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Abstract

Background: DNA methylation is a key epigenetic mechanism that is suggested to be associated with blood lipid
levels. We aimed to identify CpG sites at which DNA methylation levels are associated with blood levels of triglycerides,
high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and total cholesterol in 725
participants of the Rotterdam Study, a population-based cohort study. Subsequently, we sought replication in a
non-overlapping set of 760 participants.

Results: Genome-wide methylation levels were measured in whole blood using the Illumina Methylation 450 array.
Associations between lipid levels and DNA methylation beta values were examined using linear mixed-effect models.
All models were adjusted for sex, age, smoking, white blood cell proportions, array number, and position on array. A
Bonferroni-corrected p value lower than 1.08 × 10−7 was considered statistically significant. Five CpG sites annotated to
genes including DHCR24, CPT1A, ABCG1, and SREBF1 were identified and replicated. Four CpG sites were associated with
triglycerides, including CpG sites annotated to CPT1A (cg00574958 and cg17058475), ABCG1 (cg06500161), and SREBF1
(cg11024682). Two CpG sites were associated with HDL-C, including ABCG1 (cg06500161) and DHCR24 (cg17901584).
No significant associations were observed with LDL-C or total cholesterol.

Conclusions: We report an association of HDL-C levels with methylation of a CpG site near DHCR24, a protein-coding
gene involved in cholesterol biosynthesis, which has previously been reported to be associated with other metabolic
traits. Furthermore, we confirmed previously reported associations of methylation of CpG sites within CPT1A, ABCG1,
and SREBF1 and lipids. These results provide insight in the mechanisms that are involved in lipid metabolism.
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Background
Genetics is an important determinant of lipid levels
which may affect them by changing the expression levels
of the genes [1]. Gene expression levels, however, are
also regulated by DNA methylation, which is one of the
most studied mechanisms in the field of epigenetics and
may therefore have an effect on lipid levels [2]. In
contrast to the DNA sequence, DNA methylation is
dynamic over time and responsive to the environment;
therefore, DNA methylation could also change in
response to blood lipid levels [3].

A few studies using candidate gene approaches have
reported that DNA methylation at several loci, such as
APOE and ABCA1, are associated with lipid levels [4, 5].
In addition, epigenome-wide association studies (EWAS)
have recently become available, providing the possibility
to identify associations between blood lipid levels and
DNA methylation at novel loci [3]. To date, EWAS have
identified associations between differentially methylated
genes at a few novel loci, such as TNNT1, CPT1A, and
ABCG1, and blood lipid levels [6–8]. However, so far,
most studies investigating the association between DNA
methylation and lipids have been performed in patient
populations, while only one study has been performed
within a population-based study. As DNA methylation
may vary across different states of health, further
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population-based studies are needed to explore these
associations in the general population.
In this study, we aimed to investigate the association

between blood DNA methylation levels and blood levels of
triglycerides, high-density lipoprotein cholesterol (HDL-C),
low-density lipoprotein cholesterol (LDL-C), and total
cholesterol in of 725 participants of the Rotterdam Study, a
population-based cohort study. Subsequently, we sought
replication in a non-overlapping set of 760 participants.

Results
Participant characteristics
Participant characteristics of the discovery cohort (n = 725)
and the replication cohort (n = 760) are presented in
Table 1. Levels of triglycerides and total cholesterol were
similar in both cohorts. Mean levels of HDL were slightly
lower in the discovery cohort compared to the replication
cohort (1.4 vs. 1.5 mmol/L, p < 0.001). Mean levels of
LDL-C were higher in the discovery cohort compared
to the replication cohort (3.9 vs. 3.7 mmol/L, p = 0.02).
The mean age was significantly higher (p < 0.001) in the
replication cohort (67.7 ± 5.9 years) compared to the
discovery cohort (59.9 ± 8.2 years). In the discovery cohort,
27% of the population was current smokers, whereas in the
replication cohort, this was 10% (p < 0.001).

Discovery panel
The associations between DNA methylation probes and
blood lipid levels are presented in Manhattan plots (Figs. 1
and 2). Table 2 shows the Bonferroni-significant CpGs.
We identified five CpG sites associated with triglyceride
levels. These CpG sites were annotated to CPT1A

(cg00574958 and cg17058475), ABCG1 (cg06500161),
SREBF1 (cg11024682), and DHCR24 (cg17901584). CpG
sites annotated to CPT1A and DHCR24 were negatively
associated with triglycerides, whereas CpG sites annotated
to ABCG1 and SREBF1 were positively associated with
triglycerides. We identified three CpG sites associated
with HDL-C. These CpG sites were annotated to ABCG1
(cg06500161) and DHCR24 (cg17901584), and one CpG
site was not annotated to a gene (cg14816825). The CpG
site annotated to DHCR24 was positively associated with
HDL-C; the other two CpG sites were negatively associ-
ated with HDL-C. We did not find significantly associated
CpG sites for LDL-C and total cholesterol levels in the
discovery cohort.

Replication panel
Of the five CpG sites significantly associated with
triglycerides in the discovery cohort, four replicated in
the replication cohort, including CPT1A (cg00574958
and cg17058475), ABCG1 (cg06500161), and SREBF1
(cg11024682). Of the three CpG sites significantly associ-
ated with HDL-C in the discovery cohort, two replicated in
the replication cohort, including ABCG1 (cg06500161) and
DHCR24 (cg17901584). Results from the discovery and
replication cohorts were combined using fixed-effect
meta-analyses.

Meta-analyses
In order to test potential confounding, additional models
with adjustment for lipid-lowering medication, waist
circumference, and other lipids were performed in the com-
bined analyses. Some of the effect estimates decreased in
strength, but overall, the results remained similar to those of
model 1 (Table 3). Furthermore, results from meta-analyses
revealed seven new CpG sites associated with triglycerides,
including TXNIP, TMEM49, SLC7A11, and KCNA3. An
additional 55 CpG sites were associated with HDL-C.
Methylation of four CpG sites were associated with total
cholesterol, including CpGs annotated to IFFO1, ABCG1,
and DHCR24 (Additional file 1: Table S1).

Additional analyses
Since lipid levels might be affected by dietary fat intake,
we explored whether intake of total fat, poly-unsaturated
fatty acids (PUFA), mono-unsaturated fatty acids
(MUFA), and saturated fatty acids (SFA) were associated
with DNA methylation of significantly replicated CpG
sites, using linear regression models. From these models,
we observed no significant association between fat intake
and methylation of DHCR24, SREBF1, ABCG1, or
CPT1A (Additional file 2: Table S2). To test if there was
an interaction between lipid-lowering medication or fat
intake and the CpG site located in the DHCR24 gene on
blood lipid levels, interaction terms were added to the

Table 1 Participant characteristics

Discoverya Replicationa p valueb

N 725 760

Gender (male) 336 (46%) 324 (42%) 0.14

Age (years) 59.9 ± 8.2 67.7 (5.9) <0.001

BMI (kg/m2) 27.6 ± 4.6 27.8 (4.2) 0.48

Obesity (BMI > 30) 173 (24%) 194 (26%) 0.54

Waist circumference 93.7 ± 12.8 94.4 ± 12.0 0.318

Current smoking (yes) 197 (27%) 79 (10%) <0.001

Triglycerides (mmol/L) 1.3 [0.9–1.8] 1.3 [1.0–1.7] 0.66

HDL-cholesterol (mmol/L) 1.4 (0.41) 1.5 (0.44) <0.001

LDL-cholesterol (mmol/L) 3.9 (1.00) 3.7 (0.95) 0.001

Total cholesterol (mmol/L) 5.6 (1.07) 5.5 (1.03) 0.26

Lipid-lowering medication (yes) 191 (26%) 238 (31%) <0.001

CHD 42 (6%) 61 (8%) 0.003

DM 72 (10%) 94 (12%) 0.13
aValues are presented as mean ± SD, median [IQR], or N (%)
bCharacteristics of the discovery cohort and replication cohort were compared
with ANOVA
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regression model. However, none of these interaction
terms were significant. Sensitivity analyses in which we
replaced beta values with M values showed similar
results (Additional file 3: Table S3).

Methylation risk scores
The methylation risk score was calculated using eight
CpG sites for triglycerides and seven CpG sites for
HDL-C, based on current and previously reported find-
ings [7, 8]. The correlation coefficients of these CpG
sites are presented in Additional file 4: Table S4 and
Additional file 5: Table S5. For triglycerides, 9% of the
variance was explained by the methylation risk score.
For HDL-C, 5% of the variance was explained by the
methylation risk score (Additional file 6: Table S6). To
test whether the association between methylation risk
scores and lipids differed by lipid-lowering medication
use, interaction terms were tested. For both triglycerides
as HDL-C, none of the interaction terms were signifi-
cant. The difference in levels of triglycerides and HDL-C

per quartile of methylation risk score are presented in
Figs. 3 and 4. HDL-C levels decrease as quartiles of
methylation risk score increase. Triglyceride levels in-
creased from the first quartile to the second quartile
but remained similar for the third quartile and the
fourth quartile.

Expression levels
The associations between DNA methylation of ABCG1
and CPT1A and their expression levels are presented in
Additional file 7: Table S7. Of the four genes of which
the significantly associated CpG sites were annotated,
only data on expression levels for CPT1A and ABCG1
passed quality control. For CPT1A, the expression
(ILMN_1696316) was negatively associated with the
methylation of CPT1A at both identified CpG sites
(cg00574958: p = 7.6 × 10−4, cg17058475: p = 5.1 × 10−3).
Expression of ABCG1 at two of the five transcripts
(ILMN_1794782 and ILMN_2329927) were negatively

Fig. 1 Manhattan plot epigenome-wide associations between genome-wide DNA methylation and triglycerides

Fig. 2 Manhattan plot epigenome-wide associations between genome-wide DNA methylation and HDL
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associated with methylation of the ABCG1 CpG site
(p = 6.6 × 10−14 and 3.7 × 10−11).

Discussion
The current study reports the results of an epigenome-
wide association study of fasting triglycerides, HDL-C,
LDL-C, and total cholesterol blood levels. We identified
and replicated a CpG site near DHCR24 to be related
with HDL-cholesterol. Moreover, we confirmed former
reports that methylation of CpG sites within ABCG1 are
associated with HDL-C, and methylation of CpG sites
within CPT1A, ABCG1, and SREBF1 were associated
with triglycerides. The majority of these associations
were independent of several potentially confounding

factors, such as use of lipid-lowering medication, waist
circumference, or other lipid traits. The differentially
methylated CpG sites combined in a methylation risk
score explained up to 9% of the variance in triglycerides
and 5% of the variance in HDL-C.
We observed that methylation of a CpG site

(cg17901584) annotated to the DHCR24 gene was asso-
ciated with HDL-C. This CpG site is located within 1 Kb
upstream of the DHCR24 gene (Fig. 5). The DHCR24
gene encodes for the cholesterol biosynthesis enzyme
3-hydroxysterol-24 reductase, which catalyzes the con-
version of desmosterol to cholesterol [9, 10]. Mutations
in the DHCR24 gene may cause desmosterolosis, an
autosomal recessive disease characterized by high levels

Table 3 Associations between genome-wide DNA methylation and lipid levels (meta-analyses)

Model 2a Model 3b Model 4c

ProbeID Regression coefficient pd Regression coefficient pd Regression coefficient pd Gene

TG cg00574958 −0.0142 2.6 × 10−26 −0.0114 1.9 × 10−16 −0.0161 1.5 × 10−22 CPT1A

cg06500161 0.0167 1.4 × 10−24 0.0153 3.9 × 10−18 0.0151 7.0 × 10−14 ABCG1

cg11024682 0.0147 3.0 × 10−19 0.0124 8.4 × 10−13 0.0138 1.0 × 10−11 SREBF1

cg17058475 −0.0146 3.1 × 10−13 −0.0120 8.8 × 10−09 −0.0196 9.2 × 10−16 CPT1A

cg17901584 −0.013 1.9 × 10−08 −0.0104 2.5 × 10−05 −0.012 2.5 × 10−05 DHCR24

HDL-C cg06500161 −0.0187 9.5 × 10−23 −0.0166 9.5 × 10−16 −0.0116 2.5 × 10−07 ABCG1

cg14816825 −0.0104 3.2 × 10−07 −0.0145 3.8 × 10−07 −0.0127 1.7 × 10−07 NAe

cg17901584 0.0164 2.4 × 10−09 0.0128 1.3 × 10−05 0.0116 3.6 × 10−04 DHCR24

All models are adjusted for age, gender, current smoking, leukocyte proportions, array number, and position on array
Values are regression coefficients based on linear mixed models and reflect differences in methylation beta values per increase in HDL-C or log-transformed
triglyceride unit
aModel 2: model 1 + lipid-lowering medication use
bModel 3: model 1 + waist circumference
cModel 4: model 1 + other lipids
dP values in italic indicate statistical significance. Level of significance: p < 7.14 × 10−03
eNot annotated

Table 2 Epigenome-wide associations between genome-wide DNA methylation and lipid levels

Discovery Replication

CpG site Chromosome Position Regression coefficient pa Regression coefficient pa Gene

Triglycerides cg00574958 11 68607622 −0.0206 1.23 × 10−15 −0.0114 7.24 × 10−13 CPT1A

cg06500161 21 43656587 0.0149 5.02 × 10−11 0.0201 1.46 × 10−15 ABCG1

cg11024682 17 17730094 0.0135 3.40 × 10−10 0.0172 3.27 × 10−11 SREBF1

cg17901584 1 55353706 −0.0162 1.56 × 10−08 −0.0068 9.54 × 10−02 DHCR24

cg17058475 11 68607737 −0.0183 9.84 × 10−08 −0.0118 1.71 × 10−06 CPT1A

HDL-C cg06500161 21 43656587 −0.0202 1.84 × 10−12 −0.0189 3.29 × 10−12 ABCG1

cg14816825 11 12128203 −0.0143 6.31 × 10−08 −0.0051 1.15 × 10−01 NAb

cg17901584 1 55353706 0.0196 6.44 × 10−08 0.0142 1.03 × 10−03 DHCR24

Models are adjusted for age, gender, current smoking, leukocyte proportions, array number, and position on array
Values are regression coefficients based on linear mixed models and reflect differences in methylation beta values per increase in HDL-C or log-transformed
triglyceride unit
aP values in italic indicate statistical significance. Level of significance: p < 1.08 × 10−07(discovery cohort), p < 7.14 × 10−03(replication)
bNot annotated
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Fig. 3 Methylation risk score in quartiles and levels of triglycerides

Fig. 4 Methylation risk score in quartiles and levels of HDL-C
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of desmosterol [11]. Since DHCR24 is involved in the
cholesterol metabolism, an association between methy-
lation in this gene and HDL-C is plausible. However, to
date, it is not clear how methylation of DHCR24 is
involved in sterol regulation. It has been suggested that
regulation of DHCR24 expression is mediated by sterol
regulatory element-binding proteins (SREBP) in re-
sponse to cholesterol availability [12]. We observed in
meta-analysis of the discovery and replication cohort
that methylation of a CpG site in the SREBF1 gene,
which encodes for SREBP, was associated with HDL-C
levels. These findings suggest that mechanisms in
which these two genes are involved might interact. Un-
fortunately, as the probes for these genes did not pass
quality control, we did not have data on the expression
levels of these genes to further investigate this hypoth-
esis. Moreover, the DHCR24 gene is located near
PCSK9, which is associated with cholesterol levels [1].
Therefore, the association we observed between
DHCR24 methylation and HDL-C might be due to SNP
variation in PCSK9. However, when we adjusted our
models on HDL-C for the top SNP from genome-wide
association studies (GWAS), the association remained
similar (data not shown). To our knowledge, an associ-
ation between methylation of cg17901584 (DHCR24)
and HDL-C has not been previously reported. However,
an EWAS performed by Dekkers et al. showed that
another CpG site located in the DHCR24 gene, cg2716885,
was associated with LDL-C levels [13]. Although there are

no previous studies that report an association between
methylation of cg17901584 (DHCR24) and HDL-C, previ-
ous studies reported associations between methylation of
this CpG site with waist circumference and phosphatidyl-
choline (PC ae C36:5) [14, 15]. In additional models, we ad-
justed for waist circumference, where we indeed observed a
decrease in strength compared to the main model. However,
the association stayed significant. Two scenarios may
explain these results. A higher waist circumference may
affect lipid levels and consequently modify DNA
methylation. Alternatively, waist circumference could
be a confounding factor since metabolic traits are
highly correlated. Due to the cross-sectional design of
our study, it is difficult to make strong conclusions
whether waist circumference is a confounder or a
precursor in this association.
In addition to our novel finding, we also replicated

findings previously reported by the GOLDN study [7].
In line with findings from GOLDN, we observed a sig-
nificant negative association between two CpG sites
(cg00574958 and cg17058475) located in the CPT1A
gene and triglycerides. Carnitine palmitoyltransferase-1,
which is encoded by the CPT1A gene, has an important
role of transporting long-chain fatty acids in mitochon-
dria. In order to obtain more knowledge on the epigen-
etic mechanisms of CPT1A, we explored expression
levels of this gene in relation to methylation. Similar to
findings from the GOLDN study, we observed a negative
association between DNA methylation and expression

Fig. 5 Annotation of cg17901584 to DHCR24
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levels of one probe, suggesting that increased methyla-
tion at CPT1A decreases expression of this gene [7].
Furthermore, some of the findings previously reported

by KORA were also replicated [8]. In line with findings
from KORA, we also found a significant negative associ-
ation between a CpG site (cg06500161), located in the
ABCG1 gene and HDL-C. We also found a significant
positive association between CpG sites located in
ABCG1 (cg06500161) and SREBF1 (cg11024682) and tri-
glycerides. Although these findings regarding triglycer-
ides correspond to findings from KORA, the CpG sites
in ABCG1 and SREBF1 differed from the CpG sites
found in our study. To further explore the epigenetic
mechanisms of ABCG1, we investigated whether DNA
methylation of the CpG sites at ABCG1 was associated
with gene expression. Similar to KORA, we observed a
negative correlation between DNA methylation at CpG
sites annotated to ABCG1 with two mRNA expression
probes [8]. In our study, ILMN_1794782 showed the
strongest negative correlation (r = −0.30) with methyla-
tion of ABCG1 (cg06500161), which was also reported
by the authors from KORA as one of the most strongly
related transcripts to ABCG1 methylation. These results
are in agreement with a mediatory role of gene ABCG1
expression in the association between DNA methylation
and lipid levels. In addition to lipid levels, other studies
have also demonstrated an association between methyla-
tion levels at CpG sites located in CPT1A, ABCG1, and
SREBF1 with other cardiometabolic traits, such as myo-
cardial infarction, body mass index (BMI), waist circum-
ference, insulin, and several metabolomic traits [8, 14–16].
These previously reported findings and our current results
suggest that methylation of these genes are involved in
metabolic mechanisms and may be potential therapeutic
targets for cardiovascular- and metabolic-related diseases.
Results from the discovery and replication cohorts

were combined in meta-analysis, which revealed a large
amount of additional differentially methylated CpG sites
that are associated with HDL-C levels. These additional
findings include several CpG sites annotated to genes
that were previously reported in GWAS on lipid levels,
such as LDLR and CMIP [1]. LDLR, low-density lipopro-
tein receptor, is a protein-coding gene, and mutations in
this gene can cause familial hypercholesterolemia [17].
CMIP encodes a c-Maf-inducing protein, which is in-
volved in T cell signaling pathway, and this gene is
known to be associated with speech impairment [18].
However, less is known on the role of CMIP in choles-
terol metabolism. Considering previously reported and
current findings, there might be a genetic effect as well
as an epigenetic effect of these genes on HDL-C levels.
Nevertheless, these findings should be interpreted with
caution, as the results of our meta-analyses are not repli-
cated by other studies yet.

This study has several strengths and limitations that
should be considered with the interpretation of the cur-
rently reported results. The strength of this study is the
availability of genome-wide DNA methylation data in a
large sample of adults from the general population and
an internal replication set. Although we had a large sam-
ple size, more loci can be identified with even larger
sample sizes. To illustrate, when the results from the
discovery and replication cohorts were combined in
meta-analysis, an additional set of 55 new significant as-
sociations for HDL-C were observed (Additional file 1:
Table S1), which emphasizes the benefits of using a lar-
ger sample size in EWAS. A limitation of this study is
the use of whole blood samples to determine DNA
methylation levels, whereas DNA methylation is cell type
specific. When methylation is studied as a consequence
of lipid levels, then leukocytes are a relevant tissue.
However, when the aim is to study methylation sites that
are causal of lipid levels, leukocytes might not be a rele-
vant tissue. Therefore, certain important CpG sites could
have been overlooked in our study. Nevertheless, previ-
ous studies have demonstrated that results can be repli-
cated across tissues, suggesting that the use of blood
tissue is not necessarily a major issue [14, 19]. Moreover,
associations may have been overlooked be due to the
type of measurements used in our study. The levels of
LDL-C in our study were calculated with use of the
Friedewald formula [20], which may not have been spe-
cific enough to identify an association between genome-
wide DNA methylation and LDL-C. Results from another
study performed within the GOLDN study showed that
methylation of two CpG sites in the CPT1A gene is associ-
ated with LDL-C and VLDL-C [21]. These results overlap
with our findings of triglycerides, but we did not identify
CpG sites associated with LDL. This discrepancy in results
may be due to a more detailed quantification of lipids by
NMR spectroscopy in the GOLDN study. In our current
study, we used beta values to analyze methylation levels.
Since it has been suggested that there could be heterosce-
dasticity for CpG sites with very low or high methylation,
the use of M values is recommended. These M values repre-
sent the Logit transformation of the beta values and are con-
sidered to have a better detection rate and true positive rate
[22]. In order to explore whether this could have affected
our results, we performed additional analyses in which we
replaced beta values with M values. However, these sensitiv-
ity analyses showed that results were similar for beta values
and M values (Additional file 3: Table S3), which suggests
that in our study heteroscedasticity may not be an issue.
Due to the cross-sectional design, we cannot determine
the temporal direction of the association between DNA
methylation and blood lipids. Furthermore, the ob-
served associations could be explained by an unidenti-
fied common factor, as residual confounding is always
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an issue in observational studies. Another possibility is
that the results may be confounded by differences in
cell type proportion. In order to avoid this source of
confounding, we adjusted all analyses for measured or
estimated cell type proportions [23]. Finally, our replica-
tion cohort had a 7.8 years higher mean age compared to
the discovery cohort, which could have resulted in differ-
ences in association between DNA methylation and lipid
levels. However, when we tested our models for interaction
with age, we did not find any evidence that the strength of
associations was affected by age.

Conclusion
In conclusion, we report an association of HDL-C levels
with methylation of a CpG site near DHCR24, a protein-
coding gene involved in cholesterol biosynthesis. This
CpG site has previously been reported to be associated
with other metabolic traits, such as waist circumference.
In addition, we replicated associations previously re-
ported by other studies. These results provide insight in
the mechanisms that are involved in cholesterol and
lipid metabolism and identify potential new therapeutic
targets. Future studies should include a larger sample
size and further investigate the independency and caus-
ality of the observed associations.

Methods
Design and subjects
This study was embedded within the Rotterdam Study, a
population-based cohort study in Rotterdam, the
Netherlands. The design of the Rotterdam Study has
been previously described in detail elsewhere [24].
Briefly, residents of Ommoord, a district in Rotterdam,
aged 45 years and older were invited to participate. The
Rotterdam Study includes three sub-cohorts. We used
data from the baseline and second visit of the third co-
hort (RSIII-1 and RSIII-2) and the third visit from the
second cohort (RSII-3).

Discovery panel
We used the data from RSIII-1 as the discovery panel:
between February 2006 and December 2008, 3932 par-
ticipants were examined. EWAS measurements were
performed on a random subset of 731 subjects, of whom
725 had fasting blood samples available and were in-
cluded in the current analyses.

Replication panel
We sought replication in a set of 767 participants
from RSII-3 and RSIII-2. Between February 2011 and
February 2012, 1887 participants from RSII-3 were
examined. Between March 2012 and December 2013,
approximately 3000 participants from RSIII-2 were
examined. From the participants included in the

replication study, 760 had fasting blood samples avail-
able and were included for analyses. None of the par-
ticipants included in the replication study were
included in the discovery cohort.

DNA methylation
DNA was extracted from whole blood (stored in EDTA
tubes) by standardized salting out methods. Genome-wide
methylation levels were measured using the Illumina
Infinium HumanMethylation450 Beadchip (Illumina Inc.,
San Diego, CA) [25]. Briefly, samples (500 ng of DNA per
sample) were bisulfite treated with use of the Zymo EZ-96
DNA methylation kit (Zymo Research, Irvine, CA, USA).
Thereafter, the samples were hybridized to the arrays
according to the protocol of the manufacturer. During
quality control in RSIII-1, samples showing incomplete bi-
sulfite treatment were excluded (n = 5) as were samples
with a low detection rate (<99%) (n = 7) and gender swaps
(n = 4). Probes with a detection p value >0.01 in >1% of
the samples were filtered out [26, 27]. In RSII-3 and
RSIII-2, outlying samples were checked using the first
two principal components obtained using principal
component analysis (PCA). None of the samples
failed the quality control checks, indicating high qual-
ity data. Per individual probe, participants with
methylation levels higher than three times the inter-
quartiles range (IQR) were excluded. The methylation
proportion of a CpG site was reported as a beta value
ranging from 0 to 1 [28]. We used the genome coor-
dinates provided by Illumina (GRCh37/hg19) to iden-
tify independent loci.

mRNA expression data
Total RNA was isolated (PAXgene Blood RNA kits—Qia-
gen) from whole blood (PAXgene Tubes—Becton Dickin-
son). All RNA samples were analyzed using the LabChip
GX (Caliper) according to the manufacturer’s instructions,
to ensure a constant high quality of RNA preparations.
Samples with an RNA quality score >7 were amplified and
labeled (Ambion TotalPrep RNA) and hybridized to the
Illumina HumanHT-12 v4 Expression BeadChips, as de-
scribed by the manufacturer’s protocol. RNA samples
were processed at the Genetic Laboratory of Internal
Medicine, Erasmus University Medical Center Rotterdam.
The dataset including 881 expression samples from RSIII-
1 is available at GEO (Gene Expression Omnibus) public
repository under the accession GSE338828. Gene expres-
sion data was quantile normalized to the median distribu-
tion and log2 transformed. Probe and sample means were
centered to zero. Genes were considered significantly
expressed when detection p values calculated by Gen-
ome Studio were less than 0.05 in more than 10% of
all discovery samples, which added to a total number
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of 21,238 probes. The eQTL-mapping pipeline was
used to perform quality control [29].

Blood lipids
All participants had blood samples taken during the
visits to the research center. From the blood samples,
concentrations of triglycerides, HDL-C, and total choles-
terol were measured using an automated enzymatic
method. LDL-C was calculated using the Friedewald for-
mula (total cholesterol −HDL-C − triglycerides/5) [20].
Participants with non-fasting blood samples were
excluded from the current analyses (n = 6).

Covariates
Height and weight were measured during the center
visit, and BMI was calculated (kg/m2). During home visit
interviews, data on tobacco smoking, dietary intake, and
medication use were collected. Information on smoking
history was acquired from questionnaires and catego-
rized as never, former, or current smoking. Nutritional
data was collected using semi-quantitative FFQs, and in-
formation on the intake of different types of fatty acids
were obtained. Fat intake was reported as total fat,
PUFA, MUFA, and SFA. Information regarding the use of
lipid-lowering medication was derived from both struc-
tured home interviews and linkage to pharmacy records.

Statistical analysis
Triglyceride level was log transformed using a natural
log to obtain a normal distribution. The associations be-
tween lipid levels and DNA methylation beta values
were examined using linear mixed-effect models.

Discovery
All models were adjusted for sex, age, smoking
(current, former, or never), white blood cell propor-
tions, and technical covariates (model 1). Gender, age,
and smoking were added to the model as fixed effects.
To correct for cell mixture distribution, leukocyte pro-
portions (CD8+ T cells, CD4+ T cells, NK cells, B cells,
monocytes, and granulocytes) were estimated using
the Houseman method and were added to the model
as fixed effects [23]. Technical covariates included
array number and position on the array, and these
were added to the models as random effects. To
account for multiple testing, we used a Bonferroni-
corrected p value of 1.08 × 10−7 (0.05/463,456 probes).

Replication
Identified probes were replicated using the same models
as in the discovery cohort, further adjusted for the
cohort. The adjustment for cell counts (monocytes,
granulocytes, and lymphocytes) was based on lab mea-
surements rather than Houseman estimates. For the

replication, we applied a Bonferroni-corrected signifi-
cance threshold of 6.25 × 10−3 (0.05/8 probes).

Meta-analyses
To combine results from the discovery and replication
cohorts, fixed-effect meta-analyses were performed in
METAL, using an inverse variance weighted method. In
subsequent analyses, models were further adjusted for
lipid-lowering medication use (model 2), waist circum-
ference (model 3), and other lipids (model 4).

Additional analyses
Lipid levels may be affected by dietary fat intake, and
this might be mediated through DNA methylation.
Therefore, we explored associations between different
types of fatty acid intake and DNA methylation at sig-
nificantly replicated CpG sites. To account for potential
measurement error and confounding by total energy in-
take, we used the residual method to adjust the fatty acid
intake for total energy intake. Briefly, linear regression
analyses were used with energy intake as the independ-
ent variable and fatty acid intake as the dependent vari-
able to calculate the energy-adjusted intake of individual
fatty acids for each subject. We regressed out the esti-
mated leukocyte proportions, age, sex, array number,
and position on array on the beta values of the CpG sites
using linear mixed models. The associations between
energy-adjusted fatty acid intakes and the residuals of
the DNA methylation beta values were examined using
linear regression models. All models were adjusted for
sex, age, total energy intake (kcal/day), and smoking.
Furthermore, to test if there was an interaction between
lipid-lowering medication or fat intake and methylation
at novel loci on lipids, interaction terms were added to
the regression model, with one of the lipid traits as the
outcome. In post hoc analyses, we adjusted our models
on HDL-C for the PCSK9 genotype, as DHCR24 and
PCSK9 are located near each other. In these analyses,
the top SNP from GWAS (rs17111503) was added to
our main model (model 1). As it is recommended to use
M values due to heteroscedasticity in beta values, we
performed additional analyses in which we replaced beta
values with M values for comparison [22].

Methylation risk score
A methylation risk score was calculated based on CpG
sites that were associated with the phenotypes, using
both newly identified CpG sites in the current study as
well as the ones previously reported for the correspond-
ing trait [7, 8]. First, CpG sites were checked for correl-
ation and CpGs were pruned giving priority to the most
significant CpGs reported by the largest studies using a
correlation coefficient cutoff of 0.6. Second, linear re-
gression analyses were performed in the replication
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cohort, using the lipids as the dependent variable and
the included CpG sites as independent variables. Models
were adjusted for age, sex, blood cell counts, and
technical covariates. The effect estimates were used to
build the methylation risk score using data from the dis-
covery panel. With the use of linear regression models,
we calculated the lipid variance explained by the
methylation risk score.

Functional analyses
Considering that DNA methylation can have an effect
on the expression of genes, we explored the association
between DNA methylation at the statistically significant
CpG sites identified by EWAS and mRNA expression of
the corresponding genes. The DNA methylation propor-
tions and mRNA expression levels of these genes were
checked for association using linear mixed models,
which were adjusted for age, sex, smoking, white blood
cell proportions, and technical covariates (array number
and position on array).
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