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Abstract

Background: Human 15q11–13 is responsible for Prader-Willi syndrome (PWS) and Angelman syndrome (AS) and
includes several imprinted genes together with bipartite elements named AS-IC (imprinting center) and PWS-IC.
These concertedly confer allele specificity on 15q11–13. Here, we report DNA methylation status of 15q11–13 and
other autosomal imprinted differentially methylated regions (iDMRs) in cases with various deletions within the PWS/
AS-responsible region.

Methods: We performed array-based methylation analysis and examined the methylation status of CpG sites in
15q11–13 and in 71 iDMRs in six cases with various microdeletions, eight cases with conventional deletions within
15q11–13, and healthy controls.

Results: We detected 89 CpGs in 15q11–13 showing significant methylation changes in our cases. Of them, 14
CpGs in the SNORD116s cluster presented slight hypomethylation in the PWS cases and hypermethylation in the AS
cases. No iDMRs at regions other than 15q11–13 showed abnormal methylation.

Conclusions: We identified CpG sites and regions in which methylation status is regulated by AS-IC and PWS-IC.
This result indicated that each IC had unique functions and coordinately regulated the DNA methylation of
respective alleles. In addition, only aberrant methylation at iDMRs in 15q11–13 leads to the development of the
phenotypes in our cases.

Keywords: 15q11–13, Prader-Willi syndrome, Angelman syndrome, Genome-wide methylation study, Deletion

Introduction
The chromosomal region 15q11–13 includes several
genes showing monoallelic expression in a parent-of-ori-
gin-specific manner [1]. This region is responsible for
Prader-Willi syndrome (PWS, OMIM #176270) and
Angelman syndrome (AS, OMIM #105830). PWS is
characterized by hypotonia during infancy, developmen-
tal delay, hyperphagia followed by morbid obesity, and

cognitive impairment [2], and AS is associated with se-
vere developmental delay, ataxia, and recurrent seizures
[3]. Approximately 70% of PWS and AS patients have
5–7Mb deletions affecting the 15q11–13 imprinted re-
gion (Fig. 1). Recently, it has been reported that deletion
involving the SNORD116 gene, which is one of the C/D
box small nucleolar RNAs (snoRNAs), causes the pheno-
types of PWS [4–8]. AS phenotypes arise from the loss
of expression or function of the UBE3A gene, which is
expressed on the maternally derived allele in mature
neurons [3].
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The imprinting control region (ICR) conferring par-
ent-of-origin identity of the genes on 15q11–13 was de-
fined according to the smallest region of overlap (SRO)
found in PWS or AS individuals with rare atypical
microdeletions [9]. The ICR on 15q11–13 consists of bi-
partite DNA elements named AS-IC (imprinting center)
and PWS-IC [10]. The PWS-IC is a 4.1-kb region, which
spans the SNURF/SNRPN promoter and exon 1, and in-
cludes an imprinted differentially methylated region
(iDMR), which is maternally methylated and paternally
unmethylated. The AS-IC is an 880-bp sequence located
~ 35 kb centromeric of the PWS-IC and does not in-
clude iDMR. It is known that PWS-IC and AS-IC

cooperate in regulating epigenetic status and allele-spe-
cific gene expression at this locus [1].
Recent advancement in methylation analysis allows

genome-wide methylation studies, and it detected novel
iDMRs located in regions near the SNURF/SNRPN gene
and several CpG sites in the SNORD116s cluster
showing a slight tendency for preferential paternal
methylation [11]. The regulatory mechanism in DNA
methylation of those imprinted regions by ICR has not
yet been elucidated precisely.
In this study, we performed an array-based DNA

methylation analysis in the cases with various deletions
involving the PWS/AS region and examined the

Fig. 1 Schematic diagram of the PWS/AS region. Horizontal gray line and dotted line indicate the range of conventional large deletion bounded
by breakpoint (BP) 1 or 2 and BP 3. snoRNA genes are shown in ovals. Not all genes of the locus are shown, and the map is not to scale

Table 1 Clinical information, deletion range, and methylation status at SNRPN-DMR in cases enrolled in this study

Cases Phenotype Sex Agea Breakpoint (approximate size) Methylation status at SNRPN-DMRd

Case 1 PWS Male 2 mo Chr15:25,150,978-25,225,535 (75 kb)b Hypermethylated

Case 2 Healthy carrier (father of case 1) Male 36 yr Hypomethylated

Case 3 PWS Female 3 yr Chr15:25,216,569-25,415,670 (200 kb)b Normal

Case 4 AS Female 3 yr Chr15:25,126,774-25,168,037 (41 kb)b Hypomethylated

Case 5 AS Male 4 yr Chr15:25,164,853-25,168,575 (3.7 kb)b Hypomethylated

Case 6 Healthy carrier (mother of case 5) Female 36 yr Normal

PWSLD PWSLD-1 PWS Male 0 mo BP2–3 (5.5 Mb)c Hypermethylated

PWSLD-2 PWS Male 2 mo BP1–3 (6 Mb)c Hypermethylated

PWSLD-3 PWS Male 3 yr BP1–3 (6 Mb)c Hypermethylated

PWSLD-4 PWS Male 8 yr BP1–3 (6 Mb)c Hypermethylated

ASLD ASLD-1 AS Female 9 yr BP2–3 (5.5 Mb)c Hypomethylated

ASLD-2 AS Female 9 yr BP2–3 (5.5 Mb)c Hypomethylated

ASLD-3 AS Male 2 yr BP1–3 (6 Mb)c Hypomethylated

ASLD-4 AS Female 1 yr BP1–3 (6 Mb)c Hypomethylated

PWS Prader-Willi syndrome, AS Angelman syndrome, DMR differentially methylated region, LD large deletion, BP breakpoint
aAge at sample collection (mo months, yr years)
bThe breakpoints were estimated according to the results of aCGH
cThe breakpoints were estimated according to the results of methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA). The locations of
BPs are shown in Additional file 2: Figure S1
dMethylation status were examined by MS-MLPA
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methylation status of CpG sites in 15q11–13 and in 71
iDMRs at regions other than the PWS/AS region to clar-
ify the regulatory mechanism for DNA methylation in
the 15q11–13 imprinted region.

Results and discussion
Six cases with atypical microdeletions in the 15q11–13
region (cases 1–6) and four with PWS and four with AS
due to conventional large deletions (LD) in 15q11–13
(PWSLD and ASLD, respectively) were enrolled in this
study (Table 1 and Additional file 1: Supplementary
document).

Deletion size and breakpoint
Custom-built array CGH revealed a copy number loss in
each case (Fig. 2a and Additional file 2: Figure S1). This
array contained approximately 38,000 probes for 15q11–
q13 encompassing the imprinted region and ~ 10,000
reference probes for other chromosomal regions
(4×180K format, Design ID 032112) (Agilent Technolo-
gies, Palo Alto, CA, USA). The detailed information of

probes contained in this custom-built array is shown in
Additional file 3: Table S1. Cases 1 and 2 had a deletion
involving both AS-IC and PWS-IC, case 3 had a deletion
involving only the SNORD116s cluster, and cases 4–6
had a deletion involving only AS-IC.

Difference in the DNA methylation status between each
case with various microdeletions and controls
We focused on the DNA methylation status at CpG sites
on autosomal chromosomes in two groups (groups 1
and 2) and extracted methylation data at 1335 probes lo-
cated in CpG sites at the 15q11–13 PWS/AS region
(group 1, Additional file 4: Table S2) and at 863 probes
in the iDMRs at regions other than the PWS/AS region
(group 2, Additional file 5: Table S3).

CpG sites in 15q11–13 (probes in group 1)
We identified 89 probes in group 1 showing significant
differences in DNA methylation in at least 1 case against
normal controls (Fig. 2b and Additional file 6: Table S4).
Most probes located in the miR4508-PWS-IC region

c

ba

Fig. 2 Genomic organization of the PWS/AS locus and alteration in DNA methylation of CpG sites in 15q11–13. a Summary of the loci and the
approximate sizes of the deleted regions in cases 1–6. b Unsupervised hierarchical clustering and heat map of the 450k methylation data of 89
probes with |Δβ| > 0.2 and FDR p values < 0.01 between at least 1 case and controls are shown. The cases with AS phenotype are shown in red
boxes, those with PWS phenotype in blue boxes, and the carriers and normal controls in green boxes. Blue and yellow colors indicate 0 and 1
methylation, respectively. The y-axis represents the names of iDMRs which had been known to be differentially methylated previously. Not all names of
the iDMRs are shown. c The differences in β values (Δβ) of probes located in the SNORD116s and 115s clusters between each case and controls are
shown using IGV (Integrated Genome Viewer, http://software.broadinstitute.org/software/igv/). The probes showing “hypermethylated” in cases are
represented by yellow vertical bars, and those showing “hypomethylated” by blue ones. ICR, imprinting control region; IC, imprinting center; kb, kilobase
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showed hypermethylation in case 1 and PWSLD and hy-
pomethylation in cases 4 and 5 and ASLD, respectively.
Case 3 showed normal methylation status in these sites.
Hierarchical clustering of the methylation status of these
89 CpGs showed that all cases other than case 3 with
the SNORD116s deletion were classified into subgroups
according to their phenotypes (Fig. 2b). Case 3 was clus-
tered closer to the normal controls.
In case 2, who was the father of case 1, probes in his

deleted region in PWS-IC showed hypomethylation;
however, the remaining probes showed normal methyla-
tion status. In case 6, who was the mother of case 5, no
CpG with aberrant methylation was found.
In addition, 14 probes in the SNORD116s cluster pre-

sented slight hypomethylation in the cases with PWS
phenotype (cases 1and 3 and PWSLD) and hypermethyla-
tion in the cases with AS phenotype (cases 4 and 5 and
ASLD) (Fig. 2c).

iDMRs at regions other than the PWS/AS region (probes
in group 2)
Additional file 7: Table S5 shows the results of the
methylation analyses for 71 iDMRs including 828 probes
in group 2 between each of cases 1–6 and normal con-
trols. We detected no iDMR with an abnormal methyla-
tion pattern.
In this study, we examined the methylation status of

CpG sites in 15q11–13 and in 71 iDMRs at regions
other than the PWS/AS region using methylation array
for the cases with various deletions involving the PWS/
AS region. This study provides several notable findings.
First, we clarified CpG sites and regions in which the
methylation status was regulated by AS-IC and PWS-IC
in 15q11–13. Most abnormally methylated CpG sites in
cases with deletions were located within or very close to
the regions reported in previous studies [11–13]. Based
on the results from our patients and a previously re-
ported PWS patient with a microdeletion involving only
PWS-IC, we present a hypothetical model for the regula-
tion of DNA methylation at the 15q11–13 imprinted re-
gion in Fig. 3. We suggest regulatory mechanisms of this
region as follows: (1) maternal pattern (methylated) at
CpGs in the upstream region of the ICR was the default
state (see normal state and case 2), (2) AS-IC was re-
quired for the methylation of PWS-IC on the maternally
derived allele (compare case 6 with cases 4 and 5), (3)
the unmethylated PWS-IC led to the unmethylated sta-
tus of CpGs in the upstream of the ICR even on the ma-
ternally derived allele (see cases 4 and 5), and (4) the
methylation patterns of several CpGs in the SNORD116s
clusters were also regulated by both AS-IC and PWS-IC.
Several CpGs in the SNORD116s cluster were preferen-
tially methylated on the paternally inherited allele
(Fig. 2c) [11]. The methylation pattern in the

SNORD116s cluster was different between case 1 and
the PWS case lacking only PWS-IC [14]. These results
indicate that both AS-IC and unmethylated PWS-IC on
the paternally derived allele function independently as
regulators of the methylation status of CpGs in the
SNORD116s cluster. Furthermore, several CpGs in the
SNORD116s cluster were methylated in cases 4 and 5 on
the maternally derived allele. This result indicates that
unmethylated PWS-IC was needed for the methylation
of the CpGs in the SNORD116s cluster independently
on the parental origin. In the cases with large deletions
involving the entire region of 15q11–13 (Fig. 3c), abnor-
mal methylation patterns were simply due to the loss of
the paternally or maternally derived allele in PWS or AS
patients, respectively.
Second, this study demonstrated that PWS/AS case

with various deletions had normal methylation status in
known iDMRs at regions other than 15q11–13. This re-
sult indicates that the development of phenotypes in our
cases was not caused by aberrant methylation changes at
iDMRs at regions other than 15q11–13. In addition, our
study and previous studies using other methylation ana-
lyses showed a normal methylation pattern at PWS-IC
in patients with deletions only including the SNORD116s
cluster [4–7]. It remains to be clarified how the deletion
of SNORD116s contributes to the development of PWS
phenotypes. Previous studies reported several findings re-
garding long non-coding RNAs (sno-lncRNAs) including
SNORD116s: (1) some functional units, 116 host genes
(116HG) and snoRNA-related sno-lncRNAs, were proc-
essed from the SNORD116s cluster in human tissues or
cells [15, 16], (2) Fox-family splicing regulators are bound
to sno-lncRNAs and altered splicing patterns of genes are
related to neuronal development in human ES cells [17],
and (3) there was a Snord116-dependent diurnal rhythmic
DNA methylation in the mouse cortex [18]. Thus, the loss
of the expression of SNORD116s may lead to
PWS-relevant phenotypes, such as abnormalities of en-
ergy metabolism and diurnal rhythm [17, 18].
It remains to be elucidated how AS-IC and PWS-IC

establish the allele-specific methylation patterns in
neighboring CpGs. Recently, it was reported that tran-
scripts from an oocyte-specific promoter in AS-IC are
needed for the acquisition of maternal DNA methylation
patterns in PWS-IC in human oocytes [19]. However,
there has apparently been no study examining the direct
association between AS-IC and the SNORD116s cluster,
although unmethylated PWS-IC on the paternal allele
physically interacts with paternally expressed genes in
the upstream region of ICR [14]. In addition, how
unmethylated PWS-IC establishes paternal methylation
patterns at CpGs in the PWS/AS region in cis and how
PWS-IC interacts with CpG sites at the SNORD116s
cluster on paternally derived alleles remain unknown.
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In summary, we performed an array-based methyla-
tion study in cases with various-sized microdeletions
in the PWS/AS region on maternally or paternally de-
rived chromosome 15. We identified CpG sites and
regions in which the DNA methylation status is regu-
lated by ICR. Our results enabled us to speculate on
the regulatory mechanism for the establishment of

the methylation status of local CpG sites or regions
in 15q11–13. Moreover, we demonstrated that the de-
velopment of phenotypes in the PWS/AS patients
with deletions encompassing ICR and/or the
SNORD116s cluster was not mediated by aberrant
methylation changes at iDMRs at regions other than
the PWS/AS regions. Further investigation will be
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Fig. 3 Hypothetical model for the regulation of the DNA methylation at the PWS/AS region by AS-IC and PWS-IC. Circles denote CpGs showing
differential methylation patterns in a parent-of-origin-specific manner. Solid circles represent methylated CpGs, and the open ones unmethylated
CpGs. P denotes paternally inherited allele, and M maternally derived allele. Deleted regions are shown by gray boxes in each case. a Mechanism
regulating the DNA methylation at the PWS/AS region in normal individuals. On the P allele, CpGs in PWS-IC and the promoter of paternally expressed
genes in the 5′ upstream region of ICR are unmethylated, and CpGs located sparsely in the SNORD116s cluster are methylated. The unmethylated
PWS-IC on the P allele is thought to lead to CpGs with a paternal methylation pattern at CpGs in both the upstream region (unmethylated, shown by
white arrows) and the SNORD116s cluster (methylated, shown by black arrows). AS-IC on the P allele methylated CpGs in the SNORD116s cluster. On
the M allele, PWS-IC and CpGs in iDMRs of upstream imprinted genes are methylated, and CpGs in the SNORD116s cluster are unmethylated. AS-IC on
the M allele methylated PWS-IC. Maternal methylation pattern (methylated in the upstream region and unmethylated in the SNORD116s cluster) is the
default state. b Regulation of the DNA methylation in cases with various microdeletions involving AS-IC, PWS-IC, or SNORD116s cluster. The cases with
deletions in the paternally inherited allele are shown in the upper part and those in the maternally derived allele in the lower part. In the second left
case with a deletion involving only PWS-IC in the paternally inherited allele, the methylation pattern in the SNORD116s cluster is depicted according to
the results of a previous report [14]. c DNA methylation pattern in cases with large deletions involving the entire PWS/AS region. AS-IC and PWS-IC
seemed to control DNA methylation status cooperatively or separately at the PWS/AS region
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necessary to fully elucidate how paternal deletion of
SNORD116s causes PWS phenotypes.

Materials and methods
Subjects
Six cases with atypical microdeletions in the 15q11–13
region (cases 1–6) and four with PWSLD and four with
ASLD due to conventional large deletions were enrolled in
this study (Figs. 1 and 2a, Table 1, Additional file 1:
Supplementary document, and Additional file 8: Figure S2).
Genomic DNAs from leukocytes in these cases and
healthy controls were utilized for this study. Methyl
ation-specific multiplex ligation-dependent probe
amplification (MS-MLPA; ME030, MRC-Holland,
Amsterdam, Netherlands) was performed in all cases to
examine the deleted region and DNA methylation sta-
tus in 15q11–13 (data not shown). All cases showed
normal karyotype. Clinical manifestations of cases are
shown in the supplementary document. Healthy chil-
dren (n = 11) and adults (n = 24) were involved as nor-
mal controls.

Copy number analysis
We designed a custom-built array-based comparative gen-
omic hybridization (aCGH) and utilized this aCGH to nar-
row down the deleted regions in cases 1–6 (4×180K
format, Design ID 032112, Agilent Technologies, Palo
Alto, CA, USA). The detailed information of probes con-
tained in this array is shown in Additional file 3: Table S1.
The procedure was as described in the manufacturer’s
instructions.

Comprehensive methylation analysis using the
HumanMethylation450 BeadChip
We performed methylation assays on cases with various
deletions together with healthy controls using the Infi-
nium HumanMethylation450 BeadChip (HM450k, Illu-
mina, Inc., San Diego, CA, USA). Detailed procedures are
shown in Additional file 1: Supplementary document.

HM450k data processing
The HM450k data were processed using the “ChAMP”
R package version 1.10.0 [20]. Detailed algorithms of
data pre-processing are available in the supplementary
document and Additional file 9: Figure S3. We extracted
the methylation data at 1335 probes located in the CpG
sites at the 15q11–13 PWS/AS region (group 1,
Additional file 4: Table S2) and at 863 probes in the
iDMRs at regions other than the PWS/AS region (group
2, Additional file 5: Table S3) [11, 12]. Of note, 161
probes in group 1 presented with allele-specific methyla-
tion status according to the parental origin [11–13].
Before making comparisons of the methylation status

between each single case with microdeletion (cases 1–6),

patients with PWSLD or with ASLD, and controls, we ex-
cluded five probes in group 1 (cg26889953, cg1789680,
cg09873524, cg26955196, and cg11826104) showing dif-
ferential methylation status between child and adult con-
trols from the group 1 list for further analysis
(Additional file 1: Supplementary document and
Additional file 9: Figure S3). There was no probe show-
ing a different methylation status between child and
adult controls in group 2.
Subsequently, we compared the methylation status be-

tween each single case (cases 1–6), patients with PWS
or with AS due to large deletions, and normal controls.
The methylation level at each probe was represented by
β values ranging from 0 (completely unmethylated) to 1
(completely methylated). The differences in DNA methy-
lation (Δβ) were calculated by the subtraction of the β
value in each case from the average β value in controls
at each probe site. We considered a probe as differen-
tially methylated when the absolute value of the differ-
ence in β value (|Δβ|) between two groups was above
0.2 and the false discovery rate (FDR) was below 1%.
Detailed methods are available in Additional file 1:
Supplementary document.
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Additional file 2: Figure S1. Combination of the results of aCGH and
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(PPTX 46 kb)
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