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Abstract

Background: Several studies have reported age-associated changes in DNA methylation in the first few years of life
and in adult populations, but the extent of such changes during childhood is less well studied. The goals of this
study were to investigate to what degree intra-individual changes in DNA methylation are associated with aging
during childhood and dissect the methylation changes directly associated with aging from the effect mediated
through variation in cell-type composition (CTC).

Results: We performed reduced representation bisulfite sequencing (RRBS) in peripheral whole-blood samples
collected at 2, 10, and 16 years of age. We identified age-associated longitudinal changes in DNA methylation at
346 CpGs in 178 genes. Analyses separating the effect mediated by CTC variability across age identified 26 CpGs
located in 12 genes that associated directly with age. Hence, the CTC changes across age appear to act as a
mediator of the observed DNA methylation associated with age. The results were replicated using EpiTYPER in a
second sample set selected from the same cohort. Gene ontology analyses revealed enrichment of transcriptional
regulation and developmental processes. Further, comparisons of the mean DNA methylation differences between
the time points reveal greater differences between 2 to 10 years and 10 to 16 years, suggesting that the identified
age-associated DNA methylation patterns manifests in early childhood.

Conclusions: This study reveals insights into the epigenetic dynamics associated with aging early in life. Such
information could ultimately provide clues and point towards molecular pathways that are susceptible to aging-related
disease-associated epigenetic dysregulation.
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Background
DNA methylation has diverse roles in many aspects of
human biology (e.g., cell differentiation [1], genomic
imprinting [2], and gene expression [3]). In mammals,
DNA methylation is predominantly restricted to CpGs,
which are unevenly distributed across the genome. DNA
methylation is highly variable between individuals but
also between cell types and tissues [4]. Variation in DNA

methylation is also implicated in the development of dis-
eases such as cancer [5], autoimmunity [6], and obesity [7].
For most cell types, DNA methylation patterns become

set after cell differentiation and are generally considered
relatively stable. However, DNA methylation also exhibits
some dynamic characteristics, and DNA methylation land-
scapes change over a lifetime [8]. Age-associated changes
in DNA methylation involve two distinct phenomena: epi-
genetic drift and the epigenetic clock [9], both involving
intra-individual changes over time. However, while
epigenetic drift [8] involves changes that are different
between individuals, the epigenetic clock characterizes
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loci, which are systematic across individuals [10–12].
Changes in DNA methylation have been shown to occur
during aging as well as during the development of age-
related diseases, notably cancer [13], and are found to be
gene-specific and genome-wide [14–19], tissue-specific
[11, 20, 21], and tissue-independent [10, 21].
Genetics, the environment, and stochastic events are

believed to influence epigenetic changes, which are likely
to play important roles in mediating the risk for develop-
ing age-related diseases. However, a better understanding
of the normal range of temporal DNA methylation
changes is needed in order to fully investigate and
interpret disease-associated epigenetic changes. Previ-
ous studies are often based on peripheral whole-blood
samples consisting of a collection of different cell types
known to display very different DNA methylation pro-
files, and variability in cell-type composition has been
demonstrated to lead to false-positive age-related asso-
ciations of DNA methylation [22]. Hence, genome-wide
DNA methylation profiles, and the extent and role of
direct dynamic age-associated changes in DNA methy-
lation during childhood, remain largely unexplored.
Here, we seek to identify intra-individual changes in

DNA methylation during childhood through performing a
comprehensive epigenome-wide association study (EWAS)
using reduced representation bisulfite sequencing (RRBS).
In order to investigate the role of cell-type composition
(CTC) during aging, we applied a mediation analysis,
which, in recent years, has been established within the
framework of modern causal inference. Using this meth-
odological framework, we were able to obtain information
on the proportion of the age effect directly and indirectly
through CTC on DNA methylation. To our knowledge,
this is the first study investigating the dynamic nature of
DNA methylation during childhood in longitudinal data
dissecting the direct effect of aging from the effect me-
diated by cellular heterogeneity in blood samples.

Results
Data generation and quality assessment
We performed RRBS [23] in peripheral whole-blood
derived DNA isolated from children (n = 19 individuals)
at the age of 2, 10, and 16 years (n = 57 samples in total)
selected from the prospective birth cohort “Environment
and Childhood Asthma” (ECA) study [24]. Different
methods were used for DNA extraction at the different
time points, which could potentially introduce a bias. In
order to investigate this, we ran a separate control
experiment and compared the three methods in parallel
using Infinium 450 K data from ten individuals. Overall,
the different DNA extraction methods have little effect
on DNA methylation (Additional file 1: Figure S1).
Pairwise comparisons of the methods reveal small
(<4 %) differences, of which none overlapped with the

age-associated positions (aDMPs) identified in the present
study (data not shown).
We sequenced an average of 28.9 million 75 bp single-

end reads, 62.2 % aligned uniquely to the human gen-
ome. On average, 98.2 % of the aligned bases mapped
to the 40–220 bp in silico-digested fragments. For some
samples, a smaller fragment size range was excised
from the gel, resulting in missing data. The total set of
1,902,432 CpGs with at least ten reads from at least
one sample were filtered to only include autosomal
CpGs from at least ten individuals with observations
from all three time points, resulting in a final data set
of 635,899 CpGs. Quality control of the DNA methyla-
tion values using principal component analysis (PCA)
identified three outlier samples, which were excluded
from the downstream analyses. All samples showed
near complete (>99 %) bisulfite conversion of all non-
CpG cytosines (data not shown).

Widespread increase and decrease in DNA methylation is
associated with age during childhood, with a varying
proportion mediated by CTC variability
To explore age-associated DNA methylation, we analyzed
each CpG using a linear mixed-effects model (lme). The
analysis of the total effect (TE) of age on DNA methyla-
tion identified 346 genome-wide significant age-associated
differentially methylated positions (Fig. 1a) located in 178
genes. Of the 346 aDMPs, 196 (56.6 %) show a positive
correlation and 150 (43.4 %) a negative correlation with
age between 2 and 16 years as end points. The samples in
this study consist of individuals with unambiguous asthma
and non-asthmatic phenotypes, but we found no associ-
ation between asthma and age-associated changes in DNA
methylation (see the “Methods” section).
To assess whether differences in cell-type proportions

(CTP) in peripheral whole-blood have an impact on the
observed age-associated changes in DNA methylation,
we investigated whether CTC acts (totally or partially) as
a mediator. Following the rationale from modern causal
inference theory (see the “Methods” section, Fig. 1b) in
addition to the total effect (TE) presented above, we
evaluated the direct effect (DE), the causal mediation ef-
fect, or the indirect effect (IE), as well as the proportion of
the effect, which is acting through the CTC as a mediator.
To do this, we used the available cell counts from five cell
types (lymphocytes, neutrophils, monocytes, eosinophils,
and basophils, Additional file 2: Figure S2).
Based on these analyses, 21 of the 346 aDMPs also

show a genome-wide significant DE in addition to the
significant TE. The distribution across all 346 aDMPs,
with respect to the estimated proportion of the effect
acting through the CTC as a mediator, is very wide-
spread. Two hundred seventy-one of the 346 aDMPs
were partially mediated with values between 0 and 1
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(mean proportion mediated = 27 %, range = 2.7 to 67 %).
Hence, the TE was stronger than the DE with an IE in
the same direction compared to the TE and DE.
Seventy-four out of 346 aDMPs had a negative propor-
tion, meaning that the mediated effect direction was
different from the direction of effect for both TE and
DE (mean proportion mediated = −14 %, range = −1.3
to −41 %). In one case, the effect going through CTC
as a mediator was stronger than the original effect.
Interestingly, there appears to be a dependency be-
tween the degree of significance of the TE and the pro-
portion of the effect going through CTC as a mediator.
The standard deviation of CTC was 18 % for the lowest
quartile of the aDMP p values and 40 % for the upper
quartile, respectively (Additional file 3: Figure S3).
Consequently, we conclude that the CTC variability
across age has a varying impact on the age-associated
DNA methylation in our study, and that this should be
taken into account in the analyses.

After adjusting for CTC, we identified 26 genome-wide
significant direct effect aDMPs associated with 12 genes
(Table 1). Interestingly, one of the CpGs located in the
promoter region of TRIP6 was recently associated with
pubertal transition in a recent EWAS [19]. Of these 26, 21
overlapped the total set of 346 aDMPs significant for TE.
Hence, testing for the DE identified five additional aDMPs
(Fig. 1a). The quantile-quantile plot of the p values corre-
sponding to the tests for the TE and DE is shown in
Fig. 1c, indicating an enrichment of small p values for TE
compared to DE, supporting the concept of false-positive
associations between age and DNA methylation due to
different CTPs across age. This analysis strongly suggests
that the effect of age on DNA methylation in whole blood
is likely to be partially mediated by differences in CTPs.
Consequently, based on these stringent assumptions, we
chose to focus subsequent analyses on the 26 aDMPs
which remain genome-wide significant after adjusting for
varying CTC across age.

Fig. 1 Age-dependent DNA methylation is partially mediated by CTC variability. a Manhattan plot of p values from the lme test. Each point
represents a CpG (n = 635 899) with the chromosomal position along the x-axis and the negative logarithm of the associated p value on the y-axis.
Dashed line represents the FDR (blue) at 5 %. The aDMPs significant after adjustment for CTC are marked in red (n = 21, which overlaps with the 346
CpGs) and green (n = 5, additional CpGs). b Illustration of the division of the total effect (TE) between age and DNA methylation in the direct effect
(DE) illustrated by the arrow between age and DNA methylation and the indirect effect (ID) represented by the dashed arrows from age to CTC and
from CTC to DNA methylation. c Quantile-quantile plot of the p values for tests of the TE between age and DNA methylation (in blue) and the DE
between age and DNA methylation (in green). This plot indicates an enrichment of small p values for the test of the TE compared to the DE
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Age-associated DNA methylation differences manifest early
in childhood and are enriched for increased DNA methylation
Of the 26 aDMPs with a direct effect on age-dependent
DNA methylation, 20 showed an increase (76.9 %) and 6
(23.1 %) showed a decrease in mean DNA methylation
across age with 2 and 16 years as end points (Fig. 2a).
Hence, compared to the directionality of mean DNA
methylation changes with a significant TE, adjustment
for CTC results in a higher proportion of aDMPs showing
an increase in DNA methylation. Fourteen (51.9 %) of the
aDMPs are located in CpG islands that predominantly
(92.9 %) show increased DNA methylation with age.
In order to investigate whether different periods during

childhood are associated with different age-dependent
changes in DNA methylation, we separated the two time
points (2 to 10 years and 10 to 16 years) and explored the
magnitude and direction of the age-associated changes in
DNA methylation for the 26 aDMPs in more detail. The
aDMPs display a wide range of DNA methylation, but the

largest proportion exhibits intermediate DNA methylation
(>25 and <75 % mean DNA methylation) across all time
points (Fig. 2a). The majority of the aDMPs showed
greater mean DNA methylation differences between 2 and
10 years (range = −0.34 to 0.36, median = 0.17) compared
to 10 to 16 years (range = −0.14 to 0.15, median = 0.04)
(Fig. 2b). Hence, the strongest age-associated DNA methy-
lation differences are observed between 2 and 10 years.
This observation is also supported by unsupervised hier-
archical clustering of DNA methylation of the aDMPs,
which clearly separates the 2-year olds from the 10- and
16-year olds and forms a discrete cluster (Fig. 2c).
For completeness, we also investigated the pairwise

comparisons of the three time points at all CpGs with
data from at least ten individuals at both time points
with some variation. Results from these analyses revealed
the same trend seen by the lme test with no additional
CpGs showing age-associated changes in DNA methyla-
tion after adjustment for multiple testing.

Table 1 Significant aDMPs with a direct effect on aging (n = 26)

Chr Position Adjusted
p value

Mean difference
2 to 10 years

Mean difference
10 to 16 years

Mean difference
2 to 16 years

Gene In CGI

1 69596098 0.0066 −0.0245 −0.0697 −0.0941 – No

1 156883344a 0.0001 0.3168 0.0722 0.3891 PEAR1 No

1 156883372a 0.0463 0.1817 0.0111 0.1928 PEAR1 No

1 228400131 0.0263 0.2586 0.1004 0.3590 OBSNC Yes

1 228400135 0.0401 0.1595 0.0644 0.2239 OBSNC Yes

1 228400157 0.0463 0.2250 0.0287 0.2537 OBSNC Yes

1 228400210 0.0271 0.1841 0.0520 0.2361 OBSNC Yes

1 228400285 0.0427 0.2845 0.1512 0.4356 OBSNC Yes

2 233251546 0.0263 0.3498 0.0427 0.3926 ECEL1P2 Yes

2 233251551 0.0097 0.3378 0.0274 0.3652 ECEL1P2 Yes

4 117279915 0.0066 −0.1557 −0.1123 −0.2681 – No

4 117280012 0.0284 −0.2395 −0.0671 −0.3066 – No

5 78985800a 0.0455 0.1730 0.1003 0.2732 CMYA5 No

6 158097037 0.0409 0.2276 0.0110 0.2386 – No

7 100463812a 0.0254 −0.3432 −0.0831 −0.4262 TRIP6 Yes

8 6656321 0.0090 −0.1563 −0.0884 −0.2447 – No

9 136474402 0.0263 0.0524 0.0942 0.1466 – Yes

9 140173334 0.0066 0.2576 0.0925 0.3501 C9orf167 Yes

9 140173378 0.0229 0.0922 0.0555 0.1477 C9orf167 Yes

10 129537308 0.0066 0.3634 0.0584 0.4218 FOX12 Yes

14 105881000 0.0263 0.0370 0.0214 0.0584 – No

17 1179934 0.0344 −0.1037 −0.1406 −0.2443 TUSC5 No

17 75421287 0.0463 0.0196 0.0271 0.0467 SEPT9 No

17 76355061a 0.0066 0.2076 0.1098 0.3174 SOCS3 Yes

17 78262132 0.0486 0.1670 0.0400 0.2069 RNF213 No

20 62679572a 0.0401 0.1111 0.0882 0.1993 SOX18 Yes
aReplicated CpG site
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Age-associated DNA methylation is genome-wide and
often shows regional clustering
CpGs are unevenly distributed in the genome but often
form distinct regions and display considerable variation
in DNA methylation [25]. Different regions in the gen-
ome are known to display differential DNA methylation
(e.g., due to different biological functions as transcrip-
tional control of associated genes). To explore the gen-
omic localization of the significant aDMPs, we displayed
the genomic location of the mean DNA methylation
differences at the aDMPs per chromosome in a modified
Manhattan plot (Fig. 3a). Although the differences in
mean DNA methylation between the time points are
distributed throughout the genome, some regions stand
out and display large mean DNA methylation differ-
ences. For example, five neighboring CpGs located on

chromosome 17 (chr17: 76355020–76355068) that are
situated in a CpG island overlapping the promoter of
SOCS3 (suppressor of cytokine signaling 3) display a
consistent large increase in mean DNA methylation
between 2 and 10 years, whereas DNA methylation
profiles at 10 and 16 years are indistinguishable (Fig. 3b,
upper panel). Although there are distinct differences in
DNA methylation between 2 and 10 years at all five
CpGs, only one CpG showed genome-wide significance
(marked between two vertical lines). This representative
example demonstrates a limitation of this study related
to the small sample size and illustrates that we are
underpowered to detect the neighboring CpGs showing
the same clear trend. The same tendency was also ob-
served at CpGs adjacent to the majority of significant
aDMPs located in CpG islands (results not shown).

a

c

b

Fig. 2 Mean DNA methylation differences between time points. a Line plots of mean DNA methylation on the y-axis against the time points
on the x-axis separated by direction (decrease or increase in DNA methylation between 2 and 16 years as end points). b Density plots of the
differences in mean DNA methylation between time points. c Heatmap of DNA methylation at aDMPs with rows representing aDMPs and
columns representing samples. Cells are color scaled according to the level of DNA methylation (blue = low and red = high DNA methylation)
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a

b

Fig. 3 Chromosomal positions of mean DNA methylation differences. a Modified Manhattan plot of mean DNA differences by chromosomal
position along the x-axis and mean DNA methylation differences on the y-axis. Each point represents a CpG site with mean DNA methylation
differences between 2 and 10 years (black) and between 10 and 16 years (gray) for CpGs and mean DNA methylation differences between 2 and
10 years (red) and between 10 and 16 years (green) at the aDMPs (n = 26). b Scatter plot of DNA methylation at CpGs situated in a CpG island
overlapping the promoter and the first exon of SOCS3 generated by RRBS (upper panel) and EpiTYPER (replication data set, bottom panel) on the
y-axis and chromosomal position on the x-axis. Each point represents a CpG per sample colored by age (red = 2, blue = 10, and green = 16 years)
sorted by chromosomal position, and each point is jittered by 0.1). Smoothening lines represents local regression colored by time points. The
significant aDMP (chr17: 76355061) is highlighted between vertical lines

Gervin et al. Clinical Epigenetics  (2016) 8:110 Page 6 of 12



Replication
The Sequenom MassARRAY EpiTYPER platform was
used to replicate a subset of the aDMPs in a larger set of
samples (n = 31) selected from the same cohort. Using
this approach, we were able to provide an independent
measurement of DNA methylation at CpGs (n = 71)
located in six genes showing age-associated DNA methy-
lation (marked with an asterisk in Table 1). In situations
where closely located CpGs could not be separated by
cleavage as part of the protocol, the average DNA
methylation measurement is presented (Additional file 4:
Table S1). These data replicate the sequencing data and
confirmed the age-associated DNA methylation identified
by RRBS, and the 2-year olds separate from the 10- and
16-year olds (Fig. 3b and Additional file 5: Figure S4).
Furthermore, as also observed with RRBS, the DNA
methylation at aDMPs is a representative of neighbor-
ing CpGs in CpG islands.

Age-associated loci have regulatory properties and
developmental functions
Next, we aimed to extract biological meaning from the
genes associated with age-associated DNA methylation.
First, we used DAVID [26, 27] to explore the potential
of shared biological terms and pathways. In line with
the results presented above indicating that the study is
underpowered (probably due to small sample size), we
chose an exploratory approach and based the gene
ontology (GO) analyses on genes associated with CpGs
with a BH FDR < 25 % (n = 78 genes out of 15 339
genes included in the background list). Although a lib-
eral cutoff, this captures a reasonable portion of the top
ranked genes (0.5 % of the genes included) in the lme
test. These GO analyses identified the enrichment of
numerous relevant features with regulatory properties
and developmental functions (Table 2). Specifically, the
most significantly enriched categories have all regula-
tory functions with a potential role in different aspects
of development.

Discussion
This study has revealed intra-individual age-associated
changes in DNA methylation across childhood, which
is not mediated by variation in CTC in whole blood. In
epigenetic studies based on whole-blood samples, the
CTC is considered a major confounding factor due to
the epigenetic heterogeneity of whole blood. For ex-
ample, a declining number of a certain cell type across
age in whole blood is likely to drive the observed age-
associated change in DNA methylation. Consequently,
the observed change in DNA methylation is simply due
to a change in cell-type proportion rather than at the
loci itself. We observed a consistent decrease and
increase of lymphocyte and neutrophil cell counts,
respectively, with age, in agreement with other studies
identifying age-associated differences in blood cell
counts [28] as well as estimated CTC in whole blood
[22]. This is likely to influence the analyses and act as a
mediator of the observed age-associated change in
DNA methylation at sites also showing cell-type-
specific DNA methylation in whole blood [29]. At these
positions, it is not possible to dissect the effect coming
from CTC variability alone from genuine age-associated
changes in DNA methylation, which would also include
cell-type-specific age-associated changes.
Several studies have identified tissue-specific age-

associated DNA methylation [10, 21]. Although this
has also been shown for cell types in whole blood [30],
others have found that cell types explain a larger pro-
portion of variability than age and that most sites show
no significant association with age [22, 31], suggesting
that the majority of age-associated DNA methylation is
not cell-type specific in whole blood. However, this has
mainly been explored in isolated CD4+ and CD14+

cells, accounting for most of the CTC, but blood is
complex consisting of many cell types with diverse
functions, each with unique potential roles in the aging
process. Importantly, although genome-wide, this has
mainly been investigated in a small fraction of the total

Table 2 Biological features associated with aDMPs

GOTERMa Description Term Countb Frequencyc p valued

BP_1 Biological regulation GO:0065007 36 46.2 0.0015

MF_4 Sequence-specific DNA binding GO:0043565 11 14.1 0.0019

BP_2 Regulation of cellular process GO:0050794 35 44.9 0.0023

MF_1 Transcription regulatory activity GO:0030528 14 17.9 0.0028

BP_1 Developmental process GO:0032502 20 25.6 0.0035

BP_2 Regulation of biological process GO:0050789 35 44.9 0.0038

MF_FAT DNA binding GO:0003677 18 23.1 0.0046
aResource where the term orient
bNumber of genes in gene list (n = 152) which are involved in a specific GO term
cPercentage of the genes in input gene list which are involved in a specific GO term
dAdjusted according to Benjamini and Hochberg
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CpGs in the human genome using Infinium 27K and
450K, leaving most of the CpGs unexplored in this
context. Consequently, some of the age-associated
changes in DNA methylation at the 324 CpGs medi-
ated by CTC identified in our study using RRBS may
potentially reflect cell-type-specific age-associated
DNA methylation, although we do not consider this a
common explanation.
The majority of the 26 aDMPs with a direct effect on

aging are located in CpG islands associated with genes.
Age-associated epigenetic changes are usually showing
pronounced hypomethylation across the genome [8, 32];
however, the majority of aDMPs in our study involved
increased DNA methylation. In particular, almost all
significant aDMPs (and often the neighboring CpGs
not reaching genome-wide significance) located in CpG
islands are associated with increased DNA methylation.
This is in agreement with previous studies and is
believed to involve decreased gene expression of the
nearby gene [15, 17, 33].
Several studies have now shown that DNA methylation

changes with age at different genomic locations, the
direction, and rate of change [9, 14, 33]. Our study
shows a (generally) higher rate of change between 2
and 10 than between 10 and 16 years. We have not
taken into account the differences in age range between
the two time points, which in theory would have an
impact and fit with the observation of epigenetic
changes. However, we believe that the majority of the
age-associated differences in DNA methylation associ-
ated with aging are probably not linear but involve
controlled epigenetic changes at particular times dur-
ing childhood.
The 26 aDMPs identified in our study overlapped 12

genes. Interestingly, TRIP6, which was hypomethylated
between 2 and 16 years, was recently found to be asso-
ciated with pubertal transition in another EWAS by
Almstrup et al. [19]. This study is perhaps the most
comparable to our study in terms of age range, tissue,
and adjustment for differences in cell-type composition.
Several factors involving variations in samples size, type
of tissue, age range, and variations in cell-type compos-
ition not accounted for are likely to explain the lack of
replication of any of the other genes previously shown
to be associated with aging.
Ontology and pathway analyses revealed the enrich-

ment of categories implicated in the development and
regulation of biological processes, which are potentially
important during different aspects of development during
childhood. Typically, increased DNA methylation at CpG
islands in proximity to genes is involved in transcriptional
silencing. Differential DNA methylation levels close to
genes involved in developmental processes have also been
seen in other studies [10, 14, 15].

Conclusions
The results presented in this study reveal positive and
negative correlations of genome-wide changes in DNA
methylation with age during childhood. Age-associated
DNA methylation has regulatory roles on gene activity
and developmental processes. The results reveal insights
into the epigenetic dynamics associated with aging dur-
ing childhood. Such information could ultimately point
towards genomic regions and/or molecular pathways
that are susceptible to aging-related disease-associated
epigenetic dysregulation. The observed CTC variability
in whole blood across age emphasizes the importance
of assessing the total effect of CTC as a mediator. To
our knowledge, this is the first study to survey DNA
methylation dynamics during childhood in a longitu-
dinal data set using RRBS.

Methods
Subjects and study design
The subjects in the present study were selected from the
prospective birth cohort “Environment and Childhood
Asthma” (ECA) study in Oslo [24]. The study includes
the 19 children with available blood samples for methyla-
tion analyses at 2, 10, and 16 years of age (n = 57 samples
in total) and with unambiguous clinical phenotypes (no
asthma or allergy, consistent asthma and allergy, or cross-
overs between ages 2 to 16). Replication using EpiTYPER
was performed in 31 additional individuals (n = 93 sam-
ples) selected from the same cohort.

DNA extraction
From the 2-year-old subjects, DNA was extracted from
blood clots obtained from the 2-year investigation
(1993–1995) as described elsewhere [34]. From the 10-
year-old subjects, DNA was extracted from peripheral
whole-blood, using a MagnaPure LC (Roche). From
the 16-year-old subjects, DNA was extracted from per-
ipheral whole-blood on Autopure LS (Gentra/Qiagen)
using the 2–5 × 107 protocol.

RNase and proteinaseK treatment of DNA
0.3–10 μg DNA was diluted in TE buffer (pH 8.0) to a
final volume of 300 μl. RNase (USB) was added (final
concentration 0.033 mg/mL), and the reactions were
incubated at 37 °C for 30 min, followed by proteinaseK
treatment (0.17 mg/mL) for 1 h at 55 °C. Purification
was done using Genomic DNA Clean & Concentrator
(Zymo Research) and eluted in 18 μl TE buffer.

RRBS library preparation
Sequencing libraries were prepared based on two pro-
tocols, depending of the available amount of DNA.
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1 μg input
One microgram of RNase- and proteinaseK-treated
DNA was digested with MspI (40U, New England
Biolabs) at 37 °C for 2 h before purification (QIAquick
Nucleotide Removal Kit, Qiagen) and eluted in 50 μl
elution buffer (EB). End-repair was done using Illumina
End Repair Mix with incubation for 30 min at 30 °C,
followed by purification (QIAquick Nucleotide Removal
Kit, Qiagen) and elution in 30 μl EB. The total volume
of DNA was reduced to 15 μl (on a heating block), and
DNA was adenylated using the Illumina A-tailing Mix
(37 °C for 30 min). Illumina index-adapters (diluted 1:10
in dH2O) were ligated for 10 min at 30 °C, and the
adapter-ligated fragments were purified (QIAquick PCR
Purification Kit, Qiagen) and eluted in 30 μl EB. The
samples were then separated on a 3 % NuSieve 3:1
agarose gel (Lonza). EtBr-stained gel slices containing
adaptor-ligated fragments of 220–400 bp in size were
excised and purified using two QIAquick MiniElute Kit
(Qiagen) columns, with elution in a total of 20 μl EB.
The adaptor-ligated and size-selected fragments were
bisulfite-treated with the EpiTect Bisulphite Kit (Qiagen)
using the formalin-fixed paraffin-embedded (FFPE)
protocol and two consecutive rounds of 95 °C 5 min,
60 °C 25 min, 95 °C 5 min, 60 °C 85 min, 95 °C 5 min,
and 60 °C 175 min and a final step at 20 °C 5 min and
eluted in 20 μl EB. The final sequencing libraries were
amplified in a 50-μl PCR containing 20 μl bisulfite-
converted DNA, 14 μl dH2O, 5 μl 10 mM dNTPs, 5 μl
10× PfuTurbo Cx buffer, 5 μl TruSeq primer cocktail,
and 1 μl PfuTurbo Cx hotstart DNA polymerase (2.5U,
Agilent) at the following conditions: 95 °C for 5 min,
followed by 17 cycles of 95 °C 20 s, 60 °C 30 s, 72 °C
30 s, and 72 °C for 7 min, and hold at 4 °C. The PCR
reaction was purified using 90 μl of AMPure XP beads
(Agencourt) and eluted in a final volume of 30 μl RSB
buffer (Illumina) before quantified and analyzed using
Qubit 2.0 (Invitrogen) and Bioanalyzer 2100 (Agilent),
respectively. Libraries showing adapter dimers on the
Bioanalyzer traces were subject to a second AMPure XP
cleanup (DNA:bead ratio 1:1.25) and ran again on Qubit
and Bioanalyzer. Finally, libraries were diluted to 10 nM
in RSB buffer.

150–400 ng input
One hundred fifty to four hundred nanograms of RNase-
and proteinaseK-treated DNA was digested with MspI
(20U, New England Biolabs) at 37 °C for 2 h before puri-
fication (QIAquick Nucleotide Removal Kit, Qiagen) and
eluted in 50 μl EB. End repair was done using Illuminas
End Repair Mix with incubation for 30 min at 30 °C,
followed by purification (QIAquick Nucleotide Removal
Kit, Qiagen). EB was diluted twice in nuclease-free water,
and samples were eluted in 30 μl of this solution. The

total volume of DNA was reduced to 15 μl (on a heating
block), and DNA was adenylated using the Illumina A-
tailing Mix (37 °C for 30 min). Illumina index-adapters
(diluted 1:10 in dH2O) were ligated for 10 min at 30 °C,
and the adapter-ligated fragments were purified (QIA-
quick PCR Purification Kit, Qiagen) and eluted in 30 μl
EB. Each sample was mixed with 50 ng Escherichia coli
carrier DNA (DNA prepared as described by Gu et al.
[35]) and separated on a 3 % NuSieve 3:1 agarose gel
(Lonza). EtBr-stained gel slices containing adaptor-
ligated fragments of 220–400 bp in size were excised
and purified on QIAquick MiniElute Kit (Qiagen), with
an elution volume of 11 μl. The adaptor-ligated and
size-selected fragments were bisulfite-treated with the
EpiTect Bisulphite Kit (Qiagen) using the FFPE protocol
and two consecutive rounds of 95 °C 5 min, 60 °C
25 min, 95 °C 5 min, 60 °C 85 min, 95 °C 5 min, and
60 °C 175 min and a final step at 20 °C 5 min and eluted
in 20 μl EB. The bisulfite-converted DNA was mixed
with 131 μl dH2O, 20 μl 10 mM dNTPs, 20 μl 10× Pfu-
Turbo Cx buffer, 5 μl TruSeq primer cocktail, and 4 μl
PfuTurbo Cx hotstart DNA polymerase (10U, Agilent).
The mix was divided into eight aliquots of 25 μl in a
96-well PCR plate, and PCR was performed at the
following conditions: 95 °C for 5 min, followed by 17 -
cycles of 95 °C 20 s, 60 °C 30 s, 72 °C 30 s, 72 °C for
7 min, and hold at 4 °C. The aliquots were pooled to-
gether, and the PCR was purified by AMPure XP beads
(Agencourt) at DNA:bead ratio 1:1.25, eluted in a final
volume of 30 μl RSB (Illumina), and quantified and
analyzed using Qubit 2.0 (Invitrogen) and Bioanalyzer
2100 (Agilent), respectively. Libraries showing adapter
dimers on the Bioanalyzer traces were subject to a second
AMPure XP clean up (DNA/bead ratio 1:1.25) and ran
again on Qubit and Bioanalyzer. Finally, libraries were
diluted to 10 nM in RSB buffer (Illumina).

Sequencing and alignment
In order to estimate an optimal input for library clustering,
we performed a qPCR assay designed to amplify only those
fragments carrying Illumina adapters at both ends. Inputs
for clustering were calculated by comparing the amplifi-
cation curves of our libraries to those of a previously se-
quenced RRBS library of known cluster density. For each
subject, the three libraries (2, 10, and 16 years) were
pooled according to calculated cluster input. Each pool
was sequenced on one lane on a HiSeq 2000 (Illumina),
generating 50 bp single-end reads. Raw sequencing data
were processed by the standard Illumina pipeline for
image analysis and base calling. Quality evaluation of
raw sequence data was generated using FastQC (http://
www.bioinformatics.bbsrc.ac.uk/projects/fastqc). Genomic
alignment was performed by RRBSMAP [36] (v1.6). The
genome (hg19) was indexed on CCGG (MspI restriction
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site), and a maximum of two mismatches on a read
allowed and 3′-end adapter sequences were trimmed off
to optimize the alignment of short MspI fragments.
Alignment efficiency was calculated using the Picard
CalculateHsMetrics tool (http://broadinstitute.github.io/
picard). A minimum of ten reads was used to calculate
the DNA methylation at C in a CpG context. The DNA
methylation level at a CpG was extracted from the map-
ping results as the number of methylated Cs divided by
the total number of Cs using the python script included in
RRBSMAP. The bisulfite conversion rate was estimated
based on the frequency of C-to-T conversions for cyto-
sines that were not in a CpG context. For biological inter-
pretation, CpGs were annotated by using the annotation
module in SAAP-RRBS [37] and BEDTools [38].

Sequenom MassARRAY replication
Replication of age-associated DNA methylation in six
genes covered by 71 CpGs was performed using the
Sequenom MassARRAY EpiTYPER (Sequenom Inc,
Hamburg, Germany). PCR primers (Additional file 6:
Table S2) were designed using the Sequenom EpiDe-
signer software (www.epidesigner.com). To reduce vari-
ability in DNA methylation resulting from technical
variation during PCR, each sample was amplified in
triplicate and pooled prior to the MassARRAY analysis.

Statistical analysis
All statistical tests were conducted in R (www.r-project.org).

Analysis of age-associated DNA methylation
To investigate the total effect (TE) of age on DNA
methylation in whole blood, we used a linear mixed-
effects model with time as a fixed and subjects as a ran-
dom factor. This model is suitable for repeated mea-
surements and implemented in the lme4 and lmeTest R
packages, which are able to deal with missing values.
This is an advantage for RRBS datasets in particular,
since it is challenging to produce a completely overlap-
ping data set from all samples. Statistical analyses were
performed for each CpG with data from at least ten
individuals. Pairwise tests were done for all CpGs with
at least ten complete pairs (2 to 10, 10 to 16, and 2 to
16 years). Adjustment for multiple testing was performed,
considering a false discovery rate (FDR) below 5 % to be
genome-wide significant using the method of Benjamini
and Hochberg [39].

Analysis of cell-type proportions as a mediator
Cell counts for five cell types were available (lymphocytes,
neutrophils, monocytes, eosinophils, and basophils) for all
individuals and time points. The cell-type proportions
(CTPs) were calculated by dividing the cell counts for a
certain cell type by the sum for the cell counts across all

cell types. The lymphocyte CTPs were not available for
2-year olds and were imputed by calculating the difference
between 100 % and the four remaining CTPs. In addition,
there were eight missing values across all cell types at time
point 10 years and one at time point 16 years. Here,
missing values were imputed by taking the mean within
each cell type and time point. As can be seen in Figure
S2 (Additional file 2), lymphocytes and neutrophils
together explain on average 89 % of all CTPs. Using
principal component analysis (irlba package in R) on
the CTP data matrix, the first principal component
(PC1) was evaluated. The two main cell types are well
represented by PC1 with loadings of 98 and 96 %,
respectively. The remaining three cell types were
neglected because the possible impact of potential cell-
type-specific DNA methylation changes would not be
captured by DNA methylation values based on whole
blood anyway. As an example, a change of 50 % within
a cell type with a proportion of 5 % would lead to an
overall DNA methylation change of 0.5 × 0.05 = 2.5 %
given that DNA methylation in the other cell types
remains constant. Thus, we use PC1 when investigating
the role of CTPs in our analysis. In order to find out
whether CTC acts (totally or partially) as a mediator,
modern causal inference theory has been used to esti-
mate different types of effects [40]. The analysis of
mixed-models modeling CTPs as a mediator was done
by using the mediation R package [41]. The results
were corrected for multiple testing by the method of
Benjamini and Hochberg [39] and considered genome-
wide significant on the 5 % level (FDR).

GO analyses
GO analysis was performed using the DAVID functional
annotation tool [26, 27] based on the results of the initial
association tests for age and DNA methylation adjusted
for CTC. The CpGs included were represented by 16,687
genes, of which 15,339 genes have a DAVID id. Out of
these, 87 genes (78 with a DAVID id) had an adjusted
p value ≤0.25. The analysis was done with default parame-
ters, and the results were corrected for multiple testing by
the method of Benjamini and Hochberg [39].

Investigation of asthma disease status as a confounder
In order to investigate whether the asthma phenotype was
confounding the analyses of age-associated DNA methyla-
tion, we tested the representativeness of the control sam-
ples (with no asthma diagnosis) for the whole sample for
all significant aDMPs identified in our study. We used a
sampling procedure for investigating the DNA methylation
differences between controls and the whole sample. For
each time point and significant aDMP, we calculate the
mean DNA methylation (%) difference between the control
group (eight samples) and the whole group (19 samples).
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In addition, we derive the empirical distribution for these
mean differences (selection versus all) for all possible com-
binations (eight out of 19). Given this distribution, we can
evaluate for each time point whether the number of probes
with “extreme differences” in DNA methylation for the
control group compared to the overall sample is higher
than expected. Overall, there are no larger differences in
mean DNA methylation between the control group and the
overall group than expected by chance. For example, the
positive rates on the 5 % significance level across all aDMPs
are 4.3 % at 2 years and 1.4 % at both 10 and 16 years,
which is (much) less than expected. In addition, testing the
significant aDMPs for an association with asthma revealed
no significant results either (results not shown).

Additional files

Additional file 1: Figure S1. MDS plot of extraction methods.
Multidimensional scaling plots of the top 1000 most variable positions
between ten samples isolated with three different extraction methods
(A = AutoPure LS, M =MagNA Pure, O = organic). The first MDS component
is on the x-axis, and the second MDS component on the y-axis. (PDF 255 kb)

Additional file 2: Figure S2. Mean cell-type proportions including
95 % confidence intervals at age 2, 10, and 16 years. (PNG 433 kb)

Additional file 3: Figure S3. Scatterplot of the –log (TE) p values of the
346 age-associated differentially methylated positions (aDMPs) versus the
mean proportion mediated by cell-type proportions. Standard deviation
of CTC for the lowest quartile of the p values of these aDMPs was 18 %
and for the upper quartile 40 %, respectively. (PNG 138 kb)

Additional file 4: Table S1. EpiTYPER results. (XLSX 31 kb)

Additional file 5: Figure S4. Heatmap of DNA methylation measured
by EpiTYPER at CpGs (n = 71) with rows representing CpGs and columns
representing samples. Cells are color scaled according to the level of DNA
methylation (blue = low and red = high DNA methylation). (PDF 744 kb)

Additional file 6: Table S2. EpiTYPER primers. (XLS 26 kb)
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