was chosen for confirmation using
bisulfite DNA sequencing.

� Publically available gene expression datasets for CD4+

T-cells from early, drug naïve RA and HC were re-
trieved to examine associated differential expression of
DM genes.

� Flow cytometry was used to assess levels of
expression of 5 DM genes for cell surface proteins
(CD4, CD25, CD62L, CXCR4, IL6R) towards
identifying subpopulation(s) of cells affected.

Methylation array
PBMC were recovered from 30mL of EDTA blood. Naïve
(CD45RA+/CD45RO−) and memory (CD45RA−/CD45RO+)

CD4+ T-cell and monocytes (CD14+) were purified by cell
sorting following antibody staining using standards proto-
cols: anti-CD4 (Clone RPA-T4, BD), anti-CD3 (Clone
RPA-T8, BD), CD45RA (Clone MEM55, Serotec), CD45RO
(Clone UCHL1, Serotec), anti-CD14 (Clone M5E2, BD).
DNA was extracted from purified cell subsets using the Nu-
cleon extraction kit according to manufacturers’ instruc-
tions. The concentration of genomic DNA was assessed by
NanoDrop. Genomic DNA (650 ng) was bisulfite converted
using the Zymo EZ DNA Methylation™ Kit. Bisulfite con-
verted DNA was amplified using the Illumina Infinium
Methylation Assay and hybridised to Illumina Human
Methylation 450K Beadchips before scanning on the Illu-
mina iScan microarray scanner [74]. All procedures were
performed by Hologic Ltd. (Manchester, UK).

DNA methylation data analysis
A standard data analysis pipeline utilised a combination of
R [75], bioconductor and custom scripts was designed
(supplementary Figure S1). A total of 48 genome-wide
DNA methylation profiles (from 3 cells subset of 10 HC
and 6 early RA patient) were retrieved as idat files. Data
quality control analysis and preprocessing were performed
with the R package Minfi [76]. Plots of β values for density
including all 48 samples, bean plots for each individual
samples and strip plots for array control probes were gen-
erated using the same R package. Of the 48 samples, 2
failed quality control due to poor DNA quality or concen-
tration (details in supplementary Figure S2). CpG probes
which were identified to be common SNPs and cross-
reactive probes that have been shown to hybridise to mul-
tiple locations in the genomes were filtered out [77].
Methylation levels for each CpG site were presented as β
value or M value according to the analysis to be per-
formed. β values are the ratio of the fluorescence intensity
between the methylated and unmethylated probes, ran-
ging from 0 (all copies of the CpG in the sample are
unmethylated) to 1 (all copies of the CpG in the sample
are fully methylated). M values are log-transformed β
values preferably used for statistical testing [78].
Multidimensional scaling (MDS) for (i) each cell type,

(ii) genders, and (iii) RA and HC was performed to
examine the source of variation in the dataset and were
plotted using the MDS plot function in the minfi pack-
age in R [76]. Two-sided t-tests (on M value) were per-
formed on every CpG using the function rowttest in the
genefilter package [79] for significance of the difference
in methylation between HC and RA. The Log(p value)
was calculated and data were presented using Manhattan
plots generated using the qqman package [80]. Heat-
maps was create using the heatmap2 function of the
gplot package [81]. To identify clusters of DM CpG, a
custom R scripts to score each individual CpG and pri-
oritise them was developed (details in the results section,
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full code available on request). Annotation related to
each CpG (location in islands/open sea, associated gene
symbols) were retrieved using getAnnotation in the
minfi package [76] and the getNearestTSS function in
FDb.InfiniumMethylation.hg19 package [82].

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s13148-020-00837-1.

Additional file 1: Supplement Data 1-3: Full list of gene associated
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