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Abstract

Background: Whole-exome sequencing has revealed a rare missense variant in PLD3 gene (rs145999145) to be
associated with late onset Alzheimer’s disease (AD). Nevertheless, the association remains controversial and little is
known about the role of PLD3 in AD. Interestingly, PLD3 encodes a phospholipase that may be involved in amyloid
precursor protein (APP) processing. Our aim was to gain insight into the epigenetic mechanisms regulating PLD3
gene expression in the human hippocampus affected by AD.

Results: We assessed PLD3 mRNA expression by qPCR and protein levels by Western blot in frozen hippocampal
samples from a cohort of neuropathologically confirmed pure AD cases and controls. Next, we profiled DNA
methylation at cytosine-phosphate-guanine dinucleotide (CpG) site resolution by pyrosequencing and further
validated results by bisulfite cloning sequencing in two promoter regions of the PLD3 gene. A 1.67-fold decrease in
PLD3 mRNA levels (p value < 0.001) was observed in the hippocampus of AD cases compared to controls, and a
slight decrease was also found by Western blot at protein level. Moreover, PLD3 mRNA levels inversely correlated
with the average area of β-amyloid burden (tau-b = − 0,331; p value < 0.01) in the hippocampus. A differentially
methylated region was identified within the alternative promoter of PLD3 gene showing higher DNA methylation
levels in the AD hippocampus compared to controls (21.7 ± 4.7% vs. 18.3 ± 4.8%; p value < 0.05).

Conclusions: PLD3 gene is downregulated in the human hippocampus in AD cases compared to controls. Altered
epigenetic mechanisms, such as differential DNA methylation within an alternative promoter of PLD3 gene, may be
involved in the pathological processes of AD. Moreover, PLD3 mRNA expression inversely correlates with
hippocampal β-amyloid burden, which adds evidence to the hypothesis that PLD3 protein may contribute to AD
development by modifying APP processing.
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Background
Alzheimer’s disease (AD) is a genetically complex
process where ε4 allele of the APOE gene (APOE4) is by
far the best-established genetic susceptibility risk factor.
In addition, genome-wide association studies have re-
vealed a considerable number of small-effect common
variants in genes related to AD [1–3]. However, those

variants do not explain the full heritability of this dis-
ease. More recently, novel sequencing technologies are
enabling the identification of other rare genetic variants
that could potentially contribute to the development of
sporadic AD. Notable recent discoveries in this area in-
clude rare disease variants in TREM2, UNC5C, AKAP9,
TM2D3, ADAM10, and PLD3 genes [2, 4, 5].
PLD3 (phospholipase D family, member 3) (OMIM *

615698) gene is located at chromosome 19q13.2 and en-
codes a lysosomal protein that belongs to the phospho-
lipase D (PLD) superfamily, which catalyzes the
hydrolysis of membrane phospholipids. However, PLD3
catalytic function has not yet been demonstrated [6, 7].
PLD3 gene is highly expressed in the brain of healthy
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controls, particularly in several brain regions vulnerable
to AD pathology, such as frontal, temporal, and occipital
cortices and hippocampus, but reduced in neurons from
AD brains [3, 8]. Nevertheless, little is known on the
regulation, the function, and the involvement of PLD3 in
AD pathogenesis.
Interestingly, controversial association exists about this

gene conferring increased risk for the development of
AD. Cruchaga et al. performed whole-exome sequencing
on AD patients and identified a rare missense variant
(rs145999145) in exon 7 of the PLD3 gene which re-
sulted in a val232-to-met (V232M) substitution [8].
Their results revealed that carriers of the PLD3 coding
variant had a twofold increased risk for late onset AD.
Moreover, they showed that PLD3 influences amyloid
precursor protein (APP) processing, acting as a negative
regulator, since PLD3 overexpression in cultured neuro-
blastoma cells correlated with lower intracellular APP,
extracellular Aβ42, and Aβ40 levels and that PLD3 pro-
tein could be co-immunoprecipitated with APP. In that
regard, Satoh et al. showed an accumulation of PLD3 on
neuritic plaques in AD brains and suggested a key role
for PLD3 in the pathological processes of AD [9].
Other authors confirmed that PLD3 gene variant

V232M was associated with AD risk and significantly
lower cognitive function [10] providing a systematic
view of the involvement of PLD3 in AD at genetic,
mRNA, and protein level expression. However, add-
itional studies were not able to define an essential role
of PLD3 rare variants in AD [11], neither to support an
important contribution of PLD3 rare variants in the eti-
ology of AD, given the high variability of the frequency
of PLD3 Val232Met variant across populations [12]. In-
deed, follow-up studies have questioned the role of
PLD3 rare variants in AD, obtaining negative replication
data [13–15] and suggesting a more complex role of
PLD3 in the etiology of the disease.
Keeping in mind the results mentioned above, we

wanted to gain insight into the epigenetic mechanisms
regulating PLD3 expression in order to add evidence
to the potential contribution of PLD3 to AD. Further
knowledge on these mechanisms may provide oppor-
tunities for new AD therapeutic strategies. Here, we
profiled PLD3 gene expression and methylation in the
human hippocampus, one of the most vulnerable brain
regions to AD. To that end, we selected a cohort of
neuropathologically defined “pure” AD cases and con-
trols to measure hippocampal PLD3 expression by
quantitative PCR and Western blot. Next, we explored
the correlation of PLD3 expression with AD neuro-
pathological changes. Finally, DNA methylation levels
at two distinct promoter regions of the PLD3 gene
were assessed by pyrosequencing and bisulfite cloning
sequencing.

Methods
Human hippocampal samples and neuropathological
examination
Brain hippocampal samples from 30 AD patients and 12
controls were provided by Navarrabiomed Brain Bank.
After death, half brain specimens from donors were
cryopreserved at − 80 °C. Neuropathological examination
was completed following the usual recommendations [16]
and according to the updated National Institute on
Aging-Alzheimer’s Association guidelines [17]. Assessment
of β-amyloid deposition was carried out by immunohisto-
chemical staining of paraffin-embedded sections (3–5 μm
thick) with a mouse monoclonal (S6F/3D) anti β-amyloid
antibody (Leica Biosystems Newcastle Ltd., Newcastle
upon Tyne, UK). Evaluation of neurofibrillary
pathology was performed with a mouse monoclonal
antibody anti-human PHF-TAU, clone AT-8, (Tau AT8)
(Innogenetics, Gent, Belgium), which identifies hyperpho-
sphorylated tau (p-tau) [18]. The reaction product was vi-
sualized using an automated slide immunostainer (Leica
Bond Max) with Bond Polymer Refine Detection (Leica
Biosystems, Newcastle Ltd.).
To avoid spurious findings related to multiprotein de-

posits, “pure” AD cases with deposits of only p-tau and
β-amyloid were eligible for the study and controls were
free of any pathological protein aggregate. This approach
maximizes chances of finding true associations with AD,
even though reducing the final sample size. A summary of
characteristics of subjects included in this study is shown
in Additional file 1: Table S1. AD subjects were older than
controls (82.3 ± 11.3 versus 50.7 ± 21.5; p value < 0.01),
and no differences were found regarding gender (p value
= 0.087). The postmortem interval (PMI) were not signifi-
cantly different between groups (8.2 ± 4.4 h in the control
group versus 7.9 ± 7.1 h in the AD group; p value = 0.91).

PLD3 mRNA expression analysis by RT-qPCR
Total RNA was isolated from hippocampal homogenates
using RNeasy Lipid Tissue Mini kit (QIAGEN, Redwood
City, CA, USA), following the manufacturer’s instruc-
tions. Genomic DNA was removed with recombinant
DNase (TURBO DNA-free™ Kit, Ambion, Inc., Austin,
TX, USA). RNA integrity was checked by 1.25% agarose
gel electrophoresis under denaturing conditions. Con-
centration and purity of RNA were both evaluated with
NanoDrop spectrophotometer. Only RNA samples
showing a minimum quality index (260 nm/280 nm ab-
sorbance ratios between 1.8 and 2.2 and 260 nm/230 nm
absorbance ratios higher than 1.8) were included in the
study. Complementary DNA (cDNA) was reverse tran-
scribed from 1500 ng total RNA with SuperScript® III
First-Strand Synthesis Reverse Transcriptase (Invitrogen,
Carlsbad, CA, USA) after priming with oligo-d (T) and
random primers. RT-qPCR reactions were performed in
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triplicate with Power SYBR Green PCR Master Mix (Invi-
trogen, Carlsbad, CA, USA) in a QuantStudio 12K Flex
Real-Time PCR System (Applied Biosystems, Foster City,
CA, USA) and repeated twice within independent cDNA
sets. Sequences of primer pair were designed using Real
Time PCR tool (IDT, Coralville, IA, USA) and are listed in
Additional file 1: Table S2. Relative expression level of
PLD3 mRNA in a particular sample was calculated as pre-
viously described [19] and ACTB gene was used as the ref-
erence gene to normalize expression values.

PLD3 protein expression analysis by Western blot
Human hippocampus tissue from patients and control
samples was lysed with 100 μL lysis buffer containing
urea, thiourea, and DTT. After centrifugation at
35.000 rpm for 1 h at 15 °C, extracted proteins were quan-
tified following the Bradford-Protein Assay (Bio-Rad,
Hercules, CA, USA) by using a spectrophotometer.
Next, 5 μg of protein per sample were resolved in 4–20%

Criterion TGX stain-free gels (Bio-Rad) and electrophoret-
ically transferred onto nitrocellulose membranes using a
Trans-blot Turbo transfer system (25 V, 7 min) (Bio-Rad).
Equal loading of the gel was assessed by stain-free
digitalization and by Ponceau staining. Membranes were
probed with rabbit anti-human PLD3 primary antibody
(Sigma-Aldrich; 1:250) in 5% nonfat milk and incubated
with peroxidase-conjugated anti-rabbit secondary antibody
(Cell Signaling; 1:2000). Immunoblots were then visualized
by exposure to an enhanced chemiluminescence Clarity
Western ECL Substrate (Bio-Rad) using a ChemidocMP
Imaging System (Bio-Rad). Expression levels of PLD3 were
standardized by the corresponding band intensity of
GAPDH (Calbiochem; 1:10000).

Quantitative assessment of β-amyloid and p-tau deposits
in hippocampal samples
In order to quantitatively assess the β-amyloid and p-tau
burden for further statistical analysis, we applied a
method to quantify protein deposits, as described in de-
tail elsewhere [20]. In brief, hippocampal sections were
examined after performing immunostaining with anti
β-amyloid and anti p-tau antibodies. Focal deposit of
β-amyloid, including neuritic, immature, and compact
plaques [21], was analyzed with the ImageJ software.
Moreover, β-amyloid plaque count, referred to as amyl-
oid plaque score (APS), was measured. Finally, p-tau de-
posit was also analyzed with ImageJ software in order to
obtain an average quantitative measure of the global
p-tau deposit for each section.

PLD3 methylation measurement by pyrosequencing
Genomic DNA was isolated from frozen hippocampal
tissue by phenol-chloroform method [22]. Next, 500 ng
of genomic DNA was bisulfite converted using the

EpiTect Bisulfite Kit (Qiagen, Redwood City, CA, USA)
according to the manufacturer’s protocol. Primers to
amplify and sequence two promoter regions of PLD3
were designed with PyroMark Assay Design version
2.0.1.15 (Qiagen) (Additional file 1: Table S2), and PCR
reactions were carried out on a VeritiTM Thermal Cycler
(Applied Biosystems, Foster City, CA, USA). Next, 20 μl
of biotinylated PCR product was immobilized using
streptavidin-coated sepharose beads (GE Healthcare Life
Sciences, Piscataway, NJ, USA) and 0.3 μM sequencing
primer was annealed to purified DNA strands. Pyrose-
quencing was performed using the PyroMark Gold Q96
reagents (Qiagen) on a PyroMark™ Q96 ID System
(Qiagen). For each particular cytosine-phosphate-guanine
dinucleotide (CpG), methylation levels were expressed as
percentage of methylated cytosines over the sum of total
cytosines. Unmethylated and methylated DNA samples
(EpiTect PCR Control DNA Set, Qiagen) were used as
controls for the pyrosequencing reaction.

PLD3 methylation validations by bisulfite cloning
sequencing
Bisulfite-converted genomic DNA was used to validate
pyrosequencing results. Primer pair sequences were
designed by MethPrimer [23] and are listed in
Additional file 1: Table S2. PCR products were cloned
using the TopoTA Cloning System (Invitrogen, Carlsbad,
CA, USA), and a minimum of 10–12 independent clones
were sequenced for each examined subject and re-
gion. Methylation graphs were obtained with QUMA
software [24].

Statistical data analysis
Statistical analysis was performed with SPSS 21.0 (IBM,
Inc., USA). Before performing differential analysis, we
checked that all continuous variables showed a normal
distribution, as per one-sample Kolgomorov-Smirnov
test and the normal quantil-quantil (QQ) plots. Data
represents the mean ± standard deviation (SD). Signifi-
cance level was set at p value < 0.05. Statistical significance
for PLD3 mRNA levels and pyrosequecing intergroup dif-
ferences was assessed by T test. One-way analysis of vari-
ance (ANOVA) followed by Games-Howell post hoc
analysis was used to analyze differences in the expression
levels of PLD3 mRNA between Braak and Braak stage
groups. A logistic regression model (ENTER method) was
fit to assess the independent association of PLD3 mRNA
levels with AD status, using gender and age as covariates.
Kendall’s tau-b correlation coefficient was used to de-
termine correlation between AD-related pathology and
PLD3 mRNA expression levels. Difference between two
bisulfite cloning sequencing groups was evaluated with
Mann-Whitney U test. GraphPad Prism version 6.00
for Windows (GraphPad Software, La Jolla, CA, USA)
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was used to draw graphs except for methylation figures
that were obtained by QUMA software.

Results
PLD3 expression is downregulated in Alzheimer’s disease
hippocampus
As the first step in this study, we measured PLD3
mRNA expression levels by real-time quantitative PCR
(RT-qPCR) in the hippocampus of AD patients com-
pared to controls. Five samples did not pass the RNA
quality threshold (see the “Methods” section) and so
were not included in the experiments. Eventually, 26 AD
cases were compared to 11 controls. As shown in Fig. 1a,
PLD3 mRNA levels were significantly decreased by
1.67-fold in the hippocampus of AD cases compared to
controls [p value < 0.001]. Next, a disease-staging ana-
lysis was performed to investigate changes of PLD3
mRNA levels depending on the AD severity measured
by Braak & Braak staging [21] . We found that PLD3
mRNA levels were significantly reduced across Braak &
Braak stages [p value < 0.005; Fig. 1b]. Games-Howell
post hoc analysis revealed that PLD3 mRNA expression
was significantly different between control and Braak
stages III–IV [p value < 0.05] and between control and
Braak stages V–VI [p value < 0.05] (Fig. 1).

Then, to identify adjusted estimates of the association
of PLD3 mRNA levels with AD status (control = 0; AD
= 1), a logistic regression model was designed. Age and
gender were included into the model to adjust for poten-
tially confounding variables. As shown in Table 1, PLD3
mRNA expression levels remained as an independent
predictor of AD status after adjusting for age and gender
[p value < 0.05] (Table 1).
In order to examine whether the decrease in PLD3

mRNA levels in the AD hippocampus extended to the
protein level, a Western blot analysis was performed.
Protein extracts from frozen hippocampal samples that
were included in the qPCR experiment were obtained,
and a polyclonal antibody against a recombinant protein
epitope signature tag (PrEST) of PLD3 was used.
GAPDH protein detection was used as housekeeping. In
line with the PLD3 mRNA expression results, we ob-
served that PLD3 protein expression tends to be de-
creased in samples from hippocampus of AD patients as
compared to controls (Fig. 1c).

Correlation of PLD3 mRNA expression levels with p-tau
and amyloid deposits
Next, we aimed to correlate PLD3 mRNA levels with
AD-related neuropathological changes in hippocampal
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Fig. 1 PLD3 expression is decreased in human hippocampus in Alzheimer’s disease (AD). a The graph shows a significant 1.67-fold decrease in
PLD3 mRNA levels in AD hippocampal samples compared to control hippocampal samples. b PLD3 mRNA expression decreased across AD stages,
as shown when PLD3 mRNA expression levels are sorted by Braak and Braak stages. Bars represent percentage of PLD3 mRNA expression relative
to ACTB housekeeping gene expression. Vertical lines represent the standard error of the mean. *p value < 0.05; ***p value < 0.001. c Western blot
analysis of PLD3 shows a mild protein expression decrease in AD. Human hippocampus samples from controls or AD patients were loaded as
labeled on top of lanes. GADPH expression is shown as reference control. The bar chart represents the quantitative measurement of the PLD3
protein relative to GAPDH protein expression
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sections. In brief, β-amyloid and hyperphosphorylated tau
(p-tau) burden were measured and averaged for each
subject by a semi-automated quantitative method by using
the ImageJ software (see the “Methods” section). The amyl-
oid plaque score (APS) was also recorded. As β-amyloid
and p-tau data were not normally distributed, the
non-parametric Kendall’s tau-b correlation coefficient was
used. We found that the average area of β-amyloid burden
in the hippocampus was inversely correlated with PLD3
mRNA levels [tau-b = − 0,331; p value < 0.01], and accord-
ingly, an inverse association was found between APS and
PLD3 mRNA levels [tau-b = − 0,319; p value < 0.01].
Regarding p-tau deposits, a statistically significant correl-
ation was found for an inverse correlation [tau-b = − 0,306;
p value < 0.01].

DNA methylation in PLD3 is increased in hippocampus of
AD cases compared to controls
DNA methylation levels of regulatory regions in the gen-
ome modulate the expression of related or nearby genes.
Thus, we tested whether DNA methylation levels in
PLD3 gene were also altered in the AD hippocampus.
PLD3 gene is located in the long arm of chromosome 19
(19q13.2) and has two distinct CpG island-containing
promoter regions as shown by the UCSC Genome
Browser website [25] (Fig. 2a). The principal promoter,
which is placed at the 5′ end of the gene, contains a
553 bp CpG island (chr19:40854181-40854733; GRCh37/
hg19) while an alternative promoter overlapping exon 2
contains a smaller 207 bp CpG island (chr19:40871
618-40871824; GRCh37/hg19). Pyrosequencing primers
were designed to amplify and sequence specific CpGs
within both promoters regions (P_prom CpG1 and CpG2
for the principal promoter and A_prom CpG1 and CpG2
for the alternative promoter) (Fig. 2a).
We observed that the principal promoter of PLD3 was

mostly demethylated [mean ± SD, 1.8 ± 2.9%], as it corre-
sponds to the constitutive promoter of an actively
expressed gene. Average DNA methylation levels were
slightly higher in AD cases compared to controls only for
P_prom CpG2 [2.6 ± 3.13% vs. 0 ± 0%; p value < 0.001].
The alternative promoter showed intermediate levels of

DNA methylation [20.5 ± 4.91%]. A_prom CpG1
showed a statistical trend to be highly methylated in
AD cases compared to controls [23 ± 7.8% vs. 18.4 ±
6.2%; p value = 0.09] and a statistically significant dif-
ference in DNA methylation levels was observed for
A_prom CpG2 in AD cases compared to controls [21.5
± 5.8% vs. 15.3 ± 3.8%; p value < 0.01].
Next, we sought to replicate pyrosequencing results by

extending the initial cohort with additional AD and con-
trol hippocampal samples for which DNA was available.
These samples came from Navarrabiomed Brain Bank
and were used to increase the sample size for the methy-
lation experiments. Eventually, 36 AD patients and 18
controls were analyzed by pyrosequencing. In the princi-
pal promoter, average DNA methylation levels showed a
trend to be higher in AD cases compared to controls at
P_prom CpG2 [2.3 ± 2% vs. 1 ± 2.4% p value = 0.094]. In
the alternative promoter, no differences were found for
A_prom CpG1 between AD cases and controls [p value
> 0.05]. However, we observed a statistically significant
difference in DNA methylation levels for A_prom CpG2
between AD cases and controls [21.7 ± 4.7% vs. 18.3 ±
4.8%; p value < 0.05], pointing to a differentially methyl-
ated region located within the alternative promoter of
PLD3 in the AD hippocampus (Fig. 2b). In order to test
whether A_prom CpG2 methylation was an independent
predictor of AD status (control = 0; AD = 1), a binary lo-
gistic regression model was performed. After adjusting for
age and gender, A_prom CpG2 methylation levels remain
as an independent predictor of AD (Additional file 1:
Table S3).
We validated the pyrosequencing results and extended

the methylation local mapping by using bisulfite cloning
sequencing in two independent amplicons overlapping
both PLD3 promoter regions. DNA methylation percent-
age was measured at CpG site resolution and further av-
eraged across all the CpG sites for each amplicon. In
line with the previous pyrosequencing results, we found
that average DNA methylation levels of the amplicon at
PLD3 principal promoter were very low and showed no
differences between AD patients and controls (Fig. 2c).
On the contrary, average DNA methylation levels of the
amplicon at PLD3 alternative promoter were increased
in AD patients compared to controls [19.1 ± 7.8% vs. 6 ±
4%; p value < 0.05] (Fig. 2c).
Since DNA methylation is one of the major mecha-

nisms to regulate gene expression, we analyzed the cor-
relation between PLD3 mRNA expression and PLD3
DNA methylation in our sample set. No significant cor-
relation was found between expression and DNA
methylation measured by pyrosequencing [A_prom CpG1
r = − 0.264, p value = 0.114; A_prom CpG2 r = − 0.275, p
value = 0.110]. However, a significant inverse correlation
was observed between expression and DNA methylation

Table 1 Adjusted logistic regression model to predict AD status

Variable B Wald p value OR

PLD3 mRNA levels − 0.544 4.212 0.040* 0.581

Gender (female) 0.613 0.286 0.593 1.847

Age < 65 years old 2.774 5.981 0.014* 16.02

Constant − 1.494 0.254 0.614 0.224

Alzheimer status (control = 0; AD = 1) was considered as the dependent
variable and PLD3 mRNA expression levels, gender, and age were included
as covariates
B regression coefficient, OR odds ratio
*p value < 0.05
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in the PLD3 alternative promoter measured by bisulfite
cloning sequencing [r = − 0.683; p value < 0.05].

Discussion
We report PLD3 gene to be downregulated at both tran-
script and protein level in the human hippocampus af-
fected by AD. In addition, we show that the decrease in
PLD3 mRNA expression inversely correlates with
β-amyloid burden in the hippocampus. An important
finding of this study is that an alternative promoter of
PLD3 gene is differentially methylated in the hippocam-
pus of AD patients compared to controls suggesting that
epigenetic disturbances in PLD3 may occur in the patho-
logical process of AD.
Our results showing a reduction in PLD3 expression in

the AD hippocampus add to previous evidence supporting
the idea that PLD3 gene is downregulated in brain areas
affected by AD processes [8, 9]. Cruchaga et al. [8] used
data from genome-wide transcriptomics in laser-captured
neurons from 33 AD cases and 16 controls (GEO dataset
GSE5281) [26] to reveal that PLD3 gene expression was
significantly lower in AD cases compared to controls. In
addition, Satoh et al. found a marginal reduction in PLD3
mRNA levels in the frontal cortex of 7 AD cases com-
pared to 14 non-AD subjects, including other neurode-
generative disorders such as amyotrophic lateral sclerosis
and Parkinson disease [9]. In agreement with the previous
results, we observed a statistically significant decrease in
PLD3 mRNA expression in the hippocampus, a vulnerable
region to AD pathology, and also show that PLD3 is re-
duced across Braak & Braak stages indicating that PLD3 is
somehow related to the progressive neurodegenerative
processes of AD.
A number of different mechanisms could explain the

decrease in PLD3 gene expression in the AD hippocam-
pus, including the progressive loss of neuronal popula-
tions, changes in cellular composition with increasing
astrogliosis in late stages of AD, or cell-type-specific
decrease in PLD3 gene expression. A limitation of the
present study is that it has been designed on a
tissue-specific basis, and therefore, changes in gene ex-
pression at cell-specific level, including neuron-specific

level, cannot be assessed. In fact, the ratio of cellular
components in the human hippocampus may change
across different stages of AD. In this case, and if the ex-
pression of PLD3 were cell type specific, the gene ex-
pression changes observed globally in the hippocampus
could be attributed to the loss of a given cell population
and not reflect actual PLD3 expression changes. How-
ever, the fact of having found epigenetic modifications in
the same sample set would support the existence of a
true alteration in the regulation of PLD3 gene expres-
sion. To know whether the difference in PLD3 gene ex-
pression is driven by a decreased expression in neurons
or by changes in the ratio of cell populations in the brain
of AD patients, other technologies, such as the emerging
single-cell techniques, should be used.
The reduction in PLD3 expression is in line with the

classical β-amyloid cascade hypothesis of AD, since
PLD3 protein seems to act as a negative regulator of
APP processing [8]. It has been shown that knockdown
of PLD3 expression in cells results in higher levels of
extracellular Aβ42 and Aβ40 levels, and conversely,
overexpression of PLD3 is associated with reduced extra-
cellular Aβ42 and Aβ40 levels [8]. Furthermore, PLD3
protein is accumulated in neuritic plaques in human AD
brains [9]. Indeed, it has been demonstrated that PLD3
protein can be co-immunoprecipitated with APP in cul-
tured cells [8]. Even more, PLD3 protein has been re-
cently characterized as a novel endosome-to-Golgi
retrieval gene that regulates the endosomal protein sort-
ing, whose loss of function results in increased process-
ing of APP [27]. Accordingly, we have found an inverse
correlation between PLD3 mRNA expression levels and
the burden of hippocampal β-amyloid assessed by two
measurements, averaged deposit of β-amyloid and amyl-
oid plaque score (APS). All these data supports the no-
tion that PLD3 protein could display a protective effect
against AD pathology through its role in APP trafficking,
as other authors have previously suggested [27].
Interestingly, PLD3 protein is co-expressed with other

lysosomal proteins [9], including progranulin, which reg-
ulates lysosomal functioning and is also accumulated in
neuritic plaques [9, 28]. Moreover, PLD3 protein is

(See figure on previous page.)
Fig. 2 PLD3 DNA methylation levels in human hippocampal samples. a The graph shows genomic position of the amplicons (black boxes)
validated by bisulfite cloning sequencing which contain the cytosines assayed by pyrosequencing (CpG1 and CpG2) within the promoter regions
(principal and alternative) of the PLD3 gene. PLD3 is located on the long arm of chromosome 19 (chr19:40,854,332-40,884,390 -GRchr19/hg19
coordinates). CpG islands are represented by isolated green boxes. At the bottom of the graph, predicted functional elements are shown for each
of nine human cell lines explored by chromatine imunoprecipitation (ChIP) combined with massively parallel DNA sequencing. Boxes represent
promoter regions (red), enhancers (yellow), transcriptional transition and elongation (dark green), and weak transcribed regions (light green). The
track was obtained from the Chromatin State Segmentation by HMM from ENCODE/Broad track shown at the UCSC Genome Browser. b Dot-plot
charts representing methylation levels for principal and alternative promoter of PLD3 by pyrosequencing. Horizontal lines represent median
methylation values for each group.*p value < 0.05. c Representative examples of bisulfite cloning sequencing validation for the two independent
amplicons (principal and alternative promoter regions). Black and white circles denote methylated and unmethylated cytosines respectively. Each
column symbolizes a unique CpG site in the examined amplicon, and each line represents an individual DNA clone
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required to preserve the structure of lysosomes in vivo
and, therefore, impairment of the endosomal-lysosomal
systems has been proposed as an alternative mechanism
by which PLD3 could contribute to the development of
AD [29]. Most interestingly, another genetic variant in
PLD3, p.Leu308Pro, was recently found to cause auto-
somal dominant spinocerebellar ataxia [30], a neurode-
generative condition where lysosomal disturbances are
thought to be crucial [31, 32]. As an additional alterna-
tive explanation, PLD3 might also influence AD patho-
logical processes by altering adult neurogenesis since
PLD3 gene expression seems to be turned on at late
stages of neurogenesis [33].
Finally, we describe an altered pattern of DNA methyla-

tion within an alternative promoter of the PLD3 gene in
the human hippocampus affected by AD. To our know-
ledge, no previous reports on altered DNA methylation in
PLD3 gene have been published and very little is known
about regulation of PLD3 gene expression. The alternative
promoter of PLD3 is placed ∼17,500 bp downstream the
principal promoter overlapping exon 2. It contains a small
CpG island and is conserved across several cell types
(Fig. 2a). In our study, it was found to be differentially
methylated showing higher DNA methylation levels in AD
patients than in controls. Since DNA methylation of CpG
islands is one of the major epigenetic mechanisms that in-
fluence gene expression, our results indicate that altered
DNA methylation at this particular regulatory region
might contribute to downregulate PLD3 expression in AD.
In this regard, we also show a significant correlation

between PLD3 mRNA expression and DNA methylation
in our dataset when measured by bisulfite cloning se-
quencing, while the pyrosequencing results did not show
correlation with expression. It is intriguing why the sig-
nificant correlation is found only for the bisulfite cloning
sequencing results. First of all, although not significant,
an inverse correlation appears in the statistical analysis
for the pyrosequencing results. However, it is only a stat-
istical trend. One possible explanation would be that
DNA methylation levels measured by bisulfite cloning
sequencing average the methylation levels of an ex-
tended genomic region (15 CpGs), and therefore, this re-
sult may be more close to the real functional effect of
methylation on gene expression than the result of indi-
vidual CpGs.
Epigenetic disturbances are increasingly being de-

scribed for a number of genes related to AD, includ-
ing genes harboring rare variants that contribute to
developing AD [34–40]. In this sense, our work pro-
vides new knowledge about the epigenetic alterations
involved in gene transcription regulation in key brain
regions for the development of AD. Additionally, our
results support the involvement of PLD3 in the path-
ology of AD.

Conclusions
To sum up, this study confirms that PLD3 gene is down-
regulated in the hippocampus of AD patients. Moreover,
PLD3 expression inversely correlates with β-amyloid
burden, which adds evidence to the hypothesis that
PLD3 protein may contribute to AD development
through modifying APP processing. Having identified a
differentially methylated region in an alternative pro-
moter of PLD3, our study suggests that epigenetic dis-
turbances in PLD3 gene may be involved in the
pathological processes of AD.
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