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Abstract

Background: Crohn’s disease (CD) is a chronic inflammatory disorder belonging to the inflammatory bowel
diseases (IBD). CD affects distinct parts of the gastrointestinal tract, leading to symptoms including diarrhea,
fever, abdominal pain, weight loss, and anemia. The aim of this study was to assess whether the DNA
methylome of peripheral blood cells can be associated with CD in women.

Methods: Samples were obtained from 18 female patients with histologically confirmed ileal or ileocolic CD
and 25 healthy age- and gender-matched controls (mean age and standard deviation: 30.5 ± 6.5 years for both
groups). Genome-wide DNA methylation was determined using the Illumina HumanMethylation 450k BeadChip.

Results: Our analysis implicated 4287 differentially methylated positions (DMPs; corrected p < 0.05) that are
associated to 2715 unique genes. Gene ontology enrichment analysis revealed significant enrichment of our
DMPs in immune response processes and inflammatory pathways. Of the 4287 DMPs, 32 DMPs were located
on chromosome X with several hits for MIR223 and PABPC5. Comparison with previously performed (epi)
genome-wide studies revealed that we replicated 33 IBD-associated genes. In addition to DMPs, we found
eight differentially methylated regions (DMRs).

Conclusions: CD patients display a characteristic DNA methylation landscape, with the differentially methylated
genes being implicated in immune response. Additionally, DMPs were found on chromosome X suggesting
X-linked manifestations of CD that could be associated with female-specific symptoms.

Keywords: Crohn’s disease, Inflammatory bowel diseases, Females, DNA methylation, Peripheral blood,
Epigenome-wide association study

Background
Crohn’s disease (CD) is an inflammatory bowel dis-
ease (IBD) characterized by a chronic inflammatory
condition of the gastrointestinal tract. On a world-
wide basis, CD has a prevalence of 0.5 % with an
annual incidence of 12.7 per 100,000 person-years
[1]. The inflammation associated with CD can reach
through all layers of the intestinal wall, causing com-
plications such as strictures and fistula. The terminal
ileum is the most prevalent site for inflammation and
strictures, often requiring surgical ileocecal resection.

Different immunosuppressive therapies are commonly
applied, such as thiopurines, corticosteroids, and anti-
tumor necrosis factor (aTNF) agents, all of which
have variable success rates. Aside from complications
within the gastrointestinal tract, CD occasionally
manifests itself in an extra-intestinal fashion. Certain
CD-associated symptoms appear to be gender-specific
[2], with female-specific symptoms including irregular
menstruation [3, 4] as well as an increased risk of
complications during pregnancy [5].
Despite the extensive research performed on CD, the

etiology is unknown. Numerous studies have sought to
associate genetic changes to the pathogenesis of CD with
genome-wide association studies (GWAS) finding many
loci that are associated with pathways that have been
well established in IBDs, such as pattern recognition
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signaling, cytokine production, and autophagy [6, 7].
However, only 20 % of the estimated heritability (30–
50 %) of CD can be explained by common genetic vari-
ants [6, 8, 9]. A growing body of literature suggests that
additional factors such as diet [10], the gut-microbiome
[11] and the epigenome [12–15] add to the development
and progression of CD.
While the genome remains static for one organism

over time and across different cell types, the epigenome
can vary considerably. One of the well-described epi-
genetic modifications is cytosine methylation, which in-
volves the attachment of a methyl group to a cytosine
followed by a guanine (CpG site). Aberrant methylation
patterns have been implicated in many complex disor-
ders, such as cancers [16], diabetes [17], and juvenile
stress [18]. In this study, the aim was to explore how
the methylome of peripheral blood is affected in female
CD patients. To this end, the HumanMethylation450
BeadChip array (450k) was used to find differentially
methylated positions (DMPs) and regions (DMRs) in
DNA isolated from peripheral blood. We specifically
looked at blood due to the relative ease and non-
invasive nature in obtaining the samples. First, we
sought to find differentially methylated loci through a
hypothesis-free approach. Here, we specifically chose to
assess the methylome of female CD patients to see
whether CD manifests in the methylome of chromo-
some X, the results of which could help understand
female-specific CD symptoms. Second, we aimed at
replicating previously reported genes through a
hypothesis-driven approach, whereby we assessed the
methylation patterns of CD-associated genes retrieved
from GWAS [6, 8, 9] and epigenome-wide association
studies (EWAS) [12–14, 19, 20].

Results
Quality control and exploratory data analysis
Samples were processed according to the flowchart
in Fig. 1. Initial quality control using MethylAid [21]
indicated that three CD patients failed the bisulfite
conversion, hybridization, and overall methylation
threshold, resulting in their exclusion from down-
stream analyses. Subsequent principal component
analysis did not reveal any discernable separation of
the CD patients from the healthy controls (Fig. 2).
Moreover, the first principal component explained
only 12.5 % of the variance, suggesting that the
DNA methylome does not differ considerably among
samples (Additional file 1: Figure S1a). As the DNA
samples were obtained from peripheral blood, the
concern existed that the heterogeneity of the blood
cell composition confounded our data [22, 23]. We
therefore estimated the cellular composition per
sample using the algorithm described in Houseman

et al. [23] (Additional file 1: Figure S1b). When
comparing CD versus healthy controls, a difference
in blood cell composition was observed, which was
nominally statistically significant at an α (p value
threshold) of 0.05. However, after correcting for
multiple testing using the Bonferroni method, the as-
sociations were almost statistically significant sug-
gesting that CD is potentially associated with
changes in the cellular composition. Calculating the
Pearson correlation coefficient for the blood cell

Fig. 1 Data analysis workflow. A brief overview of our data
analysis pipeline

Fig. 2 Exploratory data analysis. Plot of the first two principal
components of the overall DNA methylation profiles reveal no
discernable differentiation between CD patients (turquoise triangles)
and healthy controls (red circles)
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distribution with each principal component revealed
a strong correlation of the blood cell distribution
with the first principal component. This correlation
was statistically significant for CD8T cells, CD4T
cells, natural killer cells, and granulocytes after cor-
recting for multiple testing using the Benjamini-
Hochberg (BH) procedure (Additional file 1: Figure
S1c). We surmised that additional biological con-
founders included age [24] and the usage of aTNF
medication at the time of phlebotomy. To prevent
age from confounding our data, we had age-matched
our cohort prior to sampling. Correlating age and
aTNF usage with the principal components revealed no
significant correlation (R2 > 0.10), suggesting that nei-
ther affect the methylome significantly (Additional file
1: Figure S1d, e). To correct for the most prominent
(hidden) biological confounders, such as the cellular
composition, we performed factor analysis using the
RUVfit function [22, 25–27]. RUVfit is a wrapper func-
tion for the “remove unwanted variation” (RUV)
methods [25–27]. While it would have been possible to
include the estimated blood cell composition obtained
from the Houseman algorithm as covariates in the lin-
ear model, as described in Guintivano et al. [28] and
Hannum et al. [24], this method was discouraged in
Montaño et al. [29] and Jaffe and Irizarry [22] as the
estimated blood cell composition was found to yield
biased results. Instead, Jaffe and Irizarry suggested the
usage of RUV as a way for correcting for composition-
based confounding [22]. The advantage of RUV over
other conventional methods is its ability to discover
(hidden) biological confounders aside from blood cell
composition. For more information about our imple-
mentation of the RUVfit function, see Section 5.

Differentially methylated positions in Crohn’s disease
patients
After normalizing the data and correcting for con-
founders, we observed 4287 significant DMPs (BH-ad-
justed p < 0.05) that were associated to 2715 unique
genes. Of the 4287 significant DMPs, 949 were hypo-
methylated with the remaining 3338 being hypermethy-
lated (Additional file 2: Table S1). The two most
significant DMPs were found within the protein tyrosine
phosphatase PTPRN2 [Ensembl: ENSG00000155093] and
the zinc-finger protein BCL11A [Ensembl: ENSG00000
119866], which were moderately hypermethylated in CD
patients versus healthy controls (see dot-boxplots on the
right of Fig. 3a).

Differentially methylated position distribution analysis
The precise fashion through which methylation affects
transcription remains unknown with the current dogma
being that hypermethylated regions within the transcription

start site (TSS) silence the respective gene [30, 31]. To this
end, we investigated the DMP distribution per ge-
netic feature. Here, we used a Fisher exact test to
calculate whether the ratio of DMPs versus the total
number of 450k probes per genetic feature was sig-
nificantly different from a DMP distribution originat-
ing by chance. We observed a statistically significant
difference in the DMP distribution for the transcrip-
tion start sites (TSS1500 and TSS200), the gene
body, the first exon, the 3′ untranslated region (3′
UTR) and the intergenic region (Additional file 3:
Figure S2a and Additional file 4: Table S2). Only the
5′UTR was not statistically significant, suggesting
that the DMPs are not randomly distributed. Next,
we sought to test whether the direction of methyla-
tion was significantly different for any of the genetic
features using a second Fisher exact test. Here, we
found no statistically significant differences in the
distribution of hypo- and hypermethylated DMPs for
any of the genetic features (Additional file 3: Figure
S2b, c and Additional file 4: Table S2).
A similar approach was used to assess the DMP distri-

bution per chromosome. Here, we found a significantly
different DMP distribution for chromosomes 1, 19, and X
(Fig. 3b). Furthermore, analysis of the hypo- and hyper-
methylated DMP distribution revealed that while the auto-
somal chromosomes contained more hypermethylated
DMPs than hypomethylated DMPs, the inverse was true
for chromosome X (Fig. 3c and Additional file 5: Table
S3). As we had a female-only cohort, we investigated
chromosome X in further detail. Analysis of the X-
associated DMPs yielded 32 DMPs of the 10,246 probes
on chromosome X (Additional file 11: Table S4). Analysis
of the genes associated to the X-linked DMPs revealed an
enrichment of only two genes: MIR223 [Ensembl:
ENSG00000207939] (Fig. 4a) and PABPC5 [Ensembl:
ENSG00000174740] (Fig. 4b), which were represented
by two and four DMPs, respectively.

Differentially methylated regions in Crohn’s disease
patients
Using the bumphunter function [32], we found eight
DMRs, which we associated to HLA-J [Ensembl: ENSG
00000204622], BOLA3 [Ensembl: ENSG00000163170],
TACSTD2 [Ensembl: ENSG00000184292], APOBEC1
[Ensembl: ENSG00000111701], MOV10L1 [Ensembl:
ENSG00000073146], OR2L13 [Ensembl: ENSG00000
196071], LINC00612 [Ensembl: ENSG00000214851],
and SHANK2 [Ensembl: ENSG00000162105] (Table 1).
While the individual CpGs comprising the DMRs were
not significantly differentially methylated, the mean
difference across the entire region was moderate but
noticeable (Additional file 6: Figure S3).
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Fig. 3 (See legend on next page.)
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Pathway enrichment analysis of the differentially
methylated positions
To understand the functional relevance of our reported
DMPs, gene ontology (GO) enrichment analysis was per-
formed. GO enrichment yielded 32 significantly enriched
(BH-adjusted p < 0.05) processes, with notable hits for
immune response (GO:0006955 and GO:0002376) and
leukocyte activation (GO:0045321) as well as neutrophil
chemotaxis (GO:0030593) (Table 2).

Overlap with previous studies
Next, we compared the genes associated to our DMPs
with genes associated to CD and IBD from previous

GWAS [6, 8, 9] and EWAS [12–14, 19, 20] data. The
GWAS-derived list contained 275 genes whereas the
EWAS-derived list contained 4388 genes. When com-
paring the GWAS, the EWAS and our own data, we
found 33 genes that were present in all three datasets.
Analysis of the CpGs associated to the 33 overlapping
genes yielded 136 statistically significant hypothesis-
driven DMPs (BH-adjusted p < 0.05) (Additional file 7:
Table S5). Of the ten most significant hypothesis-driven
DMPs, five DMPs were associated to TNF [Ensembl:
ENSG00000232810] (Fig. 5c) and two were associated to
SP140 [Ensembl: ENSG00000079263] (Fig. 5b). Interest-
ingly, while the hypothesis-driven DMPs found in TNF

(See figure on previous page.)
Fig. 3 Differentially methylated positions. a Left: Volcano plot of the –log10 transformed BH-adjusted p on the Y-axis versus the mean effect size
in methylation (beta) on the X-axis. DMPs are indicated in green. Right: Dot-boxplots of the two most significant DMPs: cg26639747 (PTPRN2) and
cg27159979 (BLC11A). b Comparison of the probe distribution on the 450k versus the DMP distribution per chromosome where the different colors
represent the different chromosomes. The numbers along the barplot represent the percentages of the 450k probes (top) or DMPs (bottom) per
chromosome. Significantly different DMP distributions are indicated in bold red with the asterisks indicating the level of significance as found in
Additional file 5: Table S3 (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001). c For each chromosome, the percentage hypo- and hypermethylated
DMPs is indicated with barplots in black and gray, respectively

Fig. 4 Differentially methylated positions on chromosome X. Visualization of the methylation levels of a MIR223 and b PABPC5 (“450K”) located
on the chromosome X superposed onto the RefSeq genes (“RefSeq gene”). Enlarged strip/boxplots are provided for the significant CpGs, namely
MIR223: cg06701191 and cg19127840, and PABPC5: cg16401529, cg04875162, cg09725213, and cg00608151
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appear to occur consecutively, our previous DMR ana-
lysis did not yield any hits for TNF, which might be due
to the limited mean difference observed across the TNF-
associated DMPs. To validate our findings for SP140 and
TNF, we performed MiSeq amplicon sequencing and
correlated the results with our findings obtained from
the 450k data. The methylation levels obtained from the
MiSeq sequencing were found to be concordant with the
450k results for SP140 (see MiSEQ track in Fig. 5b). Un-
fortunately, we were unable to obtain sufficient reads
with the primers designed for our region of interest for
TNF. We therefore sequenced downstream of our region
of interest, which yielded adequate reads and revealed
methylation levels similar to what was found using the
450k (see MiSEQ track in Fig. 5c). In addition to SP140
and TNF, specific regions within TNFSF4 [Ensembl:
ENSG00000117586] (Additional file 8: Figure S4b),
IL10/IL19 [Ensembl: ENSG00000136634] (Additional
file 8: Figure S4c), and ORMDL3 [Ensembl: ENSG
00000172057] (Additional file 8: Figure S4d) were also
sequenced, as they had been associated with CD pre-
viously [6]. Overall, the methylation levels obtained
through MiSeq sequencing were found to be concord-
ant with the methylation levels obtained from the
450k array (Additional file 8: Figure S4a), but the dif-
ferences between CD patients and healthy controls
were not statistically significant.
In particular, we assessed the methylation levels of the

top DMPs as reported by McDermott et al. due to the
similarity in design and goals with our current study
[13]. While our results mostly correspond with respect
to the direction of methylation, our reported effect sizes
differ (Additional file 9: Table S6). Visualization of the
DMPs found in TIFAB [Ensembl: ENSG00000255833]
(cg16176675) and TRAF6 [Ensembl: ENSG00000175104]
(cg01476222), which represent the top DMP and the val-
idated DMP reported by McDermott et al., displayed a
minor difference that was not statistically significant in
our data (Fig. 5d, e). For certain DMPs, we appear to
observe opposite effects. Analysis of the contentious

DMPs reveals an association with UC in the dataset of
McDermott et al. suggesting CD-specific methylation.

Discussion
Quality control and exploratory data analysis
In this study, we studied the methylation differences be-
tween female CD patients versus healthy controls in per-
ipheral blood. To our knowledge, we are the first to
perform methylation analysis in peripheral blood using a

Table 1 DMRs as predicted by the bumphunter function,
containing four or more consecutive DMPs

DMR location (hg19) Mean
effect size

Area
DMR

DMPs Nearest gene

chr6: 29895175-29895260 −0.172 6.89E-01 4 HLA-J

chr2: 74357527-74357872 0.127 5.10E-01 4 BOLA3

chr1: 59043199-59043280 0.121 4.83E-01 4 TACSTD2

chr12: 7781004-7781288 −0.118 4.72E-01 4 APOBEC1

chr22: 50528213-50528312 −0.0992 3.97E-01 4 MOV10L1

chr1: 248100345-248100585 0.0935 3.74E-01 4 OR2L13

chr12: 9217510-9217669 −0.0918 3.67E-01 4 LINC00612

chr11: 70672841-70672878 0.0911 3.65E-01 4 SHANK2

Table 2 Statistically significant gene ontology enrichment on
our significant DMPs

GO Term p value BH-adjusted
p value

GO:0002376 Immune system process 1.58E-07 1.60E-03

GO:0006955 Immune response 9.61E-08 1.60E-03

GO:0007166 Cell surface receptor
signaling pathway

7.25E-07 4.86E-03

GO:0060326 Cell chemotaxis 9.63E-07 4.86E-03

GO:0006909 Phagocytosis 3.92E-06 1.55E-02

GO:0030593 Neutrophil chemotaxis 4.60E-06 1.55E-02

GO:0098602 Single organism cell adhesion 5.62E-06 1.62E-02

GO:0006952 Defense response 1.97E-05 2.79E-02

GO:0048583 Regulation of response to stimulus 1.44E-05 2.79E-02

GO:0016337 Single organismal
cell-cell adhesion

2.07E-05 2.79E-02

GO:0045321 Leukocyte activation 1.54E-05 2.79E-02

GO:0050900 Leukocyte migration 1.84E-05 2.79E-02

GO:0030595 Leukocyte chemotaxis 2.06E-05 2.79E-02

GO:1990266 Neutrophil migration 1.84E-05 2.79E-02

GO:0071621 Granulocyte chemotaxis 1.80E-05 2.79E-02

GO:0071944 Cell periphery 2.28E-05 2.88E-02

GO:0001775 Cell activation 2.66E-05 3.10E-02

GO:0034109 Homotypic cell-cell adhesion 2.76E-05 3.10E-02

GO:0016477 Cell migration 3.42E-05 3.63E-02

GO:0006954 Inflammatory response 3.94E-05 3.76E-02

GO:0007165 Signal transduction 4.36E-05 3.76E-02

GO:0048870 Cell motility 4.61E-05 3.76E-02

GO:0051674 Localization of cell 4.61E-05 3.76E-02

GO:0070486 Leukocyte aggregation 4.21E-05 3.76E-02

GO:0002696 Positive regulation of
leukocyte activation

4.98E-05 3.76E-02

GO:0071800 Podosome assembly 4.69E-05 3.76E-02

GO:0009897 External side of plasma membrane 5.02E-05 3.76E-02

GO:0007159 Leukocyte cell-cell adhesion 5.70E-05 4.11E-02

GO:0098552 Side of membrane 6.54E-05 4.56E-02

GO:0044700 Single organism signaling 7.07E-05 4.72E-02

GO:0050867 Positive regulation of
cell activation

7.25E-05 4.72E-02

GO:0009611 Response to wounding 7.84E-05 4.95E-02
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Fig. 5 (See legend on next page.)
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female-only cohort, which provided us with the oppor-
tunity to investigate CD-associated methylome mani-
festations on chromosome X. We used peripheral
blood as our sample of interest, with the intention of
discovering epigenetic loci that could be of use in the
clinical setting. As peripheral blood is a heterogeneous
population, our results were confounded by the change
in blood cell distribution in the presence of CD. To
correct for the blood cell distribution, we implemented
the RUVfit function [22, 25].

Differentially methylated positions in Crohn’s disease
patients
Our analysis yielded 4287 sites that displayed statistically
significant differences in methylation for CD patients
versus healthy controls. Despite finding many DMPs, the
effect sizes were limited, which reflects the results ob-
tained by Harris et al. [12] and McDermott et al. [13].
The two most significant DMPs were found in PTPRN2
and BCL11A, with the former being associated to type 1
diabetes in mice [33–35] and the latter to type 2 diabetes
in human males [36]. Previous research showed that
PTPRN2 in rats displays phosphatase activity towards
inositol phospholipids [37], whereas BCL11A in mice
acts as a negative regulator of p53 [38]. From the lit-
erature, it appears as though PT2RN2 and BCL11A
are involved in generic pathways suggesting that de-
regulation of generic pathways underlie complex dis-
orders such as CD.

Differentially methylated position distribution analysis
Analysis of the distribution of DMPs across genetic
features revealed that the DMPs are not randomly dis-
tributed. However, no particular enrichment of either
the hyper- or hypomethylated DMPs was observed. A
similar DMP distribution analysis for the chromosomes
revealed significant differences in DMP distributions for
chromosomes 1, 19, and X, where chromosome X
displayed a significant depletion in DMPs versus the
other chromosomes. The limited number of DMPs on
chromosome X corroborates the overall nongender-
specific nature and incidence of CD [1]. Of the limited
number of X-linked DMPs, we found an enrichment of
DMPs associated to the microRNA MIR-223 and
PABPC5. MIR-223 plays an important role in promoting

granulocyte differentiation [39] whose deregulation is as-
sociated with various cancers [40–42] as well as endo-
thelial cell apoptosis [43], implicating a putative role in
the formation of ulcers in CD patients. Additionally,
MIR-223 expression was found to be elevated in the in-
flamed ileum of CD patients [44], with the expression of
MIR-223 being tightly regulated through histone acetyl-
ation and DNA methylation by the AML1/ETO fusion
protein, making it an interesting target for future re-
search [45]. The available literature on PABPC5 de-
scribes its discovery based on similarity towards poly(A)
binding proteins, suggesting a role in transcriptional
regulation. Similar to PTPRN2 and BCL11A, it appears
as though PABPC5 is involved in a generic pathway.
Nonetheless, the fact that four DMPs were associated to
PABPC5 makes it an interesting candidate for future re-
search on CD.

Differentially methylated regions in Crohn’s disease
patients
In addition to DMPs, we found eight DMRs. One of the
DMRs was located upstream of the major histocompati-
bility complex HLA-J (Additional file 6: Figure S3). HLA
genes are involved in immunoregulation and have been
implicated in the pathogenesis of CD previously [6]. An-
other DMR was associated to MOV10L1, which has been
described as an RNA helicase involved in piRNA pro-
cessing [46, 47]. Using the ENCODE data in the UCSC
Genome Browser, we observed that the MOV10L1-DMR
associates to a region that contains transcription factor
binding sites (TBFS) [48] for two genes, namely EGR1
[Ensembl: ENSG00000120738] and ZBTB33 [Ensembl:
ENSG00000177485]. EGR1 is involved in inflammation
through its regulation of downstream targets such as
TNF [49, 50]. Inflamed intestinal tissue was found to
display increased levels of EGR1 expression in CD pa-
tients [51]. The ZBTB33 protein is a zinc-finger tran-
scriptional regulator, which binds methylated CpG sites
conferring transcriptional repression in an in vitro set-
ting [52]. Unlike EGR1, no studies have associated
ZBTB33 to IBD. While it is enticing for us to suggest a
link between our DMRs and the transcription factor
binding sites obtained from UCSC Genome Browser,
no proper conclusions can be drawn given that our
samples are not the same and that TFBS are often cell-

(See figure on previous page.)
Fig. 5 Hypothesis-driven differentially methylated positions. a Venn diagram representing the overlap between CD-associated genes from our
data (2715 genes), GWAS data (275 genes), and EWAS data (4388 genes). Genomic plots of the methylation levels of the DMPs obtained from
the 450k (“450K”) compared to the methylation levels obtained from MiSeq sequencing (“MiSEQ”) superposed on known RefSeq genes (“RefSeq
gene”) for b SP140 and c TNF. Note that the MiSeq sequencing of SP140 missed one CpG covered by the 450k, which was specifically removed
due to low read count (<100; see Section 5 “Illumina MiSeq Sequencing”). Enlarged dot-boxplots are provided for the significant CpGs associated
to TNF: cg23384708, cg20477259, cg26736341, cg1360627, and cg17741993, and SP140: cg05564251 and cg04579254. Dot-boxplots of d cg16176675
(TIFAB) and e cg01476222 (TRAF6), as reported from McDermott et al.
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type specific [53]. Further research is necessary to
elucidate a putative interplay between our MOV10L1-
DMR and EGR1.

Pathway enrichment analysis of the differentially
methylated positions
Our GO-enrichment analysis revealed that our DMPs
were enriched in pathways involved in inflammation and
cell activation. Comparable results were reported by
McDermott et al. where differential methylation in per-
ipheral blood mononuclear cells from IBD patients was
associated to genes involved in immune response and T
cell activation [13]. Our data suggests that the DNA
methylome is affected in genes that are involved in path-
ways associated to inflammation and immune response.

Overlap with previous studies
By comparing our results with previous CD studies, we
managed to replicate 33 genes. We confirmed the
methylation status of TNF, SP140, TNFSF4, IL10/IL19,
and ORMDL3 through MiSeq amplicon sequencing. Our
results therefore suggest that deregulation of the previ-
ously mentioned genes could occur at an epigenetic and
genetic level, thereby contributing to the observed in-
flammatory phenotype.

Limitations of the current study
It is important to realize that the results obtained in the
present study cannot be used as biomarkers. The limited
sample size and the minor effect sizes observed obscure
the number of true positives and negatives due to the
lack of power. Increasing the power could be achieved
through a meta-analysis whereby various studies of simi-
lar in design are combined. While we have provided a
brief comparison of our results with other studies of
similar design, a systematic meta-analysis is necessary to
ascertain the limited effect sizes observed. As such, our
results merely provide CpGs that are found to be associ-
ated to CD in our cohort, which nonetheless provide a
platform for future studies to elucidate the role of
methylation in CD.

Conclusions
This study has shown that CD affects the DNA methy-
lome of peripheral blood in female CD patients versus
healthy controls, with the affected genes being enriched
in inflammatory pathways. While we report differentially
methylated loci in peripheral blood, the effect sizes are
limited which was expected given the multifactorial na-
ture of CD. By elucidating the methylome-associated
changes in CD, we sought to gain a better understanding
of the role of epigenetics in the pathogenesis of CD,
thereby opening up new windows of opportunities for
research in the diagnosis or treatment of CD.

Methods
Patient inclusion
Our CD samples consisted of 18 female CD patients
with histologically confirmed intestinal CD (age range:
22 to 43) that visited the outpatient clinic at the
Academic Medical Centre (AMC) IBD department in
Amsterdam, the Netherlands. Of the 18 CD cases, only
15 remained after quality control using the MethylAid
(version 1.4.0) package [21]. The healthy control samples
were obtained from 25 anonymous healthy women (age
range: 21 to 43) from the biobank located at the AMC
Department of Clinical Genetics, DNA Diagnostics
laboratory. Healthy female controls were defined as
patients that tested screen-negative for specific DNA-
mutations as part of genetic family studies. The assembly
of this cohort was approved by the medical ethics commit-
tee of the Academic Medical Hospital (METC 08/330 #
09.17.0268), and written informed consent was obtained
from both the CD patients and control subjects.

DNA isolation and bisulfite conversion
Peripheral blood was drawn and stored in EDTA to pre-
vent coagulation. Erythrocytes were lysed before proteins
were aggregated out of the sample. Genomic DNA was
extracted through ethanol precipitation, after which the
DNA was dissolved in tris-ethylenediaminetetraacetic
buffer (Tris-EDTA) and stored at 4 °C. Subsequent bisul-
fite conversion of the DNA was performed using the
Zymo EZ DNA Methylation™ kit following the manufac-
turer’s protocol.

Methylation analysis
Whole-genome DNA methylation profiles were quanti-
fied using the Illumina HumanMethylation450k Bead-
Chip Array, which measures 485,577 CpG sites at
ServiceXS in Leiden, the Netherlands. Prior to 450k ana-
lysis, quality control of converted DNA was performed
by means of high-resolution melting analysis of the H19
locus [Ensembl: ENSG00000130600] according to the
diagnostics workflow as described by Alders et al. [54].

Differentially methylated loci analysis
The methylation data was imported into the R statistical
programming environment (version 3.2.2) using the Bio-
conductor package minfi (version 1.16.0) [55]. Initial
quality control was performed using the MethylAid
package, whereby the quality of each sample was
assessed using the internal control probes located on the
BeadChip array [21]. Subsequently, probes were removed
that were known to be promiscuous, located on the Y-
chromosome, or associated with CpGs with known SNPs
(minor allele frequency >0). The remaining probes were
normalized using the functional normalization method
[56], after which M values (M = log2(M/U)) were used
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for statistical analyses and β-values (β =M/(M +U +
100)) were used for the visualization of the methyla-
tion levels [57]. DMPs were obtained through linear
regression using the limma package [58, 59].
DMRs were obtained using the DMR-finding function

in minfi called bumphunter [32, 55]. In brief, bumphun-
ter searches for DMRs by looking for CpGs with a mean
difference above a certain threshold. We set the inclu-
sion threshold to 0.08. To remove single CpGs that
exceeded the inclusion threshold from our DMRs, we fil-
tered for at least four consecutive CpGs to minimize the
probability of randomly obtaining consecutive CpGs
whose mean effect size are above 0.08 by chance. See
Fig. 1 for a brief summary of our workflow.

Batch effect correction using factor analysis
We accounted for technical batch effects using the func-
tional normalization method, which estimates technical
variation through the internal technical control probes
located on the 450k array [56]. Unlike technical batch ef-
fects, the technical control probes on the 450k array are
unaffected by biological confounders. Finding and cor-
recting for biological confounders was done through fac-
tor analysis, using the R function RUVfit found within
the missMethyl package (version 1.4.0) [60]. RUVfit im-
plements the RUV (“remove unwanted variation”) func-
tions where negative control probes are used to estimate
the effects of unwanted variation [26, 27]. Negative con-
trol probes are CpGs that are unaffected by the factor of
interest but are affected by the batch effect. Due to the
fact that we did not know a priori which CpGs were not
differentially methylated, we followed the guidelines
posted in the vignette of the missMethyl package [25]. In
short, a linear regression was performed on the CD
status against the uncorrected M values yielding sta-
tistically non-significant CpGs (BH-adjusted p > 0.5).
Such statistically non-significant CpGs were deemed
unassociated with CD and were therefore used as
negative control probes. We then called the RUVfit
function using the RUV-inverse (“RUVinv”) function
from the ruv package (version 0.9.6) to estimate and
correct for batch effects [25–27].

Differentially methylated position distribution analysis
The DMPs were stratified per genetic feature/chromosome
and compared to the total number of 450k probes associ-
ated to the respective genetic feature/chromosome. A
Fisher exact test of independence was then used to calculate
the probability that the number of DMPs found for a spe-
cific genetic feature/chromosome was significantly different
from the expected number of DMPs. A second Fisher exact
test was then performed on the number of hypermethylated
DMPs versus the hypomethylated DMPs to assess whether
the distribution was significantly different in any genetic

feature/chromosome. Our threshold for statistical signifi-
cance was set to a Bonferroni-adjusted α of 0.05.

Gene ontology enrichment analysis
Gene ontology (GO) enrichment analysis was performed
on the DMPs using the gometh function from the R
missMethyl package [60]. The gometh function corrects
for the number of probes per pathway thereby giving a
balanced overview of the enriched pathways.

Hypothesis-driven analysis
To compare our data with previous GWAS and EWAS
data, we generated lists of unique genes acquired from
GWAS and EWAS. The GWAS genes consisted of genes
associated to the significant loci reported in the sum-
mary statistics obtained from Franke et al. [9], Jostins et
al. [6], and Liu et al. [8] whereas the EWAS genes con-
sisted of genes associated to significant loci reported in
the summary statistics obtained from Lin et al. [20],
Nimmo et al. [14], Karatzas et al. [19], and McDermott
et al. [13]. We then compared and looked for the genes
that were present in all three gene lists and extracted the
CpGs associated to these genes from our own data after
which we adjusted for multiple testing accordingly.

Illumina MiSeq sequencing
Technical validation of several promising 450k CpG sites
was performed through targeted amplicon sequence ana-
lysis using the Illumina MiSeq platform. Primers were
designed with a bisulfite-converted reference sequence,
human genome build 19 (hg19), using Primer3 [61, 62].
Primer information is described in Additional file 10:
Table S7. Amplicons were amplified through PCR and
pooled per subject after which non-specific products
were removed using the Agencourt AMPure PCR purifi-
cation kit (Beckman Coulter). Pooled amplicons were
elongated using TruSEQ indices and adapter sequences
after which they were purified. Quality control of the
amplicon length within the pools was performed using
Agilent 2100 Bioanalyzer. DNA concentration was mea-
sured using Qubit 2.0 Fluorometer (ThermoFisher) and
equalized to equimolar concentrations for all subject
pools. MiSeq amplicon sequencing was then performed
according to the standard protocol (Additional file 11:
Table S4). Raw sequence data was mapped, aligned, and
analyzed using GATK [63, 64], BWA, and Integrative
Genomics viewer (version 2.3.57) [65], respectively,
against the bisulfite-converted hg19. A minimum of
100 reads per patient amplicon was deemed success-
ful. While we were capable of correcting for (hidden)
technical and biological confounders during the 450k
methylation analysis, we were unable to correct for
confounding factors during the MiSeq amplicon se-
quencing experiment.
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Visualization of the differentially methylated loci
Individual CpGs were visualized as a strip/boxplot using
the ggplot2 package (version 1.0.1) [66]. Regions of CpGs
as well as the CpG islands, the histone 3 single- and
triple methylation, the DNase I hypersensitivity sites and
the transcription factor-binding sites were retrieved from
the UCSC Genome Browser and visualized using the
Gviz package (version 1.14.0) [67].

Additional files

Additional file 1: Figure S1. Exploratory data analysis of putative
biological confounders. a) Variance explained per principal component
based on our 450k data (turquoise triangles) versus randomly generated
data (red circles). b) Dot-boxplot of the cellular composition as estimated
by the Houseman algorithm [22, 23]. c) Pearson correlation coefficient
(R2) of each blood cell proportion with the principal components. The
statistically significant correlations are indicated in turquoise, whereas
statistically non-significant associations are indicated in red. Similar correlations
were calculated for d) age and e) anti-TNF usage. (PDF 119 kb)

Additional file 2: Table S1. Annotated data for the DMPs passing BH
correction for the hypothesis-free approach. The location data: Illumina
probe ID, chromosome, position, strand, UCSC gene symbol, UCSC
genetic feature and regulatory feature, are shown along with the
methylation statistics: mean beta difference, the p values and the
BH-adjusted p. (XLSX 403 kb)

Additional file 3: Figure S2. DMP-distribution per genetic feature and
per chromosome. a) Comparison of the probe distribution on the 450k
versus the DMP distribution per genetic feature where the different
colors represent the different genetic features. The numbers along the
barplot represent the percentages of the 450k probes (top) or DMPs
(bottom) per genetic feature. Significantly different DMP-distributions
are indicated in bold red with the asterisks indicating the level of
significance as found in Additional file 5: Table S3 (*: p < 0.05, **:
p < 0.01, ***: p < 0.001, ****:p < 0.0001). b) For each genetic feature
the percentage hypo- and hypermethylated DMPs is indicated with
barplots in black and gray respectively. (PDF 54 kb)

Additional file 4: Table S2. DMP-distribution statistics per genetic
feature. Results are ordered by the first Fisher test (left three columns),
which tests for differences in DMP-distribution per genetic feature, and
the second Fisher test (right three columns), which tests for differences in
the distribution of the hypo-/hypermethylated DMPs. Statistics provided
are the odds ratios with the 95 % confidence intervals (“OR (CI-95)”), the
p values and the Bonferroni-adjusted p values. (DOCX 53 kb)

Additional file 5: Table S3. DMP-distribution statistics per chromosome.
Results are ordered by the first Fisher test (left three columns), which tests
for differences in DMP-distribution per chromosome, and the second Fisher
test (right three columns), which tests for differences in the distribution of
the hypo-/hypermethylated DMPs. Statistics provided are the odds ratios
with the 95 % confidence intervals (“OR (CI-95)”), the p values and the
Bonferroni-adjusted p values. (DOCX 98 kb)

Additional file 6: Figure S3. Differentially methylated regions. Plots of
the methylation levels of the DMRs nearest to: a) HLA-J, b) MOV10L1, c)
LINC00612, c) SHANK2, d) APOBEC1, e) OR2L13 and f) TACSTD2 from the
450k (“450K”) superposed onto the RefSeq gene (“RefSeq gene”), the
CpG island (“CGI”) and the transcription factor binding sites (“TFBS”), as
retrieved from the UCSC Genome Browser. The red transparent
rectangle indicates the DMR as reported by bumphunter. (PDF 420 kb)

Additional file 7: Table S5. Annotated data for the DMPs passing
BH-correction for the hypothesis-driven approach. The location data:
Illumina probe ID, chromosome, position, strand, UCSC gene symbol,
UCSC genetic feature and regulatory feature, are shown alongside the
methylation statistics: mean difference in beta, the p values and the
BH-adjusted p values calculated for the hypothesis-free approach and
the hypothesis-driven approach. (XLSX 26 kb)

Additional file 8: Figure S4. MiSeq validation. a) Correlation of the
methylation levels obtained from 450k and MiSeq. Each color represents
the gene associated to the plotted CpG. Visualization of the methylation
levels in beta of the DMPs obtained from the 450k (“450K”) compared to
the methylation levels obtained from MiSeq sequencing (“MiSEQ”)
superposed onto the RefSeq gene (“RefSeq gene”) for b) TNFSF4, c)
IL10/IL19, and d) ORMDL3. (PDF 146 kb)

Additional file 9: Table S6. Comparison of the top DMPs reported by
McDermott et al. with our own data. The location data: Illumina probe ID,
chromosome, position, and associated gene are shown alongside the
effect size per study. CpGs where opposite effects were found are
indicated in bold. (DOCX 15 kb)

Additional file 10: Table S7. MiSeq primers. The primer data used for
MiSeq amplicon sequencing is shown alongside the included 450k
probes. (DOCX 16 kb)

Additional file 11: Table S4. DMPs on chromosome X. The location
data: Illumina probe ID, chromosome, position, strand, UCSC gene
symbol, UCSC genetic feature and regulatory feature, are shown
alongside the methylation statistics: mean difference in beta, the
p values and the BH-adjusted p values. DMPs associated to either
PABPC5 or MIR223 are indicated in bold. (XLSX 12 kb)

Abbreviations
450k, Illumina HumanMethylation450 BeadChip array; BH, Benjamini-Hochberg;
CD, Crohn’s disease; DMP, differentially methylated position; DMR, differentially
methylated region; EWAS, epigenome-wide association study; GO, gene
ontology; GWAS, genome-wide association study; IBD, inflammatory bowel
disease; RUV, remove unwanted variation; TFBS, transcription factor binding
sites; UC, ulcerative colitis
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