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Individual CpG sites that are associated
with age and life expectancy become
hypomethylated upon aging
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Abstract

Background: There is a growing interest in simple molecular biomarkers for biological aging. Age-associated DNA
methylation (DNAm) changes at specific CG dinucleotides can be combined into epigenetic age predictors to
estimate chronological age—and the deviation of chronological and predicted age (Δage) seems to be associated
with all-cause mortality. In this study, we have further validated this association and analyzed whether or not
individual age-associated CG-dinucleotides (CpGs) are related to life expectancy.

Findings: In the German ESTHER cohort, we used 864 DNAm profiles of blood samples as the discovery set and
1000 DNAm profiles as the validation set to predict chronological age with three previously reported age
predictors—based on 99, 71, or 353 age-associated CpGs. Several of these individual CpGs were significantly
associated with life expectancy, and for some of these CpGs, this was even reproducible in the independent
datasets. Notably, those CpGs that revealed significant association with life expectancy were overall rather
hypomethylated upon aging.

Conclusion: Individual age-associated CpGs may provide biomarkers for all-cause mortality—but confounding
factors need to be critically taken into consideration, and alternative methods, which facilitate more quantitative
measurements at individual CpGs, might be advantageous. Our data suggest that particularly specific CpGs that
become hypomethylated upon aging are indicative of biological aging.
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Findings
Biomarkers for aging may allow for testing of inter-
ventions to extend lifespan or to increase the odds of
staying healthy. Ideally, such biomarkers should rather
reflect “biological age” than “chronological age,” and
they should not be skewed by predisposition to spe-
cific diseases [1]. Advances in molecular biology, gen-
etics, and epigenetics have fueled the hope for simple
and reliable biomarkers for biological age [2, 3].
Within the last five years, a multitude of studies

demonstrated that aging is associated with highly

reproducible DNA methylation (DNAm) changes at
specific sites in the genome [4–8]. About 60% of
these age-associated CG dinucleotides—so called
“CpG sites”—become hypomethylated upon aging,
whereas about 40% become hypermethylated [9]. Age-
associated hypermethylation is rather enriched close
to CG islands (CGIs), whereas hypomethylation rather
occurs outside of CGIs [9–12]. Furthermore, particu-
larly DNAm at CpGs with age-associated hypermethy-
lation seem to be coherently modified in cancer [13],
indicating that de novo DNAm and demethylation
may be regulated by different mechanisms. It is yet
unclear how these DNAm patterns are regulated, and
if they are functionally relevant or rather reflect other
means of chromatin conformation—either way, they
provide powerful biomarkers.
Several age-associated DNAm changes are acquired

linearly over time and hence facilitate estimation of
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chronological age—either based on individual CpGs [14]
or by integration of multiple CpGs into age predictors
[5, 6, 12]. Particularly, the epigenetic clock described by
Horvath [15], consisting of 353 age-associated CpGs, has
been shown to facilitate precise age estimations across
multiple tissues. Other frequently used age predictors
for blood samples have been introduced by Hannum and
coworkers (71 CpGs) [16] and Weidner et al. (99 CpGs)
[17, 18]. Notably, the difference between chronological
age and predicted age—referred to as Δage—seems to be
related to the parameters of biological aging: Marioni
and coworkers have demonstrated that Δage (per 5 years)
was associated with a 21% higher mortality risk in the
“Hannum predictor” (95% CI 1.14–1.29) and with a 11%
higher mortality risk with the “Horvath predictor” (95%
CI 1.05–1.18), if adjusted for chronological age and gen-
der [19]. Similar findings were reproduced by other
study groups on other datasets [18, 20, 21]. Furthermore,
epigenetic age predictions are lower in women and in
semi-supercentenarians [22], whereas accelerated epi-
genetic age was associated with obesity [23] and with
lower abilities in physical and mental fitness [24]—sug-
gesting that age-associated DNAm patterns may be indi-
cative of biological aging.
In this study, we aimed for a better understanding of how

epigenetic age predictions are associated with life expect-
ancy in the ESTHER study cohort, a large population-based
epidemiological study conducted in the German State of
Saarland. To estimate reproducibility of results, we sepa-
rated the DNAm profiles (analyzed by HumanMethylation
450 BeadChips) into a discovery set of 864 samples and a
validation set of 1000 samples (further information is pro-
vided in the Additional file 1). We were particularly inter-
ested whether there are individual CpGs that reveal higher
association with life expectancy than others.

Comparison of different multi-CpG age predictors
Initially, we compared epigenetic age predictions of
the three aging models by Horvath [15], Hannum et

al. [16], and Weidner et al. [17] in the discovery and
validation sets, as well as in the overall population
(Table 1). Overall, all three models revealed good cor-
relation with chronological age, albeit the correlation
was slightly lower for the Weidner model (Fig. 1a, b).
On the other hand, epigenetic age predictions of the
Hannum predictor were on average overestimated by
5.5 years in the discovery set and 6.5 years in the val-
idation set (Fig. 1c, d). Hence, the mean average devi-
ation (MAD) of predicted and chronological age was
higher for the Hannum predictor in the discovery and
validation set than for the other two predictors
(Table 1). Such shifts do not affect inter-quartile com-
parison, Cox regression analysis, or hazard ratios,
which are usually described in the literature. However,
they have impact on Δage and should therefore be
taken into consideration if Δage is addressed for indi-
vidual patients or for direct comparison of different
datasets. It is conceivable that the higher MAD in one
or the other epigenetic age predictor is due to preva-
lence of specific diseases. “Healthy subjects” are diffi-
cult to define, and therefore, we have exemplarily
excluded participants with prevalent diabetes, cardio-
vascular disease, and a history of cancer at baseline
(discovery panel: 180, 189, and 75, respectively; valid-
ation set: 162, 182, and 66, respectively). Removal of
these participants resulted in a very similar distribu-
tion of age predictions, indicating that general offset
of the age predictors was not due to these chronic dis-
eases (Additional file 1: Figure S1).
Previous studies have demonstrated that Δage of the

Hannum and Horvath predictors are associated with
life expectancy in DNAm profiles of the ESTHER
study [20]. Here, we have analyzed if Δage of the
Weidner model would also be associated with all-
cause mortality. When the results were adjusted for
age, sex, batch, and leucocyte distribution, there was a
clear tendency in the discovery and validation sets, but
the results did not reach statistical significance (P =

Table 1 Correlation of age predictions with chronological age

Weidner99 CpGs (61 hypo-
and 38 hypermethylated)

Hannum71 CpGs (31 hypo-
and 40 hypermethylated)

Horvath 353 CpGs (186 hypo-
and 167 hypermethylated)

Discovery set (n = 864)

Correlation with age (Spearman) 0.705 0.809 0.761

Mean average deviation (years) 4.76 5.82 4.19

Validation set (n = 1000)

Correlation with age (Spearman) 0.712 0.774 0.750

Mean average deviation (years) 4.78 7.00 3.95

Overall (n = 1864)

Correlation with age (Spearman) 0.705 0.787 0.753

Mean average deviation (years) 4.75 6.45 4.06
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0.058 and P = 0.095, respectively). When we combined
the discovery and validation sets to increase statistical
power, the results reached the significance (P = 0.041) and
the hazard ratios were slightly lower than in the other two
predictors (HR = 1.087; 95% CI 1.003–1.178; Additional
file 1: Table S1). In our previous work, we analyzed the
data of the Lothian Birth Cohort 1921 (LBC1921), a study
from the Lothian region (Edinburgh and its surrounding
areas of Scotland) with participants born in 1921 and
analyzed at about the age of 79 [18, 25]: in this dataset a
5-year higher age prediction by the Weidner model was
associated with 11% greater mortality risk (P = 0.0003;
95% CI 1.04, 1.19; after adjustment for age and gender).

These results support the notion that the association of
Δage with all-cause mortality may vary between different
aging models and cohorts—but it is overall consistent if
using age predictors that comprise multiple CpGs.

Individual CpGs are associated with life expectancy
We have previously analyzed if individual age-associated
CpGs are associated with life expectancy in the Lothian
Birth Cohorts 1921 and 1936 [18]. The only one CpG site
that reached statistical significance in both datasets after
multiple correction and adjustment for age and gender was
cg05228408, which is associated with the gene for the
chloride transport protein 6 (CLCN6; LBC1921 [HR = 1.16;

Fig. 1 Correlation of predicted age with chronological age. Epigenetic age predictions based on the 99 CpGs of the Weidner predictor [17] were
plotted against chronological age for a 864 DNAm profiles of the discovery set and b 1000 DNAm profiles of the validation set of the ESTHER
cohort. The distribution of chronological age and predicted age with the three aging models described by Weidner et al. [17], Hannum et al. [16],
and Horvath [15] is demonstrated c for the discovery set and d for the validation set. Age predictions by the Hannum predictor were overall
overestimated by 5.5 and 6.5 years, respectively
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95% CI 1.06–1.26; P = 0.00072]; LBC1936 [HR = 1.26; 95%
CI 1.12–1.42; P = 0.00013]). This genomic region is of spe-
cific interest because single-nucleotide polymorphisms
identified in its vicinity were found to be associated with
blood pressure and hypertension [26–28]. Therefore, we
have now trained a model for the ESTHER discovery group
based on the beta values of cg05228408. Upon the adjust-
ment for chronological age, gender, batch, and leucocyte
distribution, this model revealed significant association with
all-cause mortality in the discovery (P = 0.0011) and in the
overall population (P = 0.0148; Additional file 1: Table S2).
Subsequently, we tested the association with life ex-

pectancy for all individual CpGs of the three age predic-
tors: for 99 CpGs of the Weidner predictor (Additional
file 1: Table S3), for 71 CpGs of the Hannum predictor
(Additional file 1: Table S4), and for the 353 CpGs of the
Horvath predictor (Additional file 1: Table S5). In the
discovery set, 27 (of 99 CpGs), 11 (of 71 CpGs), and 3
CpGs (of 353 CpGs) reached statistical significance
(FDR < 0.05). In the validation set, with a lower number
of death cases, it was only 11, 7, and 3 CpGs, respect-
ively (Fig. 2a). Albeit the reproducibility between the two
datasets was not very high, there was a significant associ-
ation for the 99 CpGs of the Weidner predictor (hyper-
geometric distribution: P value = 0.0072) and for the
Horvath predictor (P value = 0.025; Additional file 1:
Table S6). The CpGs that were overlapping associated
with life expectancy in both datasets were cg05294455
(MYL4), cg08598221 (SNTB1), cg09462576 (MRPL55),
cg15804973 (MAP3K5), cg20654468 (LPXN), cg25268718
(PSME1), cg26581729 (NPDC1), and cg02867102 (no
gene). Please note that the number of individual CpGs
that reached statistical significance in the three predictors
is not a quality measure for these age predictors. The
CpGs of the Hannum and Horvath predictors were se-
lected by Elastic Net algorithms—they were therefore

selected to work together, rather than individually. Fur-
thermore, the Horvath predictor was trained on multiple
tissues rather than blood samples as in the Hannum and
Weidner predictors.
To our surprise, almost all of the CpGs that are associ-

ated with life expectancy in either of the two datasets
were hypomethylated upon aging (Fig. 2b, c). In the dis-
covery set there was a significant enrichment of hypo-
methylated CpG sites (hypergeometric distribution) for
the Weidner (P = 3.3 × 10−6) and the Hannum (P =
0.0007) predictor. Furthermore, all significant CpGs in
the overlap of the discovery and the validation set were
hypomethylated (Additional file 1: Table S6).
We revisited the previously published data on association

of these CpGs in the Lothian Birth Cohort 1921 [18]. A big
advantage in this cohort is that it comprises donors of a de-
fined age range (about 79 years)—and hence, a different
slope in the comparison of predicted and chronological
ages would hardly affect the association with life expect-
ancy. Only four CpGs of the Weidner predictor reached
statistical significance in LBC1921 (adjusted P value <0.05),
and all of them were also significant in the ESTHER discov-
ery set: cg05228408 (CLCN6), cg12554573 (PARP3),
cg25268718 (PSME1), and cg03224418 (SAMD10)—-
furthermore, all of them become hypomethylated upon
aging (Additional file 1: Figure S2A). However, for the
CpGs of the Hannum predictor, the reproducibility be-
tween the LBC1921 and the ESTHER cohorts was low.
In general, CpGs that revealed significant association
with life expectancy in LBC1921 and LBC1936 were ra-
ther hypomethylated, but these results did not reach
statistical significance (Additional file 1: Figure S2B, C).

Conclusions
Our explorative study further supports the notion that
specific age-associated CpGs can be indicative of life

Fig. 2 CpGs that correlate with all-cause mortality are hypomethylated upon aging. a For all individual CpGs of the three age predictors (Weidner
et al., 99 CpGs; Hannum et al., 71 CpGs; and Horvath, 353 CpGs), the association of Δage with all-cause mortality was estimated. The P values in
the discovery and validation sets of the ESTHER cohort demonstrate moderate reproducibility between the two independent datasets. b, c Subse-
quently, we analyzed the Spearman correlation of these CpGs with chronological age. CpGs with significant association with all-cause mortality
were overall hypomethylated upon aging (in the discovery set (b) and in the validation set (c)). The lines indicate a FDR significance level of 0.05
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expectancy, but the reproducibility in independent
cohorts is overall not very high. Furthermore, we
demonstrate that significant association with all-cause
mortality is particularly observed in CpGs that become
hypomethylated upon aging. It is therefore conceivable
that a combination of such specific age-associated
CpGs gives rise to alternative epigenetic age predictors
that better reflect the association of Δage with all-cause
mortality—and may hence be a better biomarker for
biological aging.
There are however limitations that need to be critically

taken into consideration: (1) only blood samples have been
considered for this analysis, and it remains to be demon-
strated if the findings hold also true for cells from other tis-
sues; (2) the association of life expectancy with CpGs that
become hypomethylated upon aging was only addressed on
elderly people, whereas biomarkers for biological aging may
rather be desired for young humans who had not yet devel-
oped age-related diseases [29]; (3) Δage of epigenetic age
predictions may have systematic offsets, and hence, it re-
mains a challenge to entirely rule out that the results are
impacted by chronological age; (4) the beta values of Illu-
mina BeadChip correlate with the absolute level of DNAm,
but the precision is not always high [30]. Particularly, for
age predictors based on individual CpGs, it therefore ap-
pears to be advantageous to train model on data that was
generated by more quantitative methods—such as pyrose-
quencing, MassARRAY, bisulfite deep sequencing, or digital
PCR [18]; and (5) last but not least, the association with all-
cause mortality is only one aspect of biological aging, and it
will be important to better understand the association with
other molecular parameters, such as telomere length, or
functional measures, such as physical strength, cognitive
decline, and other signs of aging [3].

Additional file

Additional file 1: This file contains additional details on the methods,
Additional file 1: Figures S1–S2, and Additional file 1: Tables S1–S6. (PDF 1054 kb)
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