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Abstract

Background: Blood-based gene expression or epigenetic biomarkers of Parkinson’s disease (PD) are highly
desirable. However, accuracy and specificity need to be improved, and methods for the integration of gene
expression with epigenetic data need to be developed in order to make this feasible.

Methods: Whole blood gene expression data and DNA methylation data were downloaded from Gene Expression
Omnibus (GEO) database. A linear model was used to identify significantly differentially expressed genes (DEGs) and
differentially methylated genes (DMGs) according to specific gene regions 5′—C—phosphate—G—3′ (CpGs) or all
gene regions CpGs in PD. Gene set enrichment analysis was then applied to DEGs and DMGs. Subsequently, data
integration analysis was performed to identify robust PD-associated blood biomarkers. Finally, the random forest
algorithm and a leave-one-out cross validation method were performed to construct classifiers based on gene
expression data integrated with methylation data.

Results: Eighty-five (85) significantly hypo-methylated and upregulated genes in PD patients compared to healthy
controls were identified. The dominant hypo-methylated regions of these genes were significantly different. Some
genes had a single dominant hypo-methylated region, while others had multiple dominant hypo-methylated
regions. One gene expression classifier and two gene methylation classifiers based on all or dominant methylation-
altered region CpGs were constructed. All have a good prediction power for PD.

Conclusions: Gene expression and methylation data integration analysis identified a blood-based 53-gene
signature, which could be applied as a biomarker for PD.
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Background
Parkinson’s disease (PD) is the second most common
neurodegenerative disease, following Alzheimer’s disease.
PD mainly affects the patient’s motor system, the symp-
toms of which include tremor, rigidity, and slowness of
movement [1]. PD was first mentioned in 1817 by Doc-
tor James Parkinson; however, there still remains no cure
for PD today [2]. A wide body of literature currently
suggests that genetic or environmental factors can lead

to PD [3]. But knowledge concerning the detailed pro-
cesses governing the initiation and progression of PD is
still unknown and remains a key obstacle on the road of
PD treatment. Development of robust and accurate bio-
markers would greatly facilitate the early detection and
identification of biological features of PD. Therefore, it
is urgent to identify potential biomarkers for PD.
Currently, brain imaging of the nigrostriatal dopamine

system has been used as a biomarker for early disease
along with cerebrospinal fluid analysis of α-synuclein.
However, these methods remain costly or are invasive
[4]. Blood biomarkers are easier to obtain, much
cheaper, and less invasive [5], and some researchers have
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demonstrated that some biomarkers for PD exist in
blood [6–8].
In past years, the abnormal expression or altered epi-

genetic modification of PD-associated genes including
PARK1-15, LRRK2, SNCA, MAPT, and GBA were sug-
gested to be associated with PD pathology [9, 10]. For
example, α-synuclein, encoded by the SNCA gene, is a
major component of Lewy bodies, which are an already
known neuropathological feature of PD [11]. Overex-
pressed α-synuclein was verified in association with
pathogenesis of PD [12]. Abnormal accumulation of
α-synuclein and the formation of Lewy bodies could
trigger the body’s inflammatory response, which was
previously thought to be the result of PD but recently
has been verified as one of the causes [13]. In addition,
hypo-methylated α-synuclein DNA was observed in PD
patients [14]. Methylation of cytosines, the key epigen-
etic modification of DNA in eukaryotes, is associated
with inhibition of gene expression [15]. Therefore,
hypo-methylation might be one of the causes of
over-expression of PD-associated genes. Previous studies
mainly focused on studying methylation of the promoter
region [16–18]. However, some PD-associated 5′—C—
phosphate—G—3′ (CpGs) are located at other gene re-
gions [19, 20].
In our study, we measured the gene methylation level

according to CpGs of different regions. In addition, we
integrated DNA methylation data and gene expression
data to identify molecules and their epigenetic modifica-
tions underlying PD. We found that there are some
genes that are both abnormally expressed and have

altered methylation in PD patients compared to healthy
controls. Notably, over 90% of the genes with these over-
laps are both hypo-methylated and upregulated genes.
Then, we used the hypo-methylated and upregulated
genes to construct classifiers based on gene expression
data and methylation data, which can distinguish PD pa-
tients from healthy controls.

Methods
Our methods include the following steps: data collection,
differential expression analysis, differential methylation
analysis, dominant hypo-methylated region identification ,
enrichment analysis, and classifier construction. The
workflow is shown in Fig. 1.

Data collection
Gene expression data (GSE99039) [21] from 233 healthy
controls and 205 PD patients were downloaded from
Gene Expression Omnibus (GEO) database [22]. The
data were measured by the Affymetrix Human Genome
U133 Plus 2.0 Array, were preprocessed using RMA,
and the data were log2 transformed and quantile nor-
malized. In addition, one Alzheimer’s disease (AD) asso-
ciated blood gene expression dataset (GSE85426)
including 90 AD samples and 90 healthy controls, and
one Huntington’s disease (HD) associated blood gene ex-
pression dataset (GSE51799) [23] including 91 HD pa-
tients and 33 healthy controls were used to validate the
PD specificity of our classifier. We downloaded the ex-
pression matrix and platform information using R pack-
age “GEOquery” [24].

Fig. 1 Flowchart of the analysis process
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Genome wide DNA methylation data (GSE111629)
[19], containing data from 335 PD patients and 237
healthy controls in whole blood samples, were down-
loaded from GEO database [22]. The data were mea-
sured by the Illumina Infinium 450 k Human DNA
methylation Beadchip, and the raw methylation data
(beta values) were preprocessed using the background
normalization method from the Genome Studio soft-
ware. We downloaded the normalized methylation data
from GEO database (https://www.ncbi.nlm.nih.gov/geo/
download/?acc=GSE111629&format=file&file=G-
SE111629%5FPEGblood%5F450kMethylationDataBack-
groundNormalized%2Etxt%2Egz) and downloaded the
platform information using R package “GEOquery” [24].

Differential expression analysis
A linear model was used to assess differential expression
between PD patients and healthy controls using R pack-
age named “limma” [25]. Benjamini and Hochberg’s
method (BH) was used to control the false discovery rate
across all the genes. We identified the significantly dif-
ferentially expressed gene using threshold BH adjusted p
value < 0.05 and absolute log2FC > 0.1.

Differential methylation analysis
One of the most widely used techniques to measure
DNA methylation is the Illumina Infinium Human-
Methylation450 BeadChip array, which covers approxi-
mately 450,000 CpG sites at different gene regions
including TSS1500, TSS200, 5′UTR, 1stExon, body, and
3′UTR. TSS1500 refers to 200–1500 bases upstream of
the transcriptional start site (TSS). TSS200 means 0–200
bases upstream of TSS. 5′UTR stands for the 5′ un-
translated region, defined as the region between the TSS
and the ATG start site. 1stExon is short for the first
exon of the gene. Body is the region between ATG start
site and stop codon. 3′UTR is short for 3′untranslated
region that is between the stop codon and poly-A tail.
At each CpG site, methylation is quantified by the beta
value b =M/(M +U + a), (where M > 0, U > 0, a ≥ 0),
where M and U represent the methylated and unmethy-
lated signal intensities, respectively. With attention that
both M and U are small, a is usually set as 100 to
stabilize beta values [26]. In our study, we measured
region-specific gene methylation level using the average
beta value of the CpGs in the region. Meanwhile, we also
measured the methylation level of a specific gene using
the average of beta value of the CpGs in all gene regions.
M value is another value to measure gene methylation
level, which is a logit transformation of the beta value.
M value provides much better performance in terms of
detection rate and true positive rate for both highly
methylated and unmethylated CpG sites [27]. We con-
verted beta value to M value. Then, we used linear

model to measure the methylation difference between
PD patients and healthy controls. In addition, as beta
value has a more intuitive biological interpretation than
M value [27], we also calculated the delta of beta value
between PD patients and healthy controls for each gene.
In our study, we used both M value and beta value to
determine the differentially methylated genes or inter-
genic CpG sites. We calculated the 10 quantile of delta
beta value of all genes and all intergenic CpG sites, re-
spectively, then we used the genes and intergenic CpG
sites with delta beta value < 1/10 quantile or > 8/10
quantile and BH adjusted p value < 0.05 as the signifi-
cantly differentially methylated genes or intergenic CpG
sites between PD patients and healthy controls. The con-
version between beta value and M value was fulfilled by
R package named “lumi” [28]. Differential analysis was
implemented by R package “limma”. The Circos plot
was implemented by R package “RCircos” [29]. The
chromosome distribution plot was implemented by R
package “chromoMap” [30].

Identification of dominant hypo-methylated regions
Firstly, we found the gene region with the smallest delta
of beta value (PD compared to control). Then, if the dif-
ference between the delta of beta value of another region
and the smallest delta of beta value is smaller than
0.005, we regarded the region as one of the dominant
hypo-methylated regions.

Enrichment analysis
Gene ontology (GO) [31, 32], Kyoto Encyclopedia of
Genes and Genomes (KEGG) [33] pathway enrichment
analysis, and the illustration of enrichment results were
implemented using R package “clusterProfiler” [34]. We
performed GO term enrichment analysis under the fol-
lowing three sub-ontologies: biological process (BP), mo-
lecular function (MF), and cellular component (CC).

Classifier construction
The random forest algorithm was used to construct clas-
sifiers to distinguish PD patients from healthy controls
based on gene expression data and gene methylation
data, separately. Leave-one-out cross validation method
was used to assess the performance of the classifier. For
gene expression classifier, we used log2 transformed ex-
pression data to train the classifier. For gene methylation
classifier, we firstly used average beta value of all region
CpGs to measure gene methylation level and train the
classifier. Then, we used the average beta value of the
dominant methylation-altered region CpGs to measure
gene methylation level and train another methylation
classifier. The random forest algorithm is implemented
by R package “randomForest” [35] and “party” [36, 37].
We used the area under the curve (AUC) of receiver
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operating characteristic curve (ROC) to measure the
quality of the classifier, which is implemented by R pack-
age “verification” (https://cran.r-project.org/web/pack-
ages/verification/index.html).

Results
Identification of blood-based DEGs in PD
To identify the differentially expressed genes (DEGs) in
the blood of PD patients compared to healthy controls,
one blood microarray dataset (GSE99039) with the big-
gest sample number (203 PD patients and 233 healthy
controls) has been analyzed using the linear modeling
approach. We identified 1045 significantly DEGs (ad-
justed p value < 0.05 and log2FC > 0.1) in blood of PD
compared to healthy controls, in which 108 genes are
downregulated and 937 genes are upregulated (Add-
itional file 1: Table S1). In order to compare our differ-
ential results with the results from the original paper, we
have made a table including the 100 most differential
probes that are mapped to 87 genes from the original
paper with logFC, p value, and BH adjusted p value from
our analysis (Additional file 1: Table S2). As the table
shows, there are 38 probes that are mapped to 31 genes
that satisfy our threshold. Then, we listed the top
enriched GO terms and KEGG pathways in Table 1 and
listed all enriched terms in (Additional file 1: Table S3).
As Table 1 shows, downregulated genes are significantly

associated with a molecular function (MF)-named struc-
tural constituent of cytoskeleton, which plays important
roles in dopaminergic neurotransmission [38]. Upregu-
lated genes are associated with Phagosome and Lyso-
some pathways, which play important roles in
mis-folded protein degradation [39], which is a process
associated with PD pathogenesis [40]. In addition, these
dysfunctional genes are also associated with neutrophil
mediated immunity, granulocyte activation, and neutro-
phil activation, which belong to the innate immune sys-
tem, and the activation of innate immune system has
been verified in association with or in response to Lewy
body formation [41, 42]. These results reveal that circu-
lating DNA methylation may reflect the status of PD.

Identification of blood-based differentially methylated
intergenic CpGs in PD
Intergenic CpG sites account for about 25% of CpGs of
Illumina Infinium HumanMethylation450 BeadChip
array. The ENCODE Consortium has already identified
some enhancer-associated intergenic CpGs and distal
promotor-associated CpGs using informatics [43]. In
addition, some intergenic CpGs were experimentally de-
termined DMRs, which include some cancer-specific
and reprogramming-specific differentially methylated
genes (DMGs) [44]. These findings revealed that there
might be some differentially methylated intergenic CpGs

Table 1 List of top enriched GO terms and KEGG pathways of DEGs

Direction Terms ID Description p value p adjust

Upregulated BP GO:0036230 Granulocyte activation 2.18E−46 7.79E−43

Upregulated BP GO:0002446 Neutrophil mediated immunity 4.19E−46 7.79E−43

Upregulated BP GO:0042119 Neutrophil activation 4.90E−46 7.79E−43

Upregulated BP GO:0002283 Neutrophil activation involved in immune response 1.10E−45 1.05E−42

Upregulated CC GO:0030667 Secretory granule membrane 2.91E−23 1.57E−20

Upregulated CC GO:0042581 Specific granule 2.18E−21 5.87E−19

Upregulated CC GO:0070820 Tertiary granule 3.46E−19 6.21E−17

Upregulated CC GO:0034774 Secretory granule lumen 2.28E−15 3.06E−13

Upregulated CC GO:0060205 Cytoplasmic vesicle lumen 5.00E−15 5.09E−13

Upregulated MF GO:0003779 Actin binding 1.70E−08 1.37E−05

Upregulated MF GO:0031267 Small GTPase binding 1.58E−06 3.59E−04

Upregulated MF GO:0019902 Phosphatase binding 1.59E−06 3.59E−04

Upregulated MF GO:0051020 GTPase binding 1.78E−06 3.59E−04

Upregulated KEGG hsa04380 Osteoclast differentiation 4.91E−12 1.32E−09

Upregulated KEGG hsa04650 Natural killer cell mediated cytotoxicity 1.44E−11 1.94E−09

Upregulated KEGG hsa04142 Lysosome 6.26E−09 5.61E−07

Upregulated KEGG hsa04612 Antigen processing and presentation 8.95E−09 6.02E−07

Upregulated KEGG hsa04145 Phagosome 3.97E−08 2.14E−06

Downregulated MF GO:0005200 Structural constituent of cytoskeleton 1.42E−04 3.5E−02

BP biological process, MF molecular function, CC cell component, KEGG Kyoto Encyclopedia of Genes and Genomes
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in blood for PD. Then, we identified 4162 differentially
methylated intergenic CpGs based on linear modeling
approach and the delta of beta value (Additional file 1:
Table S4). Notably, approximately 80% of these differen-
tial intergenic CpGs are hypomethylated in PD patients
compared to healthy controls. Figure 2 shows the
chromosome distribution of these differential intergenic
CpGs. Table 2 shows the number of enhancer-associated
and non-enhancer-associated intergenic CpGs in differ-
ential intergenic CpGs and non-differential intergenic
CpGs. The chi-square test was used to test whether
there was a significant difference of enhancer-associated
CpG percentage between differential group and
non-differential group. Interestingly, we found that the
percentage of enhancer-associated CpGs in these differ-
ential intergenic CpGs is significantly higher than that in
non-differential intergenic CpGs (p value < 2.2e–16),
which implies that there might be some differentially
methylated intergenic CpGs in distal enhancers that
could regulate gene expression and play some roles in
PD initiation or progression.

Identification of blood-based DMGs in PD based on
different region CpGs
CpG sites are distributed at different regions of a specific
gene including TSS1500, TSS200, 5′UTR, 1stExon, body,

and 3′UTR. However, the functions of the methylation
of different gene regions remain unclear, so we measured
the gene methylation level based on different gene re-
gion CpGs, respectively. Then, we identified significantly
differentially methylated genes (DMGs) based on the lin-
ear modeling approach and the delta of beta value (Add-
itional file 1: Table S5). As Fig. 3a shows, there are more
than 1000 DMGs at TSS1500 or body region. However,
there are only ~ 400 DMGs at 1stExon region. As shown
in the Venn diagram Fig. 3b, over 50% of DMGs at
TSS1500, TSS200, body, and 3′UTR are region-specific
DMGs. While, DMGs at 5′UTR and 1stExon are mostly
shared with other regions. Notably, there are over 250
overlap DMGs between the two regions and 103 are
unique overlap DMGs, which is almost equal to the
number (107) of 1stExon-specific DMGs. The results re-
veal that 5′UTR and 1stExon might have a relatively
similar methylation alteration level in PD. In addition,
PRTN3 is a hypo-methylated gene shared by all gene re-
gions, which is associated with cytokine signaling in the
immune system and response to elevated platelet cyto-
solic Ca2+ pathway.
The top enriched BP terms for each region DMGs are

listed in Table 3, and all enriched BP terms are listed in
supplementary material (Additional file 1: Table S6). As
Table 3 shows, BP terms enriched by DMGs based on

Fig. 2 Chromosome distribution of differentially methylated intergenic CpGs. The plot displays the distribution of differential intergenic CpG sites
at 22 autosomes, the X chromosome, and the Y chromosome. The region in red is a hyper-methylated region, and the region in blue is a hypo-
methylated region. The value is the logFC of the M value between PD patients and healthy controls
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Table 2 Enhancer-associated CpG number table

Group Number of enhancer-associated intergenic CpGs Number of non-enhancer-associated intergenic CpGs

Differential intergenic CpG 2100 2061

Non-differential intergenic CpG 36,832 79,575

Fig. 3 Integration analysis results of DMGs based on different region CpGs and DEGs. a Barplot for different region DMGs. The y-axis is the
number of DMGs. The x-axis labels different gene regions: TSS1500, TSS200, 5′UTR, 1stExon, body, and 3′UTR. TSS1500 refers to 200–1500 bases
upstream of the transcriptional start site (TSS). TSS200 means 0–200 bases upstream of TSS. 5′UTR stands for the 5′ untranslated region located
between the TSS and the ATG start site. 1stExon is short for the first exon of the gene. Body is the region between ATG start site and stop codon.
3′UTR is short for 3′ untranslated region that is between stop codon and poly-A tail. b Venn plot for different region DMGs. The numbers on the
diagram represent the DMG numbers in a specific region or multiple regions. Each region name is labeled beside the region circle. c Barplot for
the overlap genes between DEG and different region DMGs. The y-axis is the number of overlap genes. The x-axis labels different gene regions:
TSS1500, TSS200, 5′UTR, 1stExon, body and 3′UTR. d Barplot of four groups that overlap in each region. Hyper-down represents hyper-methylated
and downregulated genes. Hypo-up represents hypo-methylated and upregulated genes. Hyper-up represents hyper-methylated and
upregulated genes. Hypo-down represents hypo-methylated and downregulated genes. The y-axis is the number of genes

Wang et al. Clinical Epigenetics           (2019) 11:24 Page 6 of 15



different gene region CpGs are hypo-methylated genes
in TSS1500, TSS200, 5′UTR, 1stExon, and body and are
associated with neutrophil mediated immunity, granulo-
cyte activation, neutrophil activation, etc., which play
important roles in the formation of Lewy body [41, 42].
Notably, hyper-methylated genes in TSS1500, 5′UTR,
1stExon, and body are all associated with T cell activation.

Sulzer and coworkers have established that T cells from
patients with PD can recognize α-synuclein peptides [45].
Although the DMGs based on different gene region CpGs

are quite different, there are some overlap genes between
each region DMGs and DEGs as shown in Fig. 3c, revealing
that different DEGs have different methylation-altered
regions. In order to explore the relationship between

Table 3 List of top enriched GO-BP terms for each region DMGs

Direction Region ID Description p value p adjust

Hyper-methylated TSS1500 GO:0031295 T cell costimulation 1.03E−09 1.40E−06

Hyper-methylated TSS1500 GO:0031294 Lymphocyte costimulation 1.44E−09 1.40E−06

Hyper-methylated TSS1500 GO:1903037 Regulation of leukocyte cell-cell adhesion 6.11E−08 3.95E−05

Hyper-methylated 5′UTR GO:0050851 Antigen receptor-mediated signaling pathway 3.83E−08 9.36E−05

Hyper-methylated 5′UTR GO:0050852 T cell receptor signaling pathway 3.88E−07 4.74E−04

Hyper-methylated 5′UTR GO:0002768 Immune response-regulating cell surface receptor signaling pathway 9.75E−06 7.16E−03

Hyper-methylated 5′UTR GO:0042110 T cell activation 1.17E−05 7.16E−03

Hyper-methylated 1stExon GO:0050851 Antigen receptor-mediated signaling pathway 2.06E−07 3.81E−04

Hyper-methylated 1stExon GO:0050852 T cell receptor signaling pathway 4.35E−06 2.86E−03

Hyper-methylated 1stExon GO:0042110 T cell activation 4.64E−06 2.86E−03

Hyper-methylated Body GO:0042110 T cell activation 6.82E−08 1.66E−04

Hyper-methylated Body GO:0030217 T cell differentiation 3.62E−07 4.41E−04

Hyper-methylated Body GO:0030098 Lymphocyte differentiation 5.90E−07 4.79E−04

Hyper-methylated 3′UTR GO:0002791 Regulation of peptide secretion 5.12E−05 4.85E−02

Hyper-methylated 3′UTR GO:0002700 Regulation of production of molecular mediator of immune response 6.12E−05 4.85E−02

Hyper-methylated 3′UTR GO:0045429 Positive regulation of nitric oxide biosynthetic process 1.02E−04 4.85E−02

Hypo-methylated TSS1500 GO:0002283 Neutrophil activation involved in immune response 2.28E−21 3.68E−18

Hypo-methylated TSS1500 GO:0043312 Neutrophil degranulation 2.28E−21 3.68E−18

Hypo-methylated TSS1500 GO:0002446 Neutrophil mediated immunity 2.44E−21 3.68E−18

Hypo-methylated TSS1500 GO:0042119 Neutrophil activation 4.16E−21 4.70E−18

Hypo-methylated TSS1500 GO:0036230 Granulocyte activation 7.50E−21 6.78E−18

Hypo-methylated TSS200 GO:0002446 Neutrophil mediated immunity 5.50E−25 1.89E−21

Hypo-methylated TSS200 GO:0036230 Granulocyte activation 2.75E−24 4.72E−21

Hypo-methylated TSS200 GO:0002283 Neutrophil activation involved in immune response 6.79E−24 5.84E−21

Hypo-methylated 5′UTR GO:0002446 Neutrophil mediated immunity 4.53E−19 1.10E−15

Hypo-methylated 5′UTR GO:0002283 Neutrophil activation involved in immune response 8.81E−19 1.10E−15

Hypo-methylated 5′UTR GO:0043312 Neutrophil degranulation 8.81E−19 1.10E−15

Hypo-methylated 5′UTR GO:0042119 Neutrophil activation 1.33E−18 1.25E−15

Hypo-methylated 5′UTR GO:0036230 Granulocyte activation 2.01E−18 1.51E−15

Hypo-methylated 1stExon GO:0002446 Neutrophil mediated immunity 1.28E−20 3.48E−17

Hypo-methylated 1stExon GO:0002283 Neutrophil activation involved in immune response 3.38E−20 3.48E−17

Hypo-methylated 1stExon GO:0043312 Neutrophil degranulation 3.38E−20 3.48E−17

Hypo-methylated 1stExon GO:0042119 Neutrophil activation 4.97E−20 3.84E−17

Hypo-methylated 1stExon GO:0036230 Granulocyte activation 7.27E−20 4.50E−17

Hypo-methylated Body GO:0042119 Neutrophil activation 7.07E−14 1.49E−10

Hypo-methylated Body GO:0036230 Granulocyte activation 1.09E−13 1.49E−10

Hypo-methylated Body GO:0002446 Neutrophil mediated immunity 1.41E−13 1.49E−10

TSS transcription start site, TSS1500 within 1500 bps of a TSS, TSS200 within 200 bps of a TSS, UTR untranslated region, 1stExon the first exon of a gene
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methylation level and expression level of the overlap genes
in different regions, we have classified the overlap gene to
four classes: hyper-methylated and downregulated group
(hyper-down), hypo-methylated and upregulated group
(hypo-up), hyper-methylated and upregulated group
(hyper-up), and hypo-methylated and downregulated group
(hypo-down). As Fig. 3d shows, the number of hypo-up
group genes is significantly bigger than other group in each
gene region, indicating hypo-methylation might be a key al-
tered epigenetic modification in PD patients. The hypo-up
genes for each region are in supplementary materials
(Additional file 1: Table S7).

Identification of blood-based DMGs in PD based on all
region CpGs
In order to discover DMGs regardless of the methylation
region, we used all gene region-associated CpGs to
measure gene methylation level and we identified 891
significantly differentially methylated genes, which contain
125 hyper-methylated genes and 766 hypo-methylated
genes (Additional file 1: Table S8). Hyper-methylated
genes are associated with following BP terms: T cell activa-
tion, immune response-regulating cell surface receptor
signaling pathway, and regulation of lymphocyte activa-
tion; KEGG pathways: natural killer cell mediated cytotox-
icity, Th17 cell differentiation, T cell receptor signaling
pathway, etc. Hypo-methylated genes are associated with
following BP terms: neutrophil mediated immunity, gran-
ulocyte activation, neutrophil activation, etc.; CC terms:
vesicle lumen, cytoplasmic vesicle lumen, secretory gran-
ule membrane, etc.; MF terms: carbohydrate binding,
cytokine receptor binding, growth factor binding, etc.
(Fig. 4a–b and Additional file 1: Table S9). The Venn dia-
gram for DMGs from all regions and specific region is
shown in Fig. 4c. Notably, there are only 51 DMGs with-
out intersection with DMGs based on specific region
CpGs. There are 139 unique overlap DMGs between
DMGs based on all region CpGs and DMGs based on
body region CpGs. For these overlap DMGs, their domin-
ant methylation-altered region is the gene body region.
There are 143 unique overlap DMGs between DMGs
based on all region CpGs and DMGs based on TSS1500
region CpGs. As for these overlap DMGs, their dominant
methylation-altered CpGs are at TSS1500 region. Notably,
the unique overlap numbers between DMGs based on all
region CpGs and DMGs based on the other four gene re-
gion CpGs (TSS200, 5′UTR, 1stExon, 3′UTR) are less
than 20, which indicates that genes with the dominant
methylation-altered region at TSS200, 5′UTR, 1stExon
and 3′UTR are relatively less than that at TSS1500 and
gene body region. We also checked the relationship be-
tween DMGs based on all region CpGs and DEGs. As
Fig. 4d shows, 90.4% overlap genes are hypo-methylated
and upregulated genes. These upregulated genes may play

important roles in initiation or progression of PD. In order
to explore the relationship between these hypo-up genes,
we examined their genome location relationship. As Fig. 4d
shows, chromosome 1, chromosome 11, and chromosome
17 are enriched with these hypo-methylated and upregu-
lated genes. In addition, we also identified these hypo-up
gene-associated CpGs that are significantly differentially
methylated between PD patients and healthy controls
(Additional file 1: Table S10), in which cg13060970,
cg02861056, cg21495704, cg16643542, cg19081101, etc.,
have been demonstrated to be associated with PD [19].
In order to make it clear which dominant hypo-meth-

ylated region leads to the upregulation of these 85
hypo-up genes, we used the delta of beta value of each
region between PD and control to determine the dominant
hypo-methylated regions (Additional file 1: Table S11).
Moreover, we randomly took 200 PD patients and 200
healthy controls from both gene expression data and gene
methylation data. The Pearson correlation test was used to
check the correlation between gene expression and gene
methylation level of different regions. Interestingly, we
found that 74% of the correlation coefficient is negative and
52 genes with significant correlation between gene expres-
sion and methylation level of some regions. The detailed in-
formation of correlation coefficient, p value and
significantly correlated regions is shown in Table S12. In
addition, we made a heat map (Fig. 5) of which the rows
are hypo-up genes, the columns are different gene regions
and the values are delta of beta values. As the heat map
shows, different hypo-up genes have different dominant
hypo-methylated regions. For example, the dominant hypo-
methylated region for P2RY13 is 1stExon. And some genes
have multiple dominant hypo-methylation regions, such as
FCAR with two dominant hypo-methylated regions 5′UTR
and 1stExon. In addition, the heat map also shows that each
gene region can be the dominant hypo-methylated region
of specific gene. Therefore, we can use region specific, all
regions, or dominant methylation-altered region to meas-
ure gene methylation according to our research goals.

Classifier construction
Random forest algorithm and leave-one-out cross valid-
ation method were used to construct three classifiers to
distinguish PD patients from healthy controls based on
the blood gene expression data and methylation data of
the 85 hypo-up genes. Then, the average importance of
each hypo-up gene for each classifier was calculated
using the “importance” function of “RandomForest”
package, and the hypo-up genes were ranked in descend-
ing order based on their importance (Additional file 1:
Table S13). Subsequently, in order to identify the best
predictors of each classifier, we added these hypo-up
genes to each classifier one by one in order of the im-
portance rank. The prediction power of these top genes
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is shown as Fig. 6. We found that top 21, top 33, and
top 30 are the best predictors of the three classifiers, re-
spectively, which contain in total 53 hypo-up genes
(Additional file 1: Table S14). The ROC curves of the
three classifiers with best predictors are shown in
Fig. 7a–c. As Fig. 7a–c shows, the classifier based on
gene expression data has a good prediction power (AUC:

0.74, p value: 2.09e−18). Two classifiers are based on
gene methylation data, one based on all gene region CpGs,
and one based on the dominant methylation-altered regions.
The prediction powers of the two methylation classifiers are
similar (AUC, 0.685 and 0.677; p value, 2.1e−14 and
2.83e−13). Using dominant methylation-altered region
to measure gene methylation level, we can use

Fig. 4 Enrichment analysis results and characteristics of DMGs based on all region CpGs. a Hyper-methylated genes enrichment analysis dotplot.
The x-axis is the gene ratio. The y-axis is the enriched term list. The dot size represents the number of genes associated with a specific term. The
dot color represents the adjusted p value of GSEA. b Hypo-methylated genes enrichment analysis dotplot. c Venn plot for different region DMGs
and all region DMGs. The numbers on the diagram represent the DMG numbers in a specific region or multiple regions. Each region name is
labeled beside the region circle. d Hypo-up genes genome position. The inner track is a pie chart for different overlap groups. Hypo-up
represents hypo-methylated and upregulated genes. Hyper-up represents hyper-methylated and upregulated genes. Hypo-down represents
hypo-methylated and downregulated genes. The second track is the barplot for the delta of beta value of hypo-up genes. The third track is the
barplot for log2FC of hypo-up genes. The fourth track is parts of hypo-up gene names. The fifth track is the link from hypo-up gene name to
chromosome position. The outer track is each chromosome
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relatively less genes to obtain similar prediction
power. Additionally, we have constructed another
three random forest classifiers with these best predic-
tors which are composed of conditional inference
trees [46]. The ROC curves of these three classifiers are
shown in Fig. 7d–f. The gene expression classifier still has
the best prediction power (AUC, 0.723; p value, 4.89e−15).
The methylation classifier based on dominant methylation-
altered region CpGs has a relatively higher prediction power
(AUC, 0.662; p value, 2.23e−11) than that based on all
region CpGs (AUC, 0.649; p value, 5.66e−10). Then, we
checked whether adding gender information to the
classifiers will improve their prediction power. As

Fig. 7g–i shows, each classifier has a relatively higher pre-
diction power (AUC, 0.727, 0.669 and 0.664; p value, 1.98e
−15, 2.78e−12, and 1.2e−11) than the corresponding clas-
sifier without gender information (Fig. 7d–f ). In addition,
we have validated the PD specificity of our gene expres-
sion classifier by using two different protein aggregation
disease datasets: one Alzheimer’s disease (GSE85426) and
one Huntington’s disease expression data set (GSE51799).
The AUCs of ROC of the two test datasets are shown
in Fig. 7j, k (AUC, 0.489 and 0.553; p value, 0.923
and 0.171), which indicates that our expression classi-
fier has no prediction power for Alzheimer’s disease
and Huntington’s disease, but is efficient and specific

Fig. 5 Hyper-up gene delta of beta value for each region. The columns are each region and the rows represent each hypo-up gene. The values
are delta of beta value between PD patients and healthy controls at specific region for specific gene
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for Parkinson’s disease. The quality of the classifiers,
to some extent, reveals that the best predictors from
these hypo-up genes could be potential blood bio-
markers for PD.

Discussion
In our study, we identified blood-based signatures in PD,
and we found that dysregulated genes are mainly associ-
ated with the structural constituent of cytoskeleton, im-
mune system, phagosome, and lysosome pathways. The
structural constituent of cytoskeleton was proven to be as-
sociated with dopaminergic neurotransmission [38], and
activation of the innate immune system has been verified
in association with or in response to Lewy body formation
[41, 42], suggesting that signature genes can participate in
PD pathology. In addition, phagosome and lysosome path-
way play important roles in mis-folded protein degrad-
ation [39]. Decrease of dopaminergic neurotransmission,
mis-folded protein aggregation, and Lewy body formation
are the well-known pathological hallmarks of PD [40, 47].
The blood signatures identified by our methods are associ-
ated with well-known PD hallmarks, indicating that blood
biomarkers for PD is feasible.
As previous studies mainly focused on promoter re-

gion methylation [16–18] and some PD-associated CpGs
do exist at other gene regions [19, 20], we measured
gene methylation level based on different gene region
CpGs and all gene region CpGs. We used both M value
and beta value to perform the differential analysis, as the
former has better statistical power and the latter has bet-
ter biological interpretation. We found that 5′UTR and
1stExon region share many DMGs, while the other four
regions share few DMGs with other regions, revealing
that the methylation alteration between PD and control
at 5′UTR and 1stExon is much more similar than other

regions. Although most DMGs based on all region CpGs
can be identified by the specific region analysis, there are
some unique DMGs identified based on all region CpGs.
Therefore, by integration of region-specific analysis and all
region analysis, we can identify relatively comprehensive
DMGs and we can find some region-specific DMGs. More-
over, the enrichment analysis for DMGs based on different
region CpGs or all region CpGs revealed that these DMGs
are also associated with some PD hallmarks, such as innate
immunity-associated GO terms, which are associated with
the formation of Lewy body [41, 42] and T cell activation,
which suggests an inflammatory response [45]. These re-
sults were revealed using different or all regions CpGs to
measure gene methylation levels that could find some
PD-associated molecules.
We observed some overlap genes between DEGs and

DMGs, although the data are from different samples and ob-
tained with different analysis methods. Interestingly, the ma-
jority of overlap genes between DMGs and DEGs are
hypo-methylated and upregulated genes (hypo-up), which in-
dicates that hypo-methylation might be a key PD-associated
epigenetic modification and hypo-methylation of some PD-
associated genes will lead to upregulation of these genes. For
example, the hypo-methylation of SNCA promoter region,
will lead to the upregulation of SNCA [14], and then lead to
the aggregation of α-synuclein and the formation of Lewy
bodies [48]. There are some verified PD-associated genes in
the hypo-up gene list, such as ARG1, of which the upregula-
tion is one phenomenon of the alterative activation states of
microglia, and microglia-mediated neuroinflammation is a
hallmark of PD [49]. ARHGAP27 is another already estab-
lished PD gene [50]. ARHGAP27 encoded protein plays a
role in clathrin-mediated endocytosis. In addition, FCER1G,
another hypo-up gene, is upregulated in microglia in PD pa-
tients [51]. Other work previously reported that GPR97 is

Fig. 6 Scatter plots illustrating the relationship between prediction power and number of hypo-up genes in classifier. a Gene expression classifier.
x-axis represents the number of hypo-up genes in the classifier and y-axis represents the AUC value of the ROC curve for the classifier. AUC
stands for area under the curve. ROC stands for receiver operating characteristic. b Gene methylation classifier based on all region CpGs. c Gene
methylation classifier based on dominant methylation-altered regions
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upregulated in the blood of PD patients and regarded
GPR97 as a blood signature of PD [52]. IL1RN and MCTP2
are proved to be associated with PD by meta-analysis
[53, 54]. These known PD signatures, to some extent,
reveal the feasibility of our analysis. Therefore, PD
samples with both gene expression data and gene
methylation data from the same individual person are
in need. This will facilitate the process of integration
analysis and the study of the relationship between the
dysregulated genes and their associated methylation
alteration, and it will be beneficial to study the path-
ology of PD. In addition, the collection of information
concerning other risk factors (age, gender, ethnicity,
family history, etc.) for PD is also very important,
which will provide important features for the classifier
and might improve the prediction power. Moreover,
in future studies, we will add PD brain samples to
our analysis and attempt to identify PD-associated
molecules either in brain tissues or in blood.
We also wanted to determine which dominant

methylation-altered region will lead to hypo-methylation
and upregulation of these hypo-up genes. We found that
different genes have different dominant hypo-methylated
regions. So, only using one specific region CpGs to
measure the gene level might miss some PD-associated
DMGs. Therefore, we believe our analysis can identify
more PD-associated DMGs. As gene expression data
and methylation data are from different samples, the
findings from different datasets suggest a type of inde-
pendent validation.
Finally, we used the hypo-up gene as features to construct

three classifiers—one based on gene expression data, and
two based on gene methylation data (all region CpGs and
dominant methylation-altered region CpGs). The three
classifiers all have good prediction power. Using our classi-
fier to diagnose PD would only require blood samples from
patients and quantification of the gene expression or
methylation level of these best predictors, and then our
classifier will give a prediction about the probability of the
person suffering from PD. If gene expression data and
DNA methylation data are from the same samples, we
could integrate the gene expression classifier and DNA
methylation classifier to improve the prediction power of

our classifiers. Eventually, we believe that the best predic-
tors from these hypo-up genes could be the potential blood
biomarkers for PD, which might benefit the early-stage
diagnosis or the future prevention or treatment of PD.

Conclusions
Our study, for the first time, integrated gene expression and
DNA methylation data based on different gene region CpGs,
all gene region CpGs, and dominant methylation-altered re-
gion CpGs. We found hypo-methylation as a key epigenetic
modification for PD in blood samples from patients. Fur-
thermore, we identified a blood signature for PD composed
of 53 hypo-up genes.
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