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From inflammaging to healthy aging by dietary
lifestyle choices: is epigenetics the key to
personalized nutrition?
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Abstract

The progressively older population in developed countries is reflected in an increase in the number of people
suffering from age-related chronic inflammatory diseases such as metabolic syndrome, diabetes, heart and lung
diseases, cancer, osteoporosis, arthritis, and dementia. The heterogeneity in biological aging, chronological age, and
aging-associated disorders in humans have been ascribed to different genetic and environmental factors (i.e., diet,
pollution, stress) that are closely linked to socioeconomic factors. The common denominator of these factors is the
inflammatory response. Chronic low-grade systemic inflammation during physiological aging and immunosenescence
are intertwined in the pathogenesis of premature aging also defined as ‘inflammaging.’ The latter has been associated
with frailty, morbidity, and mortality in elderly subjects. However, it is unknown to what extent inflammaging or
longevity is controlled by epigenetic events in early life. Today, human diet is believed to have a major influence
on both the development and prevention of age-related diseases. Most plant-derived dietary phytochemicals
and macro- and micronutrients modulate oxidative stress and inflammatory signaling and regulate metabolic
pathways and bioenergetics that can be translated into stable epigenetic patterns of gene expression. Therefore,
diet interventions designed for healthy aging have become a hot topic in nutritional epigenomic research. Increasing
evidence has revealed that complex interactions between food components and histone modifications, DNA
methylation, non-coding RNA expression, and chromatin remodeling factors influence the inflammaging phenotype
and as such may protect or predispose an individual to many age-related diseases. Remarkably, humans present a
broad range of responses to similar dietary challenges due to both genetic and epigenetic modulations of the
expression of target proteins and key genes involved in the metabolism and distribution of the dietary constituents.
Here, we will summarize the epigenetic actions of dietary components, including phytochemicals, and macro- and
micronutrients as well as metabolites, that can attenuate inflammaging. We will discuss the challenges facing
personalized nutrition to translate highly variable interindividual epigenetic diet responses to potential individual
health benefits/risks related to aging disease.
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Since people of the twenty-first century live longer,
the challenge will be to make these added years as
healthy and productive as possible. Societal and medical
advances have extended the life of humans. Despite its
significance for the well-being of individuals and the
* Correspondence: wim.vandenberghe@uantwerpen.be
1Lab Protein Science, Proteomics and Epigenetic Signaling, Department of
Biomedical Sciences, University Antwerp, Campus Drie Eiken,
Universiteitsplein 1, 2610 Wilrijk, Belgium
Full list of author information is available at the end of the article

© 2015 vel Szic et al.; licensee BioMed Central
Commons Attribution License (http://creativec
reproduction in any medium, provided the or
Dedication waiver (http://creativecommons.or
unless otherwise stated.
population as a whole, aging is a poorly understood
process. Among the hallmarks of aging are genomic in-
stability, telomere attrition, epigenetic alterations, loss of
proteostasis, deregulated nutrient sensing, mitochondrial
dysfunction, cellular senescence, stem cell exhaustion,
and altered intercellular communication [1]. A large part
of the aging phenotype is explained by an imbalance be-
tween inflammatory and anti-inflammatory networks
[2,3]. Levels of inflammatory mediators typically increase
with age even in the absence of acute infection or other
physiologic stress. While levels are still in the sub-acute
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range, this age-related chronic inflammation underlies
many aging-related conditions. According to the oxi-
inflammaging theory, the aging process is a chronic
smoldering oxidative and inflammatory stress that leads
to the damage of cellular components, including pro-
teins, lipids, and DNA, contributing to the age-related
decline of physiological functions. This is especially evi-
dent in cells that regulate homeostasis, such as the ner-
vous, endocrine, and immune systems. It explains their
functional losses observed during aging, with a resulting
increase in morbidity and mortality [4].
The progressive loss of physiological organismal and

cellular integrity is the primary risk factor for major
human pathologies, including metabolic syndrome,
cancer, diabetes, cardiovascular disorders, and neurode-
generative diseases. Due to an imbalance between en-
ergy intake and expenditure, largely attributable to the
increased availability of foods with high caloric content
coupled with the adoption of a sedentary lifestyle, the
continuing increase in obesity and metabolic disorders
such as type 2 diabetes and accelerating aging popula-
tion globally will remain the major contributors to car-
diovascular mortality and aging disorders in the next
50 years. This emphasizes the importance of weight
management and early intervention with regard to
modifiable risk factors in overweight patients. To re-
duce the burden of cardiometabolic disorders and early
onset of aging disorders, promoting exercise with a
complementary diet, supplemented with bioactive phy-
tochemicals, is expected to restore immune homeosta-
sis and improve human health [5,6]. In the past couple
of decades, evidence from prospective observational
studies and clinical trials has converged to support the
importance of individual nutrients, foods, and dietary
patterns in the prevention and management of metabolic
disorders [7-12]. With an emphasis on overall diet quality,
several dietary patterns such as the Mediterranean diet,
low glycemic index diet, moderately low carbohydrate in-
take, and vegetarian diets can be tailored to personal and
cultural food preferences and appropriate calorie needs
for weight control, diabetes prevention, and cardiometa-
bolic management [11].
Although genome-wide association studies (GWAS)

identified genetic variants that affect hundreds of genes
related to energy metabolism involved in metabolic life-
style diseases and aging, most variants identified so far
confer relatively small increments in risk, leaving many
questions about the remaining ‘missing’ heritability,
although polygenic disease traits may account for some
of these limitations [13-15]. In analogy to the reference
human genome sequence which allowed GWAS studies,
the NIH Roadmap Epigenomics Consortium generated
today the largest collection of human epigenome se-
quences for epigenome-wide (EWAS) association studies
[16]. From various epigenome-wide (EWAS) association
studies, it has become clear that epigenetic changes in
response to diet and environmental (stress) conditions
complement genetic mutations and contribute to the de-
velopment and progression of inflammaging diseases such
as rheumatoid arthritis, metabolic disorders (obesity, type
2 diabetes), cardiovascular disease, and cancer [17-29]. For
example, lifestyle factors and diet have a strong influence
on the epigenetic regulation of key products of energy
metabolism genes such as leptin (which is responsible for
appetite control), insulin receptor (that plays a central role
in glucose homeostasis), TNFα (considered as an adipo-
kine because of its role in obesity-related inflammation
and modulation of insulin response), and fatty acid syn-
thase (catalyzing fatty acid synthesis) [30]. Accumulating
evidence points to an epigenetic basis of the fetal origins
of several adult metabolic disorders [31-35]. More particu-
larly, some of the adverse epigenetic effects of lifestyle
behaviors maybe rooted in perturbations in utero during
pregnancy and during early postnatal life which shape the
metabolic phenotype, perhaps across generations, which
affect lifelong disease risk [32,36-38].
This review will focus on the epigenetic aspects

of ‘inflammaging’ and whether there are windows of
opportunity for nutri-epigenetic intervention with diet-
ary lifestyle choices. Finally, challenges of personalized
nutrition will be discussed to translate highly variable
interindividual epigenetic diet responses to potential
individual health benefits/risks related to diseases asso-
ciated with aging.

Epigenetics and aging
Striking links between organismal and cellular aging and
epigenome alterations have recently been identified.
Age-associated epigenetic changes involve alterations in
DNA methylation patterns, posttranslational modifica-
tion of histones, and chromatin remodeling [1,39]. In
general, DNA is wrapped around nucleosomes, which
are arranged as regularly spaced beads (147 bp DNA/
nucleosome) along the DNA. Typically, nucleosomes
consist of a histone (H) octamer of H2A/B, H3, and
H4. The DNA bridging two adjacent nucleosomes is
normally bound by the linker histone H1 and is termed
linker DNA. While the core histones are bound relatively
tightly to DNA, chromatin is largely maintained by the
dynamic association with its architectural proteins (such
as transcription cofactors and regulators, heterochromatin
protein 1, and high mobility group (HMG) proteins).
Before most activators of a gene access their DNA-binding
sites, a transition from a condensed heterochromatin
(‘solenoid-like fiber’) to a decondensed euchromatin
(‘beads on a string’) structure appears to take place.
Conversely, the acquisition of a more condensed hetero-
chromatin structure is often associated with gene silencing
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[40]. The structural restriction of silenced chromatin
on gene expression can be overcome by chromatin
writer, reader, and eraser enzyme complexes that remodel
nucleosomes along the DNA or reversibly modify histones
(through posttranslational modifications, such as histone
acetylation, phosphorylation, ubiquitylation, glycosylation,
SUMOylation) and establish specific chromatin states in-
volved in transcription [40-42]. Specific sets of histone
modifications and/or variants are associated with genes
that are actively transcribed or repressed, a phenomenon
defined as the ‘histone code’ [40]. Based on coexisting
histone marks and genome-wide ChIP-seq data available
within the ENCODE consortium, principal component
analysis has reduced the complexity of the histone code
into different chromatin states that are associated with
developmental and environmental cues [41-44].
DNA methylation is the best-known epigenetic mark

[24,45,46]. It is catalyzed by two types of DNA methyl-
transferases (DNMTs): DNMT1 is a maintenance meth-
yltransferase, whereas both DNMT3A and DNMT3B
are de novo methyltransferases [47,48]. It is widely
accepted that DNMT3A/B are mainly responsible for
DNA methylation during development (differentiation)
whereas DNMT1 maintains DNA methylation patterns
during DNA replication (and cell division). The role of
DNMT2 in DNA methylation is minor, its enzymology
being largely directed to tRNA. DNA methylation
is normally associated with gene inactivation, and it
usually occurs in cytosine-phosphate-guanine (CpG)
dinucleotides. Alternatively, DNA methylation of tran-
scription factor binding sites which prevents the
binding of repressor proteins can, paradoxically, induce
gene activation. CpGs are normally methylated when
scattered throughout the genome but are mostly
unmethylated when clustered as CpG islands at the 5′
ends of many genes. Hypermethylation of CpG-rich
promoters triggers local histone code modifications
that result in a cellular camouflage mechanism which
sequesters gene promoters away from transcription
factors, causing stable silencing of gene expression.
DNA methylation at CpG dinucleotides occurs upon
transfer of S-adenosylmethionine (SAM) on cytosine by
DNMTs. Recent results suggest that DNA methylation
should be considered as a more dynamic and stochastic
process, in which DNA methylation at each site is
determined by the local activity of DNMTs, DNA
demethylases, and DNA replication enzymes that are
controlled by a dynamic network of chromatin marks
[49] and signaling pathways [50,51]. For example, the
inflammatory mediator prostaglandin E(2) (PGE(2))
has been shown to exert dynamic DNA methylation
changes during cancer inflammation [52,53]. In mam-
malian cells, the fidelity of maintenance of methylation
is 97% to 99.9% per mitosis, whereas de novo
methylation is as high as 3% to 5% per mitosis, thus
creating possibilities for dynamic epigenetic changes.
Unavoidable errors may accumulate over time following
long-term maintenance of epigenetic patterns or occur-
rence as a result of the accumulation of DNA lesions dur-
ing aging in both nuclear and mitochondrial DNA caused
by increased oxidative stress. Epigenetic errors could ex-
plain the stochastic differences in DNA methylation pat-
terns reported in aging monozygotic twins [54,55]. Early
studies described an age-associated global hypomethyla-
tion, concomitantly with hypermethylation of various
tumor suppressor genes and Polycomb target genes [56].
Epigenetic changes accumulated throughout life may
also result in the deterioration and reduced regeneration
capacity of stem cells [57]. Although in most cases DNA
methylation is a stable epigenetic mark, reduced levels of
methylation are also observed during development. This
net loss of methylation can either occur passively by
replication in the absence of functional maintenance
methylation pathways or, actively, by indirect removal
of methylated cytosines. In mammals, a role for the 5-
hydroxymethylcytosine (5-hmC) modification in DNA
demethylation by ten-eleven translocation (TET) en-
zymes has been demonstrated as an intermediate in
an active DNA demethylation pathway involving DNA
repair and 5-hydroxymethylcytosine-specific DNA gly-
cosylase activity [48,50,58].
Of particular interest, reactive oxygen species (ROS)

and oxidative stress may affect DNA demethylation by
DNA oxidation or TET-mediated hydroxymethylation
[59,60]. For example, age-related increase in levels of 5-
hmC in the brain can be prevented by caloric restriction
or upregulation of specific endogenous anti-oxidants
[61,62]. Furthermore, nutrients like ascorbic acid can
promote DNA demethylation via increased activity of
TET enzymes [63,64]. In another remarkable study, loss
of TET2 and 5-hmC was found to strongly correlate
with smooth muscle cell plasticity and the degree of
injury in different models of vascular and atherosclerotic
disease, in which ROS are critically involved [65]. Alter-
natively, ROS can influence the methylome by formation
of oxidized DNA lesions. Replacement of guanine to
8-hydroxy-2′-deoxy-guanosine (8-OHdG), one of the
major DNA oxidative damage by-products, substantially
diminishes the binding of methyl-CpG binding proteins
and DNMTs and results in heritable epigenetic changes
[66-68]. As such, it may be expected that oxidized DNA
lesions formed by the hydroxylation of pyrimidines, in-
cluding 5-methylcytosine (5-mC), interfere with epigen-
etic signals related to 5-hydroxymethylcytosine (5-hmC)
due to their structural similarities [69,70]. Finally, in vitro
studies suggest that glutathione (GSH) depletion by
redox changes leads to global DNA hypomethylation,
possibly through the depletion of SAM [71,72].
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Tissues and cells of aging organisms also show
age-associated changes in histone chromatin marks
such as increased histone H4 lysine(K)16 acetylation,
H4K20 trimethylation, or H3K4 trimethylation, as well
as decreased H3K9 methylation [73-75]. Age-associated
epigenomic changes could be driven by changes in
expression of chromatin-modifying or -demodifying en-
zymes [75-77]. Of particular interest, deletion of compo-
nents of histone methylation complexes (for H3K4 and for
H3K27) extends longevity in nematodes and flies, respect-
ively, and may involve the insulin/IGF-1 signaling pathway
[78-81]. It is not yet clear whether aging is a cause or con-
sequence following purely epigenetic changes or alter-
ations affecting metabolic or signaling pathways outside of
the nucleus. Importantly, since the activities of histone-
modifying enzymes also depend on intracellular levels of
essential metabolites (acetyl-coA, Fe, ketoglutarate, NAD+,
S-adenosylmethionine), epigenetic changes are tightly
linked to global cellular metabolism and energy levels
[82-88] (Figure 1). Finally, ROS (such as •O2,

•OH, H2O2,
NO, and 1O2) as well as reactive nitrogen intermediates
such and NO and reactive nitrogen species (RNS), pro-
duced by neutrophils, macrophages, endothelial, and
Figure 1 Metabolic pathways generate essential metabolites for chr
(Acetyl-coA), and S-adenosylmethionine (SAM) are elemental for epigene
posttranslational modifications of histones and non-histone chromatin fa
via the activity of the protein deacetylase sirtuin, which uses NAD as one
activity of the acetyl-coA acetyltransferases. Acetyl-coA is synthesized by
and citrate as the precursors, respectively. Citrate is an intermediate/prod
histones, and non-histone protein methylation. S-adenosylhomocysteine
inhibitor of methyltransferases and has to be cleared by SAH hydrolase (S
methionine from homocystein is achieved through extracting the methy
derivative of folic acid. Metabolism of phospholipids and folic acid may t
abundance of NAD and citrate is linked to the cellular energy flux, e.g., th
therefore be influenced significantly. Abbreviations used: Acetyl-coA, ace
Ado, adenosine; HAT, histone acetyltransferase; Hcy homocysteine; MTase
reactive oxygen species, RNS, reactive nitrogen species, SAH, S-adenosyl
other cells, can indirectly modulate the activity of the
epigenetic machinery. For example, ROS were demon-
strated to modulate the activity of the Rph1 demethy-
lase specifically at subtelomeres to remodel chromatin
and extend lifespan [89].
Although epigenetic modifications previously were

thought to be fixed during development and main-
tained over the lifetime, more recent research provides
evidence that epigenetic mechanisms allow rapid adap-
tations to a changing environment and are responsive
to signaling cascades [50,51]. Therefore, epigenetic
mechanisms may exacerbate the epidemic of metabolic
disease by first contributing to the development of
obesity and type 2 diabetes and then passing modifications
on to the subsequent generation via transgenerational in-
heritance [90]. Nevertheless, epigenetic mechanisms might
also prevent the development of type 2 diabetes through
nutritional intervention therapies [12,34,91,92]. Recent
success of therapeutic intervention in chronic inflam-
matory diseases using epigenetic modifiers such as
histone deacetylase (HDAC) and DNMT inhibitors has
fuelled interest in methylome profiling of complex
diseases [92-103].
omatin- and DNA-modifying enzymes. NAD, acetyl-coenzyme A
tic control of transcription including methylation of DNA and
ctors (not shown). NAD contributes to transcriptional control mainly
of the substrates. Sirtuins are also important for maintaining the
acetyl-coA-synthetase (ACS) and ATP-citrate lyase that use acetate
uct of the TCA cycle. SAM is the methyl donor for DNA, RNA,
(SAH) generated in each round of methylation reaction is a potent
AHH). NAD is an essential coenzyme for SAHH. Synthesis of
l group from betaine, derived from choline, or 5-methyl-THF, a
hus indirectly contribute to epigenetic regulation. Likewise, the
e TCA cycle. Changes in the expression of certain genes may
tyl-coenzyme A; ACS, acetyl-coA-synthetase; AC-ACS acetylated-ACS;
s, methyltransferases; NAD, Nicotinamide adenine dinucleotide; ROS,
homocysteine; TCA, tricarboxylic cycle; THF, tetrahydrofolate.
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Crosstalk of inflammation and energy metabolism fuel
epigenetic plasticity
An increasing number of experimental and epidemio-
logical evidence links multifaceted process of aging to sys-
temic low-grade inflammation and disturbances in cellular
metabolism and protein homeostasis [104-106]. An effi-
cient autophagic flux, i.e., cellular mechanism for the deg-
radation and recycling of cellular components, is essential
for healthy aging and maintenance of cellular homeostasis
and links inflammation to metabolic disorders (Figure 2).
Autophagy negatively regulates inflammasome activation
by maintaining mitochondrial homeostasis. Reciprocally,
mitochondrial energy metabolites also regulate aging and
autophagy through as-yet-elusive metabolic circuits [105].
Inflammation also profoundly affects the metabolic
bioenergetic profile of target cells, promoting aerobic
glycolysis, a process called the ‘Warburg effect’, first
described in tumor cells [107]. Different cell conditions
require flexible metabolic programs to support unique
bioenergetic demands. Metabolic pathways rely on the
dynamic balance between anabolic processes to support
the synthesis of cellular building blocks and catabolic
processes to ensure adequate bioenergetic resources.
Beyond nutrient-sensing pathways which control gene
transcription and intercellular/extracellular energetic
status, nutrient-responsive metabolites, such as ATP,
acetyl-CoA, UDP-N-acetylglucosamine (UDP-GlcNAc),
and S-adenosyl methionine, mediate crosstalk between
Figure 2 Plant phytochemicals achieve hormesis through multifocal p
large number of plant molecules in our diet with key regulators of mamma
are synthesized as secondary metabolites in response to stress. During adv
retained the ability to sense these stress signaling molecules synthesized by th
inflammation-energy-metabolism pathways to protect and to increase the su
protein kinase D, IKK2, inhibitor of IkB kinase 2; ROS/RNS, reactive oxygen/nitro
TSC, tuberous sclerosis complex mTOR, mammalian target of rapamycin; R6SK
dehydrogenase kinase; AKT/PKB, protein kinase B; PGC1, peroxisome proliferat
metabolism, cellular signaling, and the epigenetic con-
trol of transcription programs [108-116] (Figure 3). By
operating as indicators of metabolic status, these metabo-
lites serve as substrates for posttranslational modifications,
including acetylation, glycosylation, methylation, and
phosphorylation, which regulate the activity of metabolic
enzymes, signaling pathways, and transcription factors.
Because histone-modifying enzymes including kinases,
acetyltransferases, and methyltransferases consume key
metabolites, the metabolic state of a given cell will also be
reflected in the chromatin modification patterns. In this
respect, changes in nuclear acetyl-CoA or NAD+ levels
affect histone acetylation patterns [88,114]. However, the
specificity of chromatin changes also depends on the
gene-specific recruitment of histone-modifying enzymes
to specific chromosomal domains via their interaction
with DNA-binding factors, ncRNAs [117-119]. Also, en-
zymes that use the same metabolite but modify different
substrates, such as DNA or histone methyltransferases,
may compete with each other leading to either one or the
other methylation product. Furthermore, many nutrient
metabolites have been shown to have a direct effect on
gene expression patterns through binding to nuclear re-
ceptors that in turn affect the transcription of the gene
they bind to [120]. Interestingly, even transient changes in
the nutrition can have a long-lasting impact on gene ex-
pression patterns. Heritable ‘memory’ effects of metabolic
disturbances have been demonstrated by the ablation
athway inhibition. Our health strongly benefits from interactions of a
lian physiology (adapted from [288]). Various plant-derived molecules
ersity in the context of particular environmental stresses, animals have
eir distant ancestors, through enzymes and receptors which regulate
rvival of the organism. Abbreviations used: PKC, protein kinase C; PKD,
gen species; NR, nuclear receptor; AMPK, AMP-activated protein kinase;
ribosomal S6 kinase; PI3K, phosphoinositide 3-kinase; PDK, pyruvate
or-activated receptor c coactivator 1; SIRT, sirtuin; FOXO, forkhead box O.



Figure 3 Activity of chromatin modifying writer-eraser enzymes
depends on available concentrations of cofactor metabolites
and environmental signals. (A) Schematic representation of a
nucleosome with extruding histone tails with residues that can be
modified by various chromatin writer (i.e., DNA methyltransferase
(DNMT), histone methyltransferase (HMT), histone acetylase (HAT),
ubiquitin ligase (L), kinase (K), glycosylase (G)) or chromatin eraser
enzymes (i.e., DNA hydroxymethylase (TET), demethylase (HDMT),
deacetylase (HDAC), proteasome (Pr), phosphatase (PP)), resulting in
dynamic histone methylation (Me), acetylation (Ac), ubiquitination
(Ub), phosphorylation (P), and glycosylation (Gly). These histone
modifications have been associated with changes in chromatin
organization, gene activation, silencing, and several other nuclear
functions (adapted from [338]). (B) Hypothetical model of a
glycolytic-oxidative metabolic switch and its possible influence on
epigenetic modifiers and the epigenetic landscape (adapted from [339]).
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of key epigenetic enzymes such as SIRT1, HDAC6, and
KDM3A in models of metabolic disorders [114,116].
These findings pave the way to the development of thera-
peutic strategies against epigenetic modifier enzymes for
the treatment of metabolic and aging disorders [121-123].
Recent theories propose that mitochondria and energy
metabolism play a major role in the regulation of health
span through Krebs cycle intermediates that shape the epi-
genetic landscape of chromatin by regulating DNA and
histone methylation during the aging process [124,125]
(Figure 3B). Of particular interest, the histone variant
MacroH2A1.1 but not MacroH2A1.2 was found to bind
with high affinity to the SIRT1-metabolite O-acetyl ADP
ribose. Upon its overexpression, it ameliorates glucose me-
tabolism and reduces expression of lipidogenic genes and
fatty acids [126]. In another study, genetic ablation of his-
tone macro-H2A1 resulted in increased leanness, glucose
tolerance, and energy expenditure in mice fed with a high-
fat diet [127]. Major metabolic changes are also observed
in cancers [72,88,128,129]. The ‘Warburg effect’ is accom-
panied by major alterations in gene expression profile
whose causes are likely to be associated with specific
chromatin-remodeling events [130-133]. Furthermore,
mutated isoforms of the core metabolic enzymes isocitrate
dehydrogenase (IDH), succinate dehydrogenase (SDH),
and fumarate hydratase (FH) result in accumulation of
particular metabolites which inhibit TET enzymes respon-
sible for oxidizing 5-mC, leading to pervasive DNA hyper-
methylation [111,134-136]. In analogy to ‘oncometabolites’
whose accumulation triggers aberrant signaling resulting
in initiation of carcinogenesis, depletion of ‘gerometabo-
lites’ was found to drive aging [137,138]. Altogether, the
cellular metabolism is tightly regulated, and imbalance of
energy intake and expenditure contribute to metabolic
diseases, cardiovascular diseases, cancer, and other aging
diseases. Dynamics and/or reversibility of epigenomic
changes in response to altered metabolic states needs to
be further investigated.

Nutri-epigenomics: lifelong remodeling of our
epigenomes by nutritional, phytochemical, and metabolic
factors
Phytochemicals from plants appear to be crucial to
achieve the correct relationship between man and na-
ture - between dietary balance and health (Figure 4).
Several polyphenolic compounds, such as resveratrol,
tea catechins, and flavonoids, which are commonly
found in vegetables, fruits, and plant-derived juices or
beverages, exert well-evidenced cardioprotective, neu-
roprotective, chemopreventive, and anti-inflammatory
properties, but, nevertheless, further clinical and epi-
demiological research is required. Classic proposed
mechanisms for the health benefits of phytochemicals
are the following: (1) direct antioxidant activity or increase
in the expression of antioxidant proteins; (2) attenuation
of endoplasmic reticulum stress signaling; (3) blockade of
pro-inflammatory cytokines; (4) blockade of transcription
factors related to metabolic diseases; (5) induction of
metabolic genes expression; and (6) activation of tran-
scription factors that antagonize inflammation [139].
Rather than the chemical conversion of food to energy
and body matter of classic metabolism, food is now also
a conditioning environment that shapes the activity
of the (epi)genome and determines stress adaptive re-
sponses, energy metabolism, immune homeostasis, and
the physiology of the body [91,140-143]. Human epi-
demiological studies and appropriately designed dietary



Figure 4 Overview of the mechanisms and consequences of epigenetic regulation by nutritional compounds. Modulation of different
classes of chromatin writers-erasers by phytochemicals (left panel). Genes encoding absorption, distribution, metabolism, and excretion (ADME)
proteins can be epigenetically regulated and thereby determine individual nutritional responses. Epigenetic modification of disease-related genes
can contribute to diagnosis (biomarker) as well as disease prevention or progression (right panel).
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interventions in animal models have provided consider-
able evidence to suggest that maternal nutritional im-
balance and metabolic disturbances, during critical
time windows of development, may have a persistent
effect on the health of offspring and may even be trans-
mitted to the next generation [22,144-149]. This has
led to the hypothesis of ‘fetal programming’ and new
term ‘developmental origin of health and disease’
(DOHaD) [35,150]. This hypothesis postulates that a
nutritional or environmental mismatch between pre-
natal (in utero gestation) and postnatal life (weaning,
infancy, adult life), plays an important causative role in
non-communicable diseases, including diabetes, cardio-
vascular disease, allergy, some forms of cancer, cogni-
tive decline, and affective disorders [21,146,151-156].
The various non-Mendelian features of metabolic dis-
ease, cancer, or chronic inflammatory disorders, clinical
differences between men and women or monozygotic
twins, and fluctuations in the course of the disease are
consistent with epigenetic mechanisms in the influence
of fetal and/or lifelong nutrition or stochastic events on
adult phenotype [22,144-149,157-159].
Thus, lifetime shapes the multitude of epigenomes not
only within but also across generations [22,35,148,160-162].
Interest in transgenerational epigenetic effects of food com-
ponents has initially been fuelled by observations in Agouti
(Avy/a) mice fed with a soy polyphenol genistein (GEN),
which revealed changes in coat color, related to epigenetic
changes in DNA methylation patterns in their offspring
and protection against diabetes, obesity, and cancer across
multiple generations [163-165]. However, some of these
findings were contested in more recent studies with Avy/a
mice fed with soy protein isolate, containing comparable
amounts of genistein [166]. In another study by Rosenfeld
and colleagues, no association between a genistein-based
diet and the so-called pseudoagouti, brown phenotype was
revealed [167]. Also, only weak transgenerational effects
could be observed with soy polyphenols in Daphnia
Magna, despite the presence of functional DNMTs [168].
Nevertheless, the honeybee (Apis mellifera) is probably the
clearest example of induction of alternative phenotypes and
aging epigenotypes by nutrition in early life [169]. Female
bees are genetic clones. However, queens are distinct from
workers in their morphology, capacity to reproduce,
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behavior, and longevity. The difference between the queen
and worker castes lies in the exposure of the genetically
identical larvae to royal jelly, an as yet incompletely defined
mixture of proteins, amino acids, vitamins, fatty acids, ste-
roids, hormones, lipids, and other nutrients [170-176].
Studies of human populations following famine have

suggested that pathologies in later life are dependent on
the timing of nutritional insult during pregnancy. Follow
up of the Dutch Hunger Winter cohort showed that car-
diovascular disease was more prevalent in offspring of
mothers who were severely undernourished during the
first trimester of their pregnancies in 1944 to 1945, as
compared to those born to mothers whose pregnancies
were more advanced at the time of nutritional insult
[177-179]. Also, paternal patterns of nutrition during the
prepubertal growth period in children in Överkalix, in
Sweden, during the nineteenth century are associated
with differential risk of early cardiovascular death in
their grandchildren [180,181]. Today, various epigenetic
changes have already been characterized which are
involved in atherogenesis [21,22,182-185]. Hypercholes-
terolemia, obesity, hyperhomocysteinemia, and high glu-
cose are important cardiovascular disease risk factors
which are implicated in enhanced inflammatory signaling,
and long-lasting effects are driven by epigenetic repro-
gramming, which promote differentiation of monocytes/
macrophages into more proatherogenic phenotypes
[186-192]. Recent evidence suggests that the pathogenetic
role of hyperhomocysteinemia in vascular diseases might
be mediated via adenosyl-homocystein (Hcy) accumula-
tion and DNA methylation. Hcy competes with SAM (the
methyl-group donor) for binding on DNMT, which may
lead to passive loss of methylation in replicating DNA.
High blood Hcy levels correlate with DNA hypomethyla-
tion and atherosclerosis and can lead to a 35% reduction
in DNA methylation status of peripheral blood lympho-
cytes [193-196]. Similarly, insulin, glucose, folate, or
flavanol-rich diets interfere with the methyl donor metab-
olism and the available pool of SAM, resulting in DNA
methylation changes [196-199]. In contrast, very few
studies have focused on impact of dietary methyl
donors on histone methylation, which is also affected
by alterations in SAM/S-adenosylhomocysteine (SAH)
ratios [193,200]. As such, specific dietary classes of
functional food maybe designed as therapeutic epigen-
etic modulators in lifestyle disease, such as metabolic
disorders (diabetes), cardiovascular disease, asthma/
COPD, and rheumatoid arthritis [91,142,143,201,202].
Epidemiologic and medical anthropological studies have

indicated that flavanol-rich diets are inversely associated
with cardiovascular risk [203-209]. Locus-specific DNA
methylation changes, both hyper- and hypomethylation,
have been demonstrated at the promoter of several genes
involved in the pathogenesis of atherosclerosis, such as
extracellular superoxide dismutase (SOD), hormone recep-
tors (glucocorticoid receptor (GR), estrogen receptor (ER),
peroxisome proliferator-activated receptor (PPAR), arylhy-
drocarbon receptor (AhR), liver X receptor (LXR)), endo-
thelial and inducible nitric oxide synthase (iNOS/eNOS),
15-lipoxygenase (LOX), fibroblast growth factor (FGF)2,
hypoxia-inducible factor (HIF)1α, myc, insulator CCCTC
binding factor (CTCF), and metalloproteases (MMPs)
[189,210-213]. In a proatherogenic murine model, DNA-
methylation polymorphisms preceded the appearance of
histological signs of atherosclerosis [187,188]. Interestingly,
involvement of the inducible JMJD3 demethylase was dem-
onstrated to regulate monocyte/macrophage transdifferen-
tiation programs, illustrating that developmental programs
are plastic and monocyte lineage differentiation is suscep-
tible to inflammatory pathways and oxidative stress [214].
A role for the JMJD1A demethylase was demonstrated in
metabolic gene expression and obesity resistance [215].
Furthermore, it was found that knockdown of the LSD1
demethylase affected monocyte adherence in a proathero-
genic diabetic mouse model [216]. This suggests that
LSD1 contributes to metabolic memory through long-term
changes in gene expression via alterations in chromatin
structure [217,218].
Poor maternal nutrition has also been associated with

increased risk of type 2 diabetes over several generations
in North American Indians [219,220]. Individuals with
metabolic syndrome, obesity, type 2 diabetes, and car-
diovascular disease may show a lifelong imbalance be-
tween energy intake and expenditure due to incorrect
epigenetic programming during their early development
as a result of placental insufficiency, inadequate maternal
nutrition, metabolic disturbances, or neonatal medica-
tion [145,219-224].
Recently, evidence emerged that also timing (preconcep-

tion, pregnancy, lactation, neonatal life, early life, pre-/
post-menopause, puberty) of various dietary exposures
may be vitally important in determining health beneficial
effects, as epigenetic plasticity changes continually from
conception to death [225]. In principle, epigenetic changes
occurring during embryonic development will have a
much greater impact on the overall epigenetic status of
the organism because, as they can be transmitted over
consecutive mitotic divisions, alterations occurring in sin-
gle embryonic stem cells will affect many more cells than
those occurring in adult stem and/or somatic cells during
postnatal development [147]. Epigenetic plasticity further
also depends on other processes such as chromosomal in-
stability, telomere shortening, metabolic cycles, mitochon-
drial deteriorations, and oscillatory, circadian, or seasonal
rhythms of systemic hormone levels (hypothalamic-pituit-
ary-adrenal (HPA) axis) [21,22,93,224-228]. In addition to
epigenetic imprinting during crucial periods of develop-
ment, stochastic or genetically and environmentally
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triggered epigenomic changes (epimutations) occur day
after day and accumulate over time, as maximal differ-
ences in DNA methylation profiles are observed in aged
monozygotic twins with a history of non-shared environ-
ments [55,96]. Concerning nutritional transgenerational
inheritance, there is increasing evidence in both plants
and animals that, following nutritional intervention
(caloric, iron and protein restriction, polyphenol-,
folate-, micronutrient-, fat-, or carbohydrate-rich diet), ma-
ternal diabetes, during pregnancy, and lactation, can affect
the following generation(s) [148,153,164,165,229-231]. Al-
though it has long been thought that the epigenomic pro-
file is wiped clean in the embryo shortly after fertilization,
with the exception of imprinted genes, methylation clear-
ing is not complete after fertilization and on a global DNA
level is reduced to 10% [232,233] or converted into
hydroxymethylcytosine [234]. Alternatively, it cannot
be excluded that transgenerationally inherited nutri-
tional effects may also depend on Polycomb proteins
[148,235-237], miRNAs, or long noncoding RNAs
[19,238-242]. Since hsp90 inhibitors trigger previously
hidden morphological phenotypes in the next gener-
ation and for several generations thereafter, increasing
evidence also supports a ‘capacitor’ role (i.e., storage of
accumulated stress) of hsp90 in buffering transgenera-
tional epigenetic variation during environmental or nutri-
tional stress [243-245].
A next challenge will be to determine which adverse

epigenomic marks are reversible by specific diets, drugs,
or lifestyle changes [22,116,142,143,146,201,225,231].
Numerous botanical species and plant parts contain a
diverse array of polyphenolic phytochemicals which exert
health-beneficial effects in man by their anti-inflammatory,
anti-oxidant, phytohormone, cardio-protective, cancer
preventive, and anti-bacterial properties, by maintain-
ing immune homeostasis (hormesis) [246,247]. Phyto-
chemicals have also successfully been applied for
regenerative medicine and cancer stem cell therapy
[248-253]. Oxidative stress and inflammatory damage
play an important role in epigenetic reprogramming of
expression of cytokines, oncogenes, and tumor sup-
pressor genes, thereby setting up a ground for chronic
inflammatory diseases and carcinogenesis [254-256]. As
such chemoprevention, the strategy to inhibit, retard,
or even reverse the epigenetic stage of chronic inflam-
mation is one of the most rational approaches to re-
duce the global burden of non-communicable aging
diseases [30,153,256,257].
Today, various nutritional compounds (including epi-

gallocatechin gallate, resveratrol, genistein, curcumin, iso-
thiocyanates, withaferin A) have been characterized which
interfere with enzymatic activity of chromatin writers,
readers, or erasers such as DNMT, class I to IV histone
deacetylases (HDACs), histone acetyl transferases (HATs),
and class III HDAC sirtuins (SIRTs) which modulate in-
flammatory responses and immunological senescence
([91,140,141,146,155,231,258-269] and references included)
(Figure 4). HDACs are zinc metalloproteins which rely on
Zn2+ for their activity and are divided into four classes
based on their homology with yeast HDACs. Class III
HDACs, called sirtuins, are zinc independent but nicotina-
mide adenine dinucleotide (NAD+) dependent. Class I to
IV HDAC inhibitors characteristically contain a Zn2+ che-
lating group consisting of a thiolate, thiol, hydroxamate,
carboxylate, mercaptoamide, epoxide, or ketone group.
Natural HDAC inhibitors can be divided in following
groups based on their chemical characteristics: carboxyl-
ates, organosulfides, isothiocyanates, hydroamates, cyclic
tetrapeptides, and macrocyclic depsipeptides [261]. In con-
trast to natural HDAC inhibitors, only few natural prod-
ucts (i.e., niacin, dihydrocoumarin) have been identified as
inhibitors of class III HDACs. Reciprocally, various natural
flavonoids have been identified as activators of class III
HDACs (SIRTs). Finally, turmeric and green tea have been
identified as sources of natural inhibitors of p300/CBP
HAT. Finally, DNMT inhibitors work mainly through one
of the following mechanisms, either covalent trapping of
DNMT through incorporation into DNA (i.e., nucleoside
analogs decitabine, 5-azacytidine), non-covalent blocking
of DNMT catalytic active site (i.e., EGCG, parthenolide),
interruption of binding site of DNMT to DNA (i.e.,
procaine), degradation of DNMT (i.e., decitabine), or
suppression of DNMT expression (i.e., miRNAs). Fur-
thermore, a number of natural compounds act as
multifunctional ligands by simultaneously acting on nu-
clear hormone receptors and changing activity of histone-
modifying enzymes and DNMTs [270-274]. Although
health-protective anti-oxidant or anti-inflammatory effects
of dietary factors and extracts have frequently been dem-
onstrated in in vitro experiments at concentrations which
can never be achieved in vivo, ‘epigenetics’ might shed a
more realistic light on dietary studies, as long life exposure
at physiological concentrations could lead to remodeling
of the epigenome in a cumulative fashion by repetitive
effects on the epigenetic machinery [160,161,275]. Par-
ticular attention needs to be given to natural com-
pounds which can trigger opposite effects on HDAC/
HAT/DNMT or histone (de)methylase (H(D)MT) de-
pending on the concentration- or cell type-specific
metabolization [260,261]. It should also be stressed that
it is not known whether all of them can be considered
authentic epigenetic modifiers because it has not yet
been demonstrated whether the epigenetic modifications
which they induce are stable over time. Interestingly, even
transient exposure to a specific dietary component can
induce long-lasting epigenetic changes in inflammatory
gene expression [218,276]. Alternatively, compounds may
chemically interfere with histone mark interacting protein
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structure motifs (such as chromo-, bromo-, or tudor
domains) [277-279].
Besides specific interference of the diet with chromatin-

modifying enzymes and DNMTs at particular target genes,
global epigenetic changes can also occur following bio-
chemical metabolization of dietary factors, which can
deplete cellular pools of acetyl-CoA, NAD+, and methyl
donors, resulting in unbalanced DNA methylation and/
or protein acetylation or methylation [87,266,280]. For
example, diets lacking in substrate or cofactors in methyl
donor metabolism can contribute to DNA hypomethyla-
tion by impairing synthesis of SAM [194]. This methyla-
tion cycle is frequently cited to explain relations between
diet and epigenetic changes [193,281]. However, even
without nutritional deficiency of methyl groups, impaired
synthesis of SAM and perturbed DNA methylation can
happen when the need for glutathione (GSH) synthesis
increases [282]. Diets or nutritional compounds which
affect energy metabolism or mitochondrial respiration
can have global epigenetic effects upon changes in
NAD+ availability and SIRT activity [283]. Since SIRT
activation has been linked to longevity (increased life-
span and healthy aging) and mimics a caloric restricted
diet, SIRT activators such as resveratrol represent a
major class of caloric mimetic phytochemicals which
could reverse metabolic disease [280,284-286].

Xenohormetic epigenetic effects of plant secondary
metabolites across species: evolutionary role for stress
adaptive responses in healthy aging and longevity
The xenohormesis hypothesis proposes that under
stressful conditions, plants synthesize phytochemicals
(xenohormetins), which, when incorporated into the het-
erotroph diet, induce defense responses, leading to an
extended lifespan [287]. Most plants contain toxic mole-
cules, in order to prevent pathogen colonization and
insect-mediated damage and also to discourage animals
from eating them. According to an evolutionary theory
of stress adaptation, animals and fungi (heterotrophs)
have evolved the ability to respond to stress-induced
chemical molecules related to the status of its environ-
ment or food supply from other species, to prime a
defense response that increases its chances of survival
upon subsequent environmental stress challenges. Xeno-
hormesis suggests that the majority of health benefits from
phytochemical consumption do not result from responses
to mild cellular damage or from their antioxidant
properties but rather from the evolutionarily adaptive
modulation of the enzymes and receptors of stress-
response pathways in mammals [288]. Therefore, these
phytochemicals, working as interspecies transference
signals, are preparing living beings for adversity [287].
According to this model, animals facing reduced food
availability or other biological stresses have a selective
advantage to divert limited resources away from
reproduction and growth into maintenance and defense
until their offspring have a better chance of survival.
Similarly, lifespan extension through caloric restriction
may have evolved to promote survival in an environ-
ment with poor prospects for reproduction. Also, fast-
ing on alternate days shares similar health benefits as
caloric restriction. Perhaps it mimics a natural circum-
stance in which increasing food uncertainty prepares
for possible future starvation conditions. For example,
various environmental stress-induced secondary plant
metabolites such as resveratrol, butein, and fisetin can
induce defense responses in fungi, nematodes, flies,
fish, and mice or can extend lifespan by mimicking ‘caloric
restriction’ [288]. These chemical signals regulate the epi-
genome by modulating metabolic pathways and function
of chromatin-modifying enzymes as well as transcription
factors that are responsible for recruiting these enzymes.

Interindividual epigenetic variation in diet responses and
challenges of personalized nutrition
From clinical and diet intervention studies, it appears that
individuals display different responses to pharmacological
nutritional interventions, respectively, that result in
variable benefits to particular treatments [143,289,290].
Similarly, considerable heterogeneity can be observed
in biological aging and chronological age is not a reliable
marker for healthy aging [291]. Heterogeneity in re-
sponsiveness can obscure associations between dietary
intakes and health outcomes and bias the identification
of the effects of bioactive phytochemicals in specific
subpopulations.
Pharmacogenomic and -kinomic studies demonstrate

that for some drugs and/or bioactive nutrients, individuals
can be categorized into poor, intermediate, or extensive
absorbers or metabolizers and dosing has to be person-
alized [102,143,160,161,203,292-295]. Various genetic
single-nucleotide polymorphisms (SNPs) with known
relevance to drug pharmacokinetics, such as detoxification
enzymes and transporters, have already been compiled
in online databases. For example, several genetic variants
exist for genes encoding glutathione S-transferases (GSTs),
which play major roles in the metabolism of glucosinolates
and bioavailability of isothiocyanates that are present in
cruciferous vegetables (broccoli) [296,297]. A significant
interindividual variation has also been described for
the LDL-cholesterol lowering response to plant sterol
consumption, and it is associated with ABCG8 gene
polymorphism [298].
However, this is still insufficient to explain the large in-

terindividual variations in therapeutic responses. In recent
years, evidence that has accumulated suggests that epigen-
etic aberrations of key ADME genes (genes related to
drug absorption, distribution, metabolism, and excretion)
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involved in the metabolism and distribution of phyto-
chemicals also contribute to interindividual variations
in the nutritional response [102,299]. For example,
hypermethylation of ADME gene promoters has been
observed in cancer tissue, resulting in gene repression
of various phase I and II enzymes, including CYP450s
and UDP-glucuronosyltransferases, as well as ABC ef-
flux transporters [300-302] (Figure 4). The introduction
or removal of CpG dinucleotides at SNPs (CpG-SNPs,
epimutations) may represent a potential mechanism
through which SNPs affect gene function via epigenetic
processes [31,303]. Conversely, epigenetic changes
could increase susceptibility to genetic point mutations
[304]. This indicates a complex interrelationship between
genetic and epigenetic variations in different diet-related
disease phenotypes [31,304-309]. Personalized nutrition is
an increasingly recognized paradigm in nutrition research.
Therefore, some population subgroups may gain more
benefit than others from the consumption of plant foods
and their bioactives. The further determination of environ-
mental factors responsible for interindividual variations in
the endocrine system, epigenetic profiles, and microbiome
communities and the identification of ‘susceptibility
profiles’ in response to plant bioactive consumption
could lead to targeted dietary advice and use of functional
foods customized for different population subgroups
[143,310-312]. In contrast to prominent quantitative epi-
genetic changes at tumor suppressor genes (>60% increase
of DNA methylation) associated with cancer, more subtle
epigenetic changes are typically observed in cardiometa-
bolic disorders (<20%) [312-320]. To reverse such subtle
changes, several nutrients and bioactive food compounds
may be preferred over toxic antineoplastic epigenetic
drugs [91,121,142,143,321-327]. This will encourage the
characterization of robust epigenetic dietary biomarkers
and design of functional foods that could help to combat
or prevent inflammaging-related metabolic diseases.

Conclusions
The phenotype of an individual is the result of complex
ongoing gene-environment interactions in the present,
past, and ancestral environments, responsible for lifelong
remodeling of our epigenomes. In recent years, several
studies have demonstrated that disruption of epigenetic
mechanisms can alter immune function and that epimuta-
tions not only contribute to certain cancers but also
to lifestyle diseases such as type 2 diabetes, allergies,
cardiovascular disease, and rheumatoid arthritis, as well
as unhealthy aging. Various replication-dependent and
-independent epigenetic mechanisms are involved
in developmental programming, a lifelong intertwined
process of monitoring and responding to environmen-
tal changes, and the transmission of transgenerational
effects. It is likely that improved understanding of
epigenetic processes will allow us to manipulate the
epigenome which represents a reversible source of bio-
logical variation [328,329]. We believe that herein re-
sides a great potential for chemoprevention, alleviation
of chronic inflammatory disorders, and healthy aging.
Much attention is currently focused on the modulation
of hyper/hypomethylation of key inflammatory genes
by dietary factors as an effective approach to chronic
inflammatory disease management and general health
benefits [146,155,231,259-266]. In this respect, ‘Let food
be your epigenetic medicine’ could represent a novel
interpretation of what Hippocrates said twenty-five
centuries ago. As such, it will be a challenge for future
nutritional research to identify novel epigenetic targets
that promote healthy aging [247,330-335]. Given several
encouraging trials, prevention and therapy of age- and
lifestyle-related diseases by individualized tailoring of
optimal epigenetic diets or supplements are conceiv-
able. However, these interventions will require intense
efforts to identify health beneficial relationships in
intra- (age/tissue/cell-type specific) and interindividual
variation of epigenetic, genetic, and environment inter-
actions [35,310,336,337].
In conclusion, ‘inflammaging’ disorders as well as dietary

lifestyle reveal a dazzling complexity of epigenetic changes
during lifetime. To prevent or to reverse adverse epi-
genetic alterations associated with multifactorial aging
diseases, combinatorial therapeutic and/or nutritional
approaches will be necessary to modulate different
classes of chromatin modifiers. Future research needs
to evaluate the optimal dose and exposure window during
gestation in utero, post-natal early life, prepuberty, and
adult life for specific dietary composition to elicit maximal
epigenetic benefits against inflammaging and improve
the overall quality of life of the human population
[35,309,324-327].
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