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Abstract

Background: Gestational age at delivery is associated with health and social outcomes. Recently, cord blood DNA
methylation data has been used to predict gestational age. The discrepancy between gestational age predicted from
DNA methylation and determined by ultrasound or last menstrual period is known as gestational age acceleration. This
study investigated associations of sex, socioeconomic status, parental behaviours and characteristics and birth
outcomes with gestational age acceleration.

Results: Using data from the Avon Longitudinal Study of Parents and Children (n = 863), we found that pre-pregnancy
maternal overweight and obesity were associated with greater gestational age acceleration (mean difference = 1.6 days,
95% CI 0.7 to 2.6, and 2.9 days, 95% CI 1.3 to 4.4, respectively, compared with a body mass index < 25 kg/m2, p< .001).
There was evidence of an association between male sex and greater gestational age acceleration. Greater gestational age
acceleration was associated with higher birthweight, birth length and head circumference of the child (mean differences
per week higher gestational age acceleration: birthweight 0.1 kg, 95% CI 0.1 to 0.2, p < .001; birth length 0.4 cm, 95%
CI 0.2 to 0.7, p < .001; head circumference 0.2 cm, 95% CI 0.1 to − 0.4, p < .001). There was evidence of an association
between gestational age acceleration and mode of delivery (assisted versus unassisted delivery, odds ratio = 0.9 per
week higher gestational age acceleration, 95% CI 0.7, 1.3 (p = .05); caesarean section versus unassisted delivery, odds
ratio = 0.6, 95% CI 0.4 to 0.9 per week higher gestational age acceleration (p = .05)). There was no evidence of
association for other parental and perinatal characteristics.

Conclusions: The associations of higher maternal body mass index and larger birth size with greater gestational age
acceleration may imply that maternal overweight and obesity is associated with more rapid development of the fetus
in utero. The implications of gestational age acceleration for postnatal health warrant further investigation.
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Background
Preterm birth (≤ 37 weeks gestation) is associated with
numerous health consequences such as increased mor-
tality [1], hypertension [2, 3], insulin resistance [4] and
respiratory problems in later life [5, 6]. Indeed, each add-
itional gestational day at birth is associated with im-
proved medical and neuropsychological outcomes in
childhood [7]. Gestational age (GA) at delivery is typic-
ally determined via early obstetric ultrasound or last
menstrual period (LMP), with ultrasound methods con-
sidered the more reliable [8], ‘gold standard’ procedure.
Recently, DNA methylation (DNAm) has been used to

predict GA at delivery [9, 10]. This method builds on
work that used DNAm to predict chronological age [11]
and subsequent work, showing that the differences be-
tween predicted and chronological age are associated
with disease outcomes. Those with DNAm-predicted
ages that exceeded their chronological ages (age acceler-
ation, AA) have a higher risk of cancer incidence [12–
14], Alzheimer’s disease [15] and mortality [15–20]. Of
note, the term AA is commonly used in the literature to
describe both positive and negative differences (i.e. pre-
dicted ages above or below chronological ages), which
could be misleading, but we use the term to be consist-
ent with previous literature.
In a similar way, the gestational epigenetic clocks de-

veloped by Bohlin et al. [10] and Knight et al. [9] can be
compared with actual GA to determine gestational age
acceleration (GAA). There is little existing research on
the association of potential predictors of GAA or the po-
tential outcomes of GAA.
The aim of this study was to apply a previously pub-

lished model for predicting GA from DNAm [10] and
use this model to estimate GAA in order to (i) explore
potential predictors of GAA by assessing the association
of a broad range of socioeconomic variables and parental
characteristics with GAA and (ii) explore potential out-
comes of GAA by assessing associations of GAA with
delivery and postnatal factors, using data from the Ac-
cessible Resource for Integrated Epigenomic Studies
(ARIES) project, a subsample of child-mother pairs from
the Avon Longitudinal Study of Parents and Children
(ALSPAC).

Results
Study sample characteristics
The characteristics of the 863 participants from the ARIES
cohort included in our analysis are displayed in Tables 1
and 2, and Additional file 1: Table S1 describes the differ-
ences between these participants and the full ALSPAC co-
hort from which ARIES is a subsample. Additional file 1:
Table S2 shows the full range of GAs of the 863 partici-
pants included in the analysis.

Modelling of GA estimates
GA was estimated from ARIES cord blood DNAm using
the model of Bohlin et al. [10]. Correlation between esti-
mated and reported GA was high (correlation coefficient
r = 0.65) though not as high as that reported in the ori-
ginal publication (r = 0.81). Some reduction, however,
was expected because the Bohlin et al. [10] model was
trained and tested in distinct subsets of the same Nor-
wegian cohort. We elected not to use the model of
Knight et al. [9] because we were less confident that it
would produce meaningful GAA estimates given its low
correlation with GA in ARIES (r = 0.37) [21].

Associations of gender, socioeconomic and parental
factors with GAA
Females had lower GAA than males by 0.8 days after
adjusting for sex and cell type proportion (mean difference
[MD] = − 0.8 days; 95% CI − 1.4, − 0.1, p = .024; Table 3).
Maternal pre-pregnancy overweight and obese status

was associated with higher GAA compared with mater-
nal pre-pregnancy body mass index (BMI) of < 25 kg/m2

(MD = 1.6 days, 95% CI 0.7, 2.6 for overweight; MD =
2.9 days, 95% CI 1.3, 4.4 for obese, p < .001, see Table 4)
after adjusting for sex, cell type proportion and parental
socioeconomic factors. As GAA calculated using Bohlin
et al. methods [10] is correlated with birthweight [21],
we further adjusted these models including birthweight
as a covariate to assess whether birthweight may be driv-
ing this effect. The results were not substantially differ-
ent when additionally adjusting for birthweight
(Additional file 1: Table S3).
No clear associations were found for parental educa-

tion, relationship status, smoking, alcohol consumption,
depression or age, nor with housing tenure, financial dif-
ficulties, parity or pregnancy complications with GAA
(Tables 3 and 4).

Associations of GAA with delivery and birth outcomes
There were strong positive associations of GAA with
birthweight (MD = 0.1 kg of birthweight per week higher
GAA, 95% CI 0.1, 0.2, p < .001), birth length (MD =
0.4 cm of birth length per week higher GAA, 95% CI
0.2, 0.7, p < .001) and head circumference (MD = 0.2 cm
of head circumference per week higher GAA, 95% CI
0.1, 0.4, p < .001) (see Table 5).
No association was observed between GAA and Ap-

pearance, Pulse, Grimace, Activity, and Respiration
(APGAR) score at 5 min. GAA was inversely associated
with assisted delivery (excluding caesarean section)
(odds ratio [OR] = 0.9 per week higher GAA, 95% CI 0.7,
1.3, see Table 5) and caesarean section (OR = 0.6 per
week higher GAA, 95% CI 0.4, 0.9, p = .05).
There were no substantial differences between the im-

puted and observed data sets (Additional file 1: Table S4).
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Table 1 Characteristics of the study population (count and percent
of the total sample). N= 863

Count
(n)

Percentage

Female 442 51.22

Maternal smoking during pregnancy

Never smoker 513 60.64

Former smoker 238 28.13

Current smoker 95 11.23

Paternal smoking

Never smoker 479 70.34

Former smoker 28 4.11

Current smoker 174 25.55

Maternal alcohol consumption during pregnancy

Heavy/binge drinker 113 13.40

Light/moderate drinker 380 45.08

Pregnancy abstainer 308 36.54

Never drinker 42 4.98

Paternal alcohol consumption during pregnancy

Heavy/binge drinker 583 83.05

Light/moderate drinker 97 13.82

Never drinker 22 3.13

Maternal depression (EPDS)—likely to be
depressed

231 27.83

Paternal depression (EPDS)—likely to be
depressed

61 9.36

Maternal pre-pregnancy BMI

Under/normal weight 651 81.07

Overweight 114 14.20

Obese 38 4.73

Paternal BMI

Under/normal weight 357 54.42

Overweight 250 38.11

Obese 49 7.47

Parental relationship status during pregnancy

Married 709 83.22

Cohabiting 114 13.38

Single 29 3.40

Parity

0 702 83.87

1 102 12.19

2+ 33 3.94

Maternal age (years)

35+ 115 13.33

25–34 640 74.16

15–24 108 12.51

Paternal age (years)

Table 1 Characteristics of the study population (count and percent
of the total sample). N= 863 (Continued)

Count
(n)

Percentage

35+ 219 27.17

25–34 542 67.25

15–24 45 5.58

Percentages reflect the proportion of the total sample
EPDS Edinburgh Postnatal Depression Scale, BMI body mass index

Table 2 Socioeconomic and perinatal characteristics of the
study population (count, percent of total sample, mean and SD).
N = 863

Count (n) %/mean (SD)

Non-manual parental social class 713 85.59

Maternal education

Degree 172 20.28

A level 253 29.83

O level 279 32.90

Less than O level 144 16.98

Paternal education

Degree 214 25.60

A level 252 30.14

O level 181 21.65

Less than O level 189 22.61

Housing tenure

Owned/mortgaged 737 89.77

Rented (private) 28 3.41

Rented (council/HA) 56 6.82

Financial difficulties

No financial difficulties 352 42.16

Some financial difficulties 347 41.56

Many financial difficulties 136 16.29

Delivery method

Unassisted 320 60.72

Assisted 126 23.91

Caesarean section 81 15.37

Delivery complications 142 16.53

Term/post-term GA at delivery 839 97.22

APGAR score at 5 min 9.52 (0.69)

Birthweight (kg) 850 3.49 (0.49)

Birth length (cm) 735 50.77 (2.12)

Head circumference (cm) 737 34.92 (1.41)

Percentages reflect the proportion of the total sample
HA owned by the housing association, APGAR scores are based on
Appearance, Pulse, Grimace, Activity, and Respiration at birth

Khouja et al. Clinical Epigenetics  (2018) 10:86 Page 3 of 9



Adjusting for cell type proportion did not substantially
alter our results (see Additional file 1: Tables S5 to S7
for unadjusted results) and neither did adjustment
for socioeconomic status (SES) and other potential
confounders.

Discussion
Our analyses indicated that male sex, higher maternal
pre-pregnancy BMI and vaginal delivery are associated
with higher GAA. Our results also indicated that higher
GAA was associated with birth size (birthweight, birth
length and head circumference). There was no clear evi-
dence of any associations of GAA with parental education,
relationship status, smoking, alcohol consumption, de-
pression or age, nor with housing tenure, financial difficul-
ties, parity, pregnancy complications or APGAR scores.
Unlike in AA research, where AA has been associated

with negative outcomes such as all-cause mortality and
Alzheimer’s disease [15–20], it is currently unclear
whether accelerated GA at birth is beneficial or detri-
mental to a fetus or newborn. From previous research
using ARIES data, we know sex, birthweight, caesarean

section and maternal BMI have also been associated
with AA [22]. A recent study has also shown associa-
tions of GAA with birth size and sex [23]. However, in
their main analysis, associations with birth size were in
the opposite direction to our analysis when the raw
GAA-GA difference was used as the outcome, i.e. higher
GAA was associated with smaller size at birth. When
calculating GAA using the residuals from a regression of
DNAm-predicted GA on reported GA, as GAA was cal-
culated in this study, there was no clear association be-
tween GAA and size at birth. In further contrast, we did
not replicate their associations with maternal age,
APGAR scores (at 1 min) and pregnancy complications
(pre-eclampsia). The discrepancies in the results could
be related to the focus on raw differences rather than re-
siduals in the main analysis of Girchenko et al. [23]. We
did not estimate GAA as the difference between
DNAm-predicted GA and reported GA because the con-
founding effect of GA is not accounted for in this ap-
proach, whereas the residual-based approach ensures
GAA is uncorrelated with GA.
Another explanation for the discrepancies between our

findings and the findings of Girchenko et al. [23] is their
use of the Knight et al. [9] GA prediction model rather
than the Bohlin et al. [10] model applied in this study.
We have previously noted several key methodological
differences in the derivation of the Knight et al. [9] and
the Bohlin et al. [10] models that influence the accuracy
of the GA prediction in this cohort [21], such as the in-
clusion of preterm infants in the test set of the Knight et
al. model [9] which is inappropriate for a data set with
few pre-term births (as in this study). Additionally, the
number of CpGs (148) included in the Knight et al. [9]
training model was close to the sample size of the train-
ing set (207) and the model was then tested with a much
larger sample size which may have resulted in an overfit-
ting of the model. In contrast, the number of CpGs (96)
in the Bohlin et al. [10] training model was much lower
than the sample size of the training set (1068). Thus, the
Bohlin et al. [10] model provided us with the best esti-
mate of GAA for this cohort [21], which was reflected in
the stronger correlation found between reported GA in
the ARIES cohort and the model predictions of GA
compared to the Knight et al. [9] model. The Bohlin et
al. [10] model for prediction of GA from DNAm per-
formed well in our data, adding support to the notion
that DNAm could potentially be used as a marker of GA
in data sets where GA has not been measured.
In this study, we were able to apply the epigenetic clock

created by Bohlin et al. [10] in ARIES data. Despite the
original model being trained only on a Norwegian cohort,
the methods of Bohlin et al. [10] transferred to a UK co-
hort with considerable accuracy (r = 0.65). Additionally,
the use of ARIES and ALSPAC data (a large and rich

Table 3 Associations of gender and parental socioeconomic
factors with gestational age acceleration. N = 863

Exposure Mean difference in gestational
age acceleration (days)

Mean
difference

95% CI p

Female − 0.8 − 1.4, − 0.1 0.024

High/non-manual parental social class 0.1 − 0.9, 1.0 0.91

Maternal education

Degree (Ref) 0.72

A level 0.8 − 0.1, 1.8

O level − 0.1 − 1.0, 0.8

Less than O level − 0.3 − 1.4, 0.8

Paternal education

Degree (Ref) 0.51

A level − 0.8 − 1.6, 0.1

O level − 0.2 − 1.2, 0.7

Less than O level 0.3 − 0.7, 1.2

Housing tenure

Owned/mortgaged (Ref) 0.42

Rented (private) 0.7 − 1.1, 2.5

Rented (council/HA) 0.2 − 1.1, 1.5

Financial difficulties

None (Ref) 0.55

Some − 0.1 − 0.8, 0.6

Many − 0.4 − 1.3, 0.6

Results are from multiply imputed data; coefficients are mean differences
adjusted for sex (except for when sex is the exposure) and cell
type proportion
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Table 4 Associations between parental factors and gestational age acceleration. N = 863

Exposure Mean difference in gestational age acceleration (days)

Model 1 Model 2

MD 95% CI p MD 95% CI p

Maternal smoking

Never smoker (Ref) 0.49 (Ref) 0.50

Former smoker 0.01 − 0.8, 0.7 0.03 − 0.7, 0.8

Current smoker 0.5 − 0.5, 1.6 0.5 − 0.7, 1.6

Paternal smoking

Never smoker (Ref) 0.41 (Ref) 0.40

Former smoker − 0.9 − 2.7, 0.9 − 0.9 − 2.7, 0.9

Current smoker 0.1 − 0.8, 0.9 0.1 − 0.8, 0.9

Maternal alcohol consumption

Heavy/binge drinker (Ref) 0.26 (Ref) 0.25

Light/moderate drinker − 0.2 − 1.2, 0.8 − 0.3 − 1.3, 0.8

Pregnancy abstainer − 0.4 − 1.4, 0.7 − 0.4 − 1.4, 0.6

Never drinker − 1.2 − 2.9, 0.5 − 1.2 − 2.9, 0.5

Paternal alcohol consumption

Never drinker (Ref) 0.54 (Ref) 0.67

Light/moderate drinker − 0.9 − 1.9, 0.1 − 0.8 − 1.9, 0.2

Heavy/binge drinker 0.2 − 1.8, 2.2 0.4 − 1.7, 2.4

Maternal depression depressed 0.4 − 0.4, 1.1 0.32 0.4 − 0.3, 1.2 0.28

Paternal depression depressed −0.5 − 1.8, 0.8 0.42 − 0.6 − 1.8, 0.8 0.49

Maternal pre-pregnancy BMI

Under/normal weight (Ref) < 0.001 (Ref) < 0.001

Overweight 1.5 0.6, 2.5 1.6 0.7, 2.6

Obese 2.7 1.2, 4.3 2.9 1.3, 4.4

Paternal BMI

Under/normal weight (Ref) 0.53 (Ref) 0.58

Overweight 0.1 − 0.7, 0.9 0.1 − 0.7, 0.9

Obese 0.4 − 0.9, 1.8 0.4 − 1.0, 1.8

Parental relationship status

Married (Ref) 0.37 (Ref) 0.47

Cohabiting 0.1 − 0.8, 1.1 0.1 − 0.9, 1.1

Single 0.8 − 1.0, 2.5 0.7 − 1.1, 2.6

Parity

0 (Ref) 0.88 (Ref) 0.83

1 − 0.3 − 1.3, 0.7 − 0.4 − 1.3, 0.7

2+ 0.1 − 1.6, 1.8 0.1 − 1.6, 1.8

Maternal age

35+ (Ref) 0.60 (Ref) 0.69

25–34 − 0.5 − 1.5, 0.5 − 0.5 − 1.4, 0.5

15–24 − 0.1 − 1.3, 1.2 0.03 − 1.3, 1.4

Paternal age

35+ (Ref) 0.27 (Ref) 0.32

25–34 − 0.4 − 1.2, 0.3 − 0.4 − 1.1, 0.4
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source of longitudinal data for children and their families)
allowed us to assess the associations of GAA with a wide
range of socioeconomic, parental and perinatal factors.
The longitudinal nature of ARIES also enabled compari-
sons between GAA and AA at multiple ages.
Although the ARIES sub-sample is a more affluent

sample of the full ALSPAC cohort, our results were ro-
bust to adjustment for SES. This is in line with some evi-
dence that such differences are unlikely to severely bias
association studies [24–27]. To account for missing data,
we used multiple imputation, which maximised our stat-
istical power. The results were consistent when using
complete-case observed data.
Following Gervin et al.’s [28] methods, the regression ana-

lyses were adjusted for cell type proportions, even though
GA is associated with variation in cell type proportions and
this adjustment could therefore potentially bias the results.
However, comparing the data before and after adjustment,
there were no substantial differences in the results. Add-
itionally, only weak associations were found between GA
and cell type composition in this study (Additional file 1:
Figure S1). Another potential issue with adjusting for cell
type composition arises from deriving cord blood references
from full-term births only; cord blood cell counts may be in-
accurate for cord blood methylation profiles of preterm

infants. However, a small proportion of the participants in
our study were pre-term (3%) so it is unlikely that this will
have substantially impacted the results.
Interestingly, there is little overlap between probes

used in the Bohlin et al. [10] model of GA predication
and the Horvath [11] model of age prediction, with only
one CpG site (cg08965235 in the latent-transforming
growth factor beta-binding protein 3 gene) overlapping
between the models. In contrast to the Horvath [11]
model, which compares accurate measures of chrono-
logical age and epigenetic predictions, the Bohlin et al.
[10] model compares potentially inaccurate LMP/ultra-
sound estimates to epigenetic predictions. Consequently,
inaccurate GA estimates may have impacted upon the
GAA estimates in this research, especially as the major-
ity of the GA estimates in ALSPAC are derived from
LMP, since ultrasound estimation of GA was not com-
mon at the time of recruitment. Additionally, the GA
predictions using the Bohlin et al. [10] model were more
accurate using ultrasound methods rather than LMP.
This may mean that our estimates may not be as accur-
ate as if ultrasound GAs had been used and this could
explain the discrepancy in accuracy between the Bohlin
et al. [10] test data and the ARIES data, as detailed by
Simpkin and colleagues [21].

Table 4 Associations between parental factors and gestational age acceleration. N = 863 (Continued)

Exposure Mean difference in gestational age acceleration (days)

Model 1 Model 2

MD 95% CI p MD 95% CI p

15–24 − 0.7 − 2.2, 0.8 − 0.6 − 2.2, 0.9

Pregnancy complications − 0.4 − 1.2, 0.5 0.42 − 0.6 − 1.5, 0.3 0.16

Results are from multiply imputed data; coefficients are mean differences (MD) adjusted for sex and cell type proportion (model 1) and additionally for parental
social class, education, housing tenure and financial difficulties (model 2). Parental depression was measured using the Edinburgh Postnatal Depression Scale. The
pregnancy complication analysis additionally adjusted for all other parental behaviour covariates
BMI body mass index

Table 5 Associations between gestational age acceleration and perinatal factors. N = 863

Outcome Mean difference in perinatal outcome per 1 week higher gestational age acceleration

Model 1 Model 2

MD CI p MD CI p

Birthweight (kg) 0.1 0.1, 0.2 < 0.001 0.1 0.1, 0.2 < 0.001

Birth length (cm) 0.5 0.3, 0.7 < 0.001 0.4 0.2, 0.7 < 0.001

Head circumference (cm) 0.3 0.1, 0.4 < 0.001 0.2 0.1, 0.4 < 0.001

APGAR scores (0–10) − 0.01 − 0.1, 0.1 0.79 − 0.02 − 0.1, 0.1 0.73

OR CI p OR CI p

Delivery method

Unassisted – (Ref) – (Ref)

Assisted 0.9 0.7, 1.2 0.9 0.7, 1.3

Caesarean section 0.7 0.5, 1.0 0.05 0.6 0.4, 0.9 0.05

Results are from multiply imputed data; coefficients are mean differences (MD) or odds ratios (OR) adjusted for sex and cell type proportion in model 1 and
additionally adjusted for parental social class, education, smoking, alcohol use, depression, body mass index, age and relationship status as well as housing tenure,
financial difficulties and parity in model 2. APGAR scores are based on Appearance, Pulse, Grimace, Activity, and Respiration at birth
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Conclusions
Our results suggest that higher maternal BMI is strongly
associated with higher GAA and that higher GAA is
strongly associated with larger size at birth (birthweight,
birth length and head circumference). In addition, we
found weaker associations of sex and delivery method
with GAA. Our results may indicate that having a BMI
over 25 kg/m2 is associated with more rapid develop-
ment of the fetus in utero. The implications of GAA for
postnatal growth, development and health warrant fur-
ther investigation.

Methods
Study population
This study used DNAm data generated under the aus-
pices of the ALSPAC [29, 30]. ALSPAC recruited 14,541
pregnant women with expected delivery dates between
April 1991 and December 1992. Of these initial pregnan-
cies, there were 14,062 live births and 13,988 children
who were alive at 1 year of age. The study website con-
tains details of all the data that are available through a
fully searchable data dictionary (http://www.bris.ac.uk/
alspac/researchers/data-access/data-dictionary).
As part of the ARIES [31] project (http://www.ariesepi-

genomics.org.uk), a sub-sample of 1018 ALSPAC
child-mother pairs had DNAm measured using the Infi-
nium HumanMethylation450 BeadChip (Illumina, Inc.)
[32]. The ARIES sub-sample was selected based on avail-
ability of DNA samples at three time points (birth, mean
7.5 years and mean 15.5 years). DNAm was measured
three times in ALSPAC offspring, from cord blood at birth
and from peripheral blood at approximately ages 7 and 17.

Laboratory methods, quality control and pre-processing
All DNAm wet-lab and pre-processing analyses were per-
formed at the University of Bristol as part of the ARIES
project. Following extraction, DNA was bisulphite con-
verted using the Zymo EZ DNA MethylationTM kit
(Zymo, Irvine, CA). Infinium HumanMethylation450
BeadChips were used to measure genome-wide DNAm
levels at over 485,000 CpG sites. The arrays were scanned
using an Illumina iScan, with initial quality review using
GenomeStudio. The level of DNAm is expressed as a ‘beta’
value (β value), ranging from 0 (no cytosine methylation)
to 1 (complete cytosine methylation). β values are re-
ported as percentages. Several quality control steps were
included in the laboratory pipeline which are described in
detail elsewhere [33].

Epigenetic GA prediction
Using a recently published model [10], we derived epi-
genetic gestational age (EGA) from cord blood DNAm.
The Bohlin et al. [10] model was chosen over the Knight
et al. [9] model due to its much stronger correlation

with GA in ARIES (r = 0.65 compared to r = 0.37). This
epigenetic clock for GA at delivery uses 96 CpG sites to
predict GA from cord blood methylation. We obtained
GAA as the residuals from a regression of EGA on ob-
served GA. GA was gathered from clinical records and
determined by LMP for the majority; however, on some
occasions, this measure was updated following a dating
ultrasound. It is not known for which individual GA was
based on LMP or ultrasound but as updating GA based
on ultrasound was not common practice at the time of
the measurement, the numbers are likely to be low. To
be consistent with previous literature, we have used the
terms ‘AA’ and ‘GAA’ to describe both positive and nega-
tive differences (i.e. predicted ages above or below
chronological/gestational ages). A positive GAA corre-
sponds to an EGA that was higher than actual GA and
vice versa.

Socioeconomic, parental and perinatal characteristics
Socioeconomic factors included housing tenure, social
class, parental education and financial difficulties. Paren-
tal factors included parental smoking, alcohol use, men-
tal health, relationship status, BMI and age. Finally,
perinatal variables considered were child’s sex, birth-
weight, birth length, head circumference and APGAR
score at 5 min as well as the occurrence of any preg-
nancy complications and the delivery type. All variables
were measured through questionnaires at different times
during pregnancy (socioeconomic and parental vari-
ables), by trained ALSPAC staff shortly after birth (an-
thropometry at birth) or from obstetric records
(pregnancy complications, child’s sex and APGAR
score). Full details of measurement of these factors are
in Additional file 1.

Statistical analysis
Sex, SES, parental behaviours and pregnancy complica-
tions were analysed as potential determinants of GAA.
Associations between these factors and GAA were
assessed in linear regression models with GAA as the out-
come. Models with parental behaviours as the exposure
were adjusted for SES variables as confounders. Birth size,
delivery method and APGAR score were considered as
potential outcomes of GAA. Associations of GAA with
these factors were assessed using linear or multinomial lo-
gistic regression as appropriate, with GAA as an exposure
and parental behaviour and SES variables included as po-
tential confounders. We performed the analysis in this
way due to the temporal ordering of the variables, al-
though we do not necessarily hypothesise a direct causal
effect of GAA on these outcome variables. The associa-
tions were analysed in two models: (1) adjusted for sex
and cell type proportion and (2) with additional adjust-
ment for potential confounders, as appropriate for the
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specific model. The Gervin et al. [28] methods were used
for cell-type proportion estimations. Due to missingness
in the observed data set, analyses were completed using
100 multiply imputed data sets (see Additional file 1:
Table S8 for further information). There were no substan-
tial differences between the analysis of the observed data
and the multiply imputed data sets.

Additional file

Additional file 1: Tables S1–S8. Supplementary methods. Details of
measurement of socioeconomic, family and perinatal variables and
supplementary tables. (DOCX 671 kb)
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