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Abstract

Epigenetics is currently one of the hottest topics in basic and biomedical research. However, to date, most of the
studies have been descriptive in nature, designed to investigate static distribution of various epigenetic modifications
in cells. Even though tremendous amount of information has been collected, we are still far from the complete
understanding of epigenetic processes, their dynamics or even their direct effects on local chromatin and we still do
not comprehend whether these epigenetic states are the cause or the consequence of the transcriptional profile of the
cell. In this review, we try to define the concept of synthetic epigenetics and outline the available genome targeting
technologies, which are used for locus-specific editing of epigenetic signals. We report early success stories and the
lessons we have learned from them, and provide a guide for their application. Finally, we discuss existing limitations of
the available technologies and indicate possible areas for further development.
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Review
Epigenetic landscape and cell fate
The human body is built from more than 200 different
cell types organized in various tissues. It is fascinating
that although all these cells stem from a single cell (the
zygote) and contain exactly the same DNA sequence
(except for the antibody-forming B cells of the immune
system [1]), they express different sets of genes and have
diametrically different functions, phenotypes and behav-
iour in the body. To explain how these phenotypic differ-
ences arise during embryonic development, in 1957 in his
book “The Strategy of the Genes”, Waddington defined
the famous concept of the epigenetic landscape, in which
cells can be imagined as marbles rolling down towards a
hill’s bottom. The marbles (cells) compete for the grooves
on the slope, which define their developmental trajector-
ies, and come to rest at the base of the hill in defined posi-
tions. These defined positions demarcate eventual cell
fates, meaning the tissue types which the cells adapt [2].
The human genome comprises approximately three

billion base pairs, which represent a large repository of
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information. The fact that different cells contain basically
the same DNA but show very distinct phenotypes indicates
that regulated access to this information is key to under-
standing cell identity and, therefore, human development
and health. The last 60 years of research in the field of epi-
genetics was focused mostly on elucidating the molecular
mechanisms and the enzymatic machinery responsible for
epigenetic control of gene expression, as well as the distri-
bution of various epigenetic marks in different cell types
from healthy and diseased tissues and organisms. Pro-
gress in the next-generation sequencing and proteomic
approaches allowed systematic analysis and identifica-
tion of novel epigenetic marks and their distribution
across the genome and nucleus. Few large-scale collab-
orative projects, like ENCODE (http://www.genome.
gov/encode/) [3,4], Roadmap Epigenomics Mapping con-
sortium (http://www.roadmapepigenomics.org/) [5] and
Blueprint (http://www.blueprint-epigenome.eu/) [6] provided
a validated repository of epigenetic states of various tissues.
Despite the tremendous progress in understanding the

epigenetic signalling pathways, as well as characterization
of the epigenetic marks (DNA and histone modifications)
and the enzymatic machinery that can write, read and
remove these marks, many fundamental questions still re-
main unresolved, mainly due to technological limitations.
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For example, are various epigenetic signals the cause or the
consequence of the cell transcriptional profile? What is the
sequential order of epigenetic transitions between the re-
pressed and activated states? Are epimutations drivers or
merely by-products of a diseased state, and finally, what is
the contribution of epigenetics to disease (cancer) develop-
ment [7,8]?
In this review, we try to define the area of synthetic

epigenetics and outline the available genome targeting
technologies, which are used for targeted editing of epi-
genetic signals. We report early success stories and the
lessons we have learned from them, as well as potential
biomedical applications and existing limitations of the
available technologies.

Synthetic epigenetics
We define synthetic epigenetics as the design and con-
struction of novel specific artificial epigenetic pathways
or the redesign of existing natural biological systems, in
order to intentionally change epigenetic information of
the cell at desired loci. In this broad definition view,
somatic cell nuclear transfer experiments (SCNT) [9,10],
direct cell fate conversion (also known as transdifferentia-
tion) [11,12], generation of induced pluripotent stem cells
(iPS cells) [13,14] and targeted epigenome editing by
programmable DNA binding domains fused to epigenetic
modifiers (epigenetic editing) [15] all constitute synthetic
epigenetic phenomena. Due to their random nature of
introduced epigenome modification (in terms of locus or
sequence specificity), we do not consider epigenetic drugs
(like azacytidine or trichostatin A [16,17]) as synthetic
epigenetics tools.
Importantly, there is a qualitative difference between

the nuclear transfer and induced pluripotency experi-
ments when compared to epigenetic editing. In the ex-
periments with somatic cell nuclear transfer and during
generation of induced pluripotent stem cells, genome-
wide changes in the epigenetic state of the cells are trig-
gered by a mixture of defined oocyte-specific factors or
forced expression of a selection of transcription factors,
respectively. This is achieved through the restoration of
robust pluripotency promoting transcription factor net-
works with self-enforcing feedback mechanisms, which
rewire the transcriptional profile of the cell [18,19],
and the epigenome is progressively adjusted during this
process [20-22]. Interestingly, overexpression of some epi-
genetic modifiers, like ten-eleven translocation (TET) en-
zymes, can catalyse and enhance the dedifferentiation
process [23,24]. Therefore, in these experiments, the ob-
served epigenetic changes are rather a necessary product
than the initial trigger of the cell conversion [25],
which allow efficient reaching and maintenance of the
de-differentiated state. This strategy can be viewed as
an indirect (or top-down) approach to change the
epigenome by rewiring the transcriptional profile of the cell.
Somatic cell nuclear transfer and generation of induced
pluripotent stem cells have been extensively covered in
numerous excellent reviews [26-30].
On the other hand, in a bottom-up approach, a local

direct change to the epigenome can be introduced by
targeting an effector domain to the desired locus. In
this epigenetic editing [15] approach, programmable
DNA binding domains (DBDs) target a selected epi-
genetic modifier to desired loci and ensure deposition
of the corresponding epigenetic mark at nearby chro-
matin. Consequently, local changes to the epigenome can
be observed, and transcriptional and epigenetic response
to these changes can be studied in a defined context.
Existing technologies used to modulate transcription of

desired genes, like RNAi [31], gene knock-out experiments
or expression of recombinant proteins (for example, over-
expression of cDNA constructs), as well as programmable
activators and silencers [32-36] require constitutive ex-
pression of the constructs to maintain the effect [34] or
introduce irreversible changes to the genome. In contrast,
epigenetic editing offers the possibility that the epigenetic
signal and the corresponding change in the gene’s expres-
sion status are heritably maintained by cellular machinery
over multiple cell divisions even after the initial epigenetic
editing construct is cleared from the cells [34]. Therefore,
a transient introduction of the construct can lead to a per-
sistent modulation of gene expression without any gen-
omic damage being introduced, hence making epigenetic
editing safer and more suitable for therapeutic use. In this
article, we will focus on the currently blooming and excit-
ing field of targeted epigenome modification.
The epigenetic editing tools are perfectly suited to

treat and study the molecular mechanisms underlying
epigenetic diseases like cancer, chronic diseases or im-
printing defects. For example, DNA methylation has
been already used to silence overexpressed oncogenes
[37-39] and could be further used to repress hypoxia-
inducible factors [40], possibly leading to cancer regres-
sion. On the other hand, silenced tumour suppressor
genes [41] could be reactivated using targeted DNA de-
methylation. Likewise, imprinting defects (for example,
Beckwith-Wiedemann syndrome) could be reverted or
their effects could be weakened by specific alteration of
the epigenetic state of the affected imprinting control
regions [42-44]. Chronic diseases are very often corre-
lated with abnormal epigenetic changes [45-48]. With
epigenetic editing technology, one could attempt to re-
program these disease-promoting epigenetic states and
therefore restore normal functioning of the cell. An in-
teresting new approach would also be to specifically
change the differentiation state of pluripotent or differ-
entiated cells, by rewiring their epigenetic profile to-
wards another cell type.
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Bottom-up synthetic epigenetics or epigenetic editing
The concept of bottom-up synthetic epigenetics (epi-
genetic editing) relies on the combination of an artifi-
cial DNA binding domain, which can directly bind a
unique sequence found within the desired locus, with
an effector domain able to edit the epigenetic state of
that locus (Figure 1). To date, various genome targeting
domains and epigenetic modifiers have been used to direct
activating or repressing marks to desired loci (reviewed in
[15,49-51]). Discovery of novel programmable genome
binders, like TALE and CRISPR/Cas9 systems, as well as
progress in understanding of epigenetic enzymes has
spurred new interest and brought excitement to the epi-
genetic editing field [52,53]. In 2014, Nature Methods has
distinguished epigenome editing as a “Method to Watch”
[54]. In the next paragraphs, we review the available tech-
nologies for epigenome targeting and lessons learned from
the published success stories of epigenetic editing, and pro-
vide a guide for perspective researchers aiming to develop
novel methods or apply existing ones for their own research.

Genome targeting proteins
For most of the known DNA interacting proteins, no sim-
ple DNA recognition code exists that could connect indi-
vidual amino acid residues with the corresponding DNA
base [55]. For this reason, it was impossible for many years
to redesign DNA interacting proteins for novel pre-defined
specificities [56,57]. C2H2 zinc fingers were the first ex-
ample of modular and predictable DNA recognition mod-
ules in which one zinc finger unit binds to three base pairs
[58]. More recently, two more programmable genome
binders were discovered: the TAL effector arrays [59] and
CRISPR/Cas9 systems [60], which are discussed below.

Zinc finger arrays
C2H2 zinc fingers were the first example of predictable
DNA interaction domains amenable to rational protein
design (reviewed in [58,61]), and until very recently, they
were the domains of choice for sequence-specific gen-
ome targeting. Natural and engineered zinc finger arrays
are composed of tandem repeated zinc finger modules.
Each unit comprises around 30 amino acid residues that
Figure 1 The concept of epigenetic editing. Targeting device, a sequen
desired sequences is fused to an effector domain, which can modify the ep
effect (gene activation or repression). Green lollipops represent introduced m
form a compact structure stabilized by zinc ions bound to
two invariable cysteine and two histidine residues [62]. Sep-
arate zinc finger units were systematically modified and se-
lected for recognition of various trinucleotides. Repositories
of possible zinc fingers recognizing particular trinucle-
otide sequences are readily available [63,64]. Typical
custom-made zinc finger arrays comprise between
three and six individual zinc finger modules and can
consequently bind target sites ranging from 9 to 18 base
pairs in length. Arrays with six or longer zinc finger motifs
are particularly interesting, as they can recognize target sites
that are long enough to potentially address a unique
sequence in the context of a mammalian genome.
Currently, two main methods are used to generate

engineered zinc finger arrays: context-dependent modu-
lar assembly [65] and bacterial selection systems [66].
Context-dependent modular assembly (CoDA) relies on
combining smaller zinc finger units of known specificity
into larger arrays. Generation of custom zinc finger ar-
rays with the use of a bacterial selection system has the
potential to deliver highly efficient DNA binding mod-
ules. Because the zinc finger arrays, after their assembly
from a large combinatorial library of shorter zinc finger
modules, are tested right away in the cellular environ-
ment, the chances of obtaining well-functioning combi-
nations of modules for a particular sequence are greatly
increased. However, this process can be tedious and time
consuming to have the arrays selected and validated
[67]. On the other hand, CoDA can provide a large
number of zinc finger arrays relatively quickly (within
1–2 weeks) [65], on the expense of the design’s success
rate. Online tools for design of zinc finger arrays are
available (http://zifit.partners.org/ZiFiT/ [68,69]).

TAL effector arrays
Another class of customizable DNA binding domains, the
transcription activating-like effectors (TALEs) are import-
ant virulence factors initially isolated from the bacterial
plant pathogen Xanthomonas [70]. Members of the TALE
family are composed of tandemly arranged and highly
similar 34 amino acid repeats. Each repeat recognizes a
single base pair, and the recognition specificity of TALEs
ce-specific DNA binding domain which can be redesigned to recognize
igenetic state of the targeted locus, leading to a persistent biological
odification of either DNA bases or histone tails.

http://zifit.partners.org/ZiFiT/
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correlates with the amino acid composition of the repeat
variable di-residues (RVD) localized in positions 12 and 13
of each repeat [71]. Due to the modularity of TALEs and
the restriction of base specificity to the RVDs, an elegant
code governing the DNA recognition specificity was eluci-
dated [59,72]. Because of the simplicity of the recognition
code, the readout being restricted to a single base pair per
repeat unit and the lack of neighbour effects, the custom
TALE arrays can be efficiently generated by modular as-
sembly [73]. However, both C2H2 zinc finger and TALE
arrays need to be redesigned for each particular DNA se-
quence of interest, which is time and resource consuming.

CRISPR/Cas9 system
The newest exciting addition to the genome targeting tool-
box repository is the CRISPR/Cas9 system [74]. CRISPR
(clustered regularly interspaced short palindromic repeats)
functions as a prokaryotic adaptive immune system that
confers resistance to exogenous genetic elements such as
plasmids and phages [75]. In the natural system, short seg-
ments of foreign DNA (spacers) are incorporated into the
genome between CRISPR repeats and serve as an adaptive
memory of previous exposures [76]. CRISPR spacers are
transcribed into non-coding precursor RNAs and further
processed into mature CRISPR RNAs (crRNAs), which in
turn guide CRISPR-associated (Cas) proteins to recognize
and cleave invading genetic elements containing matching
sequences [77]. Many CRISPR systems have been found in
bacteria and archaea; they were categorized into three dis-
tinct types. Type II (referred here as CRISPR/Cas9) is the
simplest, as it requires only one protein component for
genome targeting, given that the appropriate guide RNA is
Table 1 Main characteristics of programmable genome target

Zinc fingers TAL ef

Origin Eukaryotic species Phytop

Type of DNA
recognition

Protein:DNA Protein

Function of
the protein
of origin

Transcription factors Transcr

Sensitivity
to DNA
modification

Sensitive to DNA modification Sensitiv

Recognition
sequence
length

Potentially long, but not all sequences can be
recognized, size restrictions apply

Potent
apply

Specificity/off-
target effects

Less specific than TALEs Most s

Size of protein Variable—depends on length of recognized
sequence, one protein unit (approximately 3 kDa)
per 3 bp of recognition sequence

Variabl
of reco
50-70 k

Immunogenicity Similar to natural mammalian proteins,
potentially low immunogenicity

Unkno
investig

Multiplexing Difficult and labour intensive Difficul
provided. This system has been harnessed for genome
engineering in a broad range of organisms [60,74]. The
CRISPR/Cas9 protein requires a Cas9-specific protospacer-
adjacent motif (PAM) sequence being present at the
3′-end of the targeted sequence for efficient binding
and cleavage. CRISPR/Cas9 proteins recognize their tar-
gets based on Watson/Crick base pairing and rely on
complementarity of the recognized DNA and the guide
RNA sequences. Therefore, re-targeting of the guide
RNA-Cas9 nuclease complex to a new locus only requires
introduction of a new guide RNA sequence complemen-
tary to the new target sequence. In addition, orthologous
Cas9 systems (isolated from diverse bacterial species) [78]
fused to a selection of different epigenetic modifiers could
be simultaneously used in a single experiment to target
various epigenetic modifications to selected loci (same or
different). These properties make the guide RNA/Cas9
system the most promising genome targeting approach
available so far. For targeting epigenetic modification, a
catalytically inactive Cas9 variant has to be used, which
still can recognize and bind the target sequence, but can-
not cleave it [78-80].
Selection of the genome targeting proteins
Each of the available programmable genome targeting de-
vices discussed above offers unique advantages and disad-
vantages (summarized in Table 1). When choosing the
appropriate targeting domain for synthetic epigenetics ap-
plication, few important properties should be taken into
consideration: specificity of the target recognition, sensi-
tivity to the state of DNA modification, ease of design and
ing domains suitable for directing epigenetic modifiers

fectors CRISPR/Cas9

athogenic bacteria Bacterial and archaea species

:DNA RNP:DNA (Watson-Crick base pairing)

iption factors DNA nuclease (inactivated for use
in epigenetic editing)

e to DNA modification Not sensitive to DNA modification state

ially very long, constraints 17–20 bp, requires an adjacent PAM
sequence

pecific More relaxed sequence recognition
than ZF and TALES

e—depends on length
gnized sequence. Typically
Da

Holoenzyme (~160 kDa)

wn, needs further
ation

Unnatural for mammals, potentially high
immunogenicity, needs further studies

t and labour intensive Easy and possible
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construct generation, as well as possibility for multiplexing
(as discussed below).
Unpredictable off-site targeting can result in the modifi-

cation of epigenetic information at different loci than an-
ticipated and thereby influence the obtained biological
outcome, leading to false conclusions of the studies. There-
fore, specificity of target recognition is of pivotal import-
ance because strong binding to an off-target site, resulting
from binding of the targeting device, could also lead to a
stable, but unwanted epigenome modification around that
region. On the other hand, the excess of epigenetic editors
present in the cell is not expected to be deleterious. These
surplus proteins could either be recruited by natural inter-
action partners to their native target sites and contribute
to regular cellular processes or they could modify random
sites on the genome, causing only minimal fluctuations of
epigenetic signals that would be efficiently counteracted.
The specificity of zinc finger arrays will likely differ for

each particular design [81]. TALE arrays are simpler in their
DNA recognition code and assembly; therefore, the pos-
sible off-target sequences are more predictable. TALEs were
also shown to be very selective in target binding [50,82]. It
was demonstrated recently that the CRISPR/Cas9 system
suffers from relaxed sequence specificity [83]. This is be-
cause not all the positions of the recognized sequence are
read equally stringently [84], leading to frequent off-target
binding [33,85]. However, successful attempts to improve
the specificity have been reported as well [84,86]. Addition-
ally, the requirement for the PAM motif limits the genomic
sequences that can be targeted. Nevertheless, the recent
solution of the crystal structure of the Cas9 protein bound
to guide RNA and substrate DNA showing the mode of
interaction between the PAM site and the Cas9 protein will
hopefully facilitate directed evolution studies to re-engineer
the PAM sequence requirement or even to completely
remove the PAM dependency [87,88].
Both zinc fingers and TALEs read the sequence in the

major groove of DNA [89,90]. Importantly, the known
mammalian DNA modifications, 5-methylcytosine (5mC)
and its oxidation products are also presented in the major
groove of DNA and therefore can influence the binding of
these domains to DNA [91,92]. There are examples of both
natural and synthetic zinc finger proteins that recognize
5-methylated cytosine embedded in a specific DNA context
[93]. Interestingly, Isalan and Choo have in vitro evolved
zinc finger Zif268 protein to recognize and specifically bind
HhaI (GCGC) and HaeIII (GGCC) methylated sites in a
specific context, by using rounds of selection of phage dis-
played zinc finger randomized libraries that employed M.
HhaI- and M.HaeIII-methylated DNA as baits [94]. Such
methylation-specific zinc finger arrays could be employed
for selectively targeting modified parts of the genome, for
example, methylated gene promoters for targeted DNA de-
methylation and gene activation, provided that the exact
methylation state of the promoter is known. In contrast,
DNA sequence recognition of CRISPR/Cas9 relies on the
Watson-Crick base pairing of the RNA guide and DNA
sequence; therefore, it is not affected by DNA modifications
found in mammalian genomes [95]. The modification state
sensitivity of the zinc finger and TALE arrays should be
taken into consideration while designing experiments, espe-
cially when the methylation status of the targeted region is
not known. Additionally, certain TALE repeats have been
reported to be insensitive to 5mC modification and there-
fore could be employed to overcome this limitation [91].
Overall, the CRISPR/Cas9 systems offer substantial ad-

vantages over zinc finger and TALE arrays, like simplicity
of target design, possibility for multiplexing (targeting two
or more sites at the same time) and independence of
DNA modifications. Moreover, orthologous CRISPR/Cas9
proteins isolated from various bacteria could be employed
for simultaneous targeting of different functionalities to
the same or different loci [78]. However, relatively relaxed
target specificity and potentially adverse immunogenicity
might hamper their use in the clinic. In addition, the
CRISPR/Cas9 system has not been employed for epigen-
etic editing yet (what is likely to be shown in the nearest
future). On the other hand, zinc fingers and TALEs can
offer superior target specificity and could be better toler-
ated by the immune system of a potential patient [96].

Epigenetic modification domains (effector domains)
Selection of the appropriate effector domain is based on
the planned application and intended effect on transcrip-
tion and epigenetic state. Nature provides numerous pos-
sible modification domains, which can be employed for the
particular function. Various effector modifiers have been
already fused to zinc fingers, TALE arrays and other DNA
binding domains to target their activities to endogenous or
genome integrated targets, reporter plasmids or viral DNA
[15,97]. Examples include DNA methyltransferases (bacter-
ial M.SssI targeted in vitro to synthetic DNA [98], M.HpaII
targeted to reporter plasmids and integrated viral DNA
[99,100] and eukaryotic Dnmt3a catalytic domain and full-
length proteins, Dnmt3a-Dnmt3L single-chain constructs
targeted to endogenous loci [38,101]), ten-eleven translo-
cation DNA demethylases (targeted to endogenous loci
[102,103]), thymine DNA glycosylase (targeted to endogen-
ous locus [104]), histone methyltransferases (G9a—targeted
to integrated Gal4 binding site [105], G9a [106] and
Suv39H1 [106,107] targeted to endogenous locus, Ezh2
targeted to reporter construct [108]) and histone demethy-
lase (Lsd1 targeted to endogenous locus [109]), as well as
histone deacetylases (targeted to reporter plasmid [110]),
which could either activate or repress targeted genes.
Interestingly, a light-controlled TALE system was used by
the Feng Zhang and George Church laboratories to target
histone modifiers and VP64 transcription activating



Jurkowski et al. Clinical Epigenetics  (2015) 7:18 Page 6 of 11
domain. Even though the observed effects regarding
histone modifications are modest (oscillating between
1.5-fold and 3-fold), this method in principle allows
introduction of the mark not only at the desired locus, but
also at a desired time [111].
Many (if not most) of the targeted epigenome modifi-

cations studies were focused on manipulating the DNA
methylation state (either to specifically methylate or de-
methylate gene promoters), in order to repress active
oncogenes or activate silenced tumour suppressor genes,
respectively. This might be explained by the fact that in
contrast to the not yet fully understood mechanism of
maintenance of histone modifications during mitotic
division [112], the mechanisms of setting up and inherit-
ance of DNA methylation have been thoroughly studied
(reviewed in [113]).
Methylation of gene promoters around transcription

start sites and first exons is strongly correlated with gene
repression [113,114]. Once DNA methylation is estab-
lished, it is inherited after semiconservative DNA repli-
cation by the action of hemi-methylation-specific DNA
methyltransferase Dnmt1 [115,116]. Therefore, targeted
DNA methylation can provide a unique opportunity to
heritably switch off gene expression (loss of function)
[37-39]. It could be used for example to silence the overex-
pressed oncogenes by DNA methylation in cancer cells. On
the other hand, targeted DNA demethylation, as shown in
recent publications [102-104], offers an interesting way to
activate the desired gene expression from its native locus
(gain of function). Straightforward applications of these
approaches for clinical studies could be, for example, to
demethylate the promoters and thereby activate the ex-
pression of tumour suppressor genes, which are com-
monly silenced in cancer cells [117-120]. Moreover, new
functions to differentiated cells could be conveyed by
activating genes, which are normally not expressed in
that cell type.
No matter which effector domain is selected for tar-

geting, the applicability of that domain should include
the evaluation of the extent and stability of the intro-
duced modification and its biological effect, as discussed
in the next sections.

Stability of introduced epigenetic modifications
Despite the dynamic nature of epigenetic information,
the overall cell state and global epigenetic states are her-
itable and maintained remarkably stably during multiple
mitotic divisions. This is mainly due to the cooperation
and redundancy of the multiple epigenetic signals (DNA
and histone modifications), as well as to the transcrip-
tional activity of each particular gene [121], which can
reinforce the preservation of the current state. Thus, in
contrast to the transient overexpression of transcription
factors, modification of the epigenetic signal at selected
promoters, through depositing of either activating or inacti-
vating epigenetic marks, promises heritable maintenance of
the induced state throughout multiple cell divisions. It is
poorly investigated, however, if this assumption indeed
holds true. Until now, most publications addressing di-
rected epigenome modification did not investigate the
long-term stability of the introduced mark, with few noble
exceptions. Heritable DNA methylation and gene repres-
sion were observed after targeting zinc finger fused with
the M.HpaII F35H mutant to the genomically integrated
minimal thymidine kinase promoter governing expression
of the CAT reporter gene construct. The introduced DNA
methylation and the repressive effect were observed even
17 days post transfection of the zinc finger fusion con-
structs, when the expression of the ZF-HpaII F35H con-
struct was no longer detectable neither at mRNA nor at
protein levels [100]. However, in this report, an artificially
introduced genomic locus was targeted; this study might
therefore not represent a proof of concept for the stability
of targeted DNA methylation at a natural genomic locus.
Repression of a native tumour suppressor gene MASPIN
locus was observed after its targeting by a zinc finger fused
to Dnmt3a catalytic domain (CD) or KRAB transcription
repression domain. Interestingly, after clearance of the con-
struct from the cells, both the stable DNA methylation (up
to 50 days post transfection) and the gene repression were
maintained only in the case of ZF-Dnmt3a CD, but were
lost in the case of ZF-KRAB transcription repression do-
main [34]. Even though the mechanisms of histone modifi-
cation maintenance have not been completely understood
at a molecular level, histone marks also seem to be stably
maintained in the cells. In support of this, H3K27 methyla-
tion introduced by targeting Ezh2 next to the Gal4 binding
site was maintained 4 days post clearance of the targeting
construct [108]. Spreading and long-term stability (over
multiple cell divisions) of H3K9me3 triggered by recruit-
ment of HP1α to Oct4 promoter was also observed [122].
These studies illustrate that targeted epigenome modifi-

cation can indeed withstand numerous cell divisions and
is superior over effects introduced with transient target-
ing of repressors. Nonetheless, the introduced epigenetic
modification might not be stable in all genomic contexts
and will depend on the pre-existence of other activating
or repressive epigenetic marks, the location of the locus in
the euchromatic or heterochromatic region, as well as on
the extent of the introduced modification and the nature
of the mark itself. It is likely that small and local changes
to the epigenome may not be efficiently maintained,
and therefore, the locus would return to the initial state
before perturbation happened [114,115]. Therefore, in
order to achieve a stable effect, it might be beneficial
to modify as big part of the region of interest as pos-
sible, either by employing a spreading mechanism or
by targeting the fusion construct to multiple places



Figure 2 Structural models of possible epigenetic editing devices.
The structural models of the proteins were taken from PDB repository
(zinc finger [PDB:1P47], TALE [PDB:2YPF], CRISPR/Cas9 [PDB:4OO8], M.HhaI
[PDB:5MHT], Dnmt3a/3L [PDB:2QRV], TET2 [PDB:4NM6], nucleosome
[PDB:1AOI], a 21 amino acid linker was generated in PyMol, and 60 bp
DNA sequence was generated with the make-na server (http://structure.
usc.edu/make-na/server.html)). The models are drawn to scale and
should provide an idea of the architecture of the synthetic constructs
used for epigenetic editing. Modelling was done manually in PyMol. Zinc
finger, DNA-bound zinc finger array fused to M.HhaI; TALE, synthetic TALE
array fused to the catalytic domain of human TET2; CRISPR/Cas9, Cas9
protein fused to a Dnmt3a/Dnmt3L hetero-tetramer. The distances in
base pairs and angstroms are indicated.
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within the same locus to achieve a cumulative effect
[102]. In addition, simultaneous targeting of multiple
epigenetic modifiers to the same locus, which reinforce
the same effect, might strengthen the stability of the
enforced new state.

Spreading of the mark across the genome
Since the epigenetic modifier is tethered to the DNA
binding domain, which binds tightly to its recognition
sequence, the length of the region which can be directly
modified is limited. The extent of the linker between the
targeting device and the epigenetic modifier is the main
determinant of the possible reach distance. In the majority
of the studies, the most efficient introduction of modification
was observed in the nearest vicinity of the binding site of the
targeting domain (10–40 bp [98,102,123]), which is in line
with the typical distance that the linker region between the
DBD and effector domain can provide. This is illustrated in
Figure 2, which shows models of possible epigenetic target-
ing constructs with the DNA sequence and nucleosomes
drawn to scale. Of course, if extensive DNA bending and
looping are considered, the modification could reach further.
Due to mechanical constraints of the targeted epigenetic

editing machinery, it is unlikely that a single and even very
stable binding event would lead to a widespread modifica-
tion at larger distances. Interestingly, histone modification
[106] and DNA methylation spreading was observed be-
yond the expected distance that could be reached when
considering the provided domain linker. We and the others
observed the deposition of DNA methylation marks up to
300 bp and more from the targeted site when using the
catalytic domain of Dnmt3a (or the Dnmt3a-Dnmt3L
single-chain construct) to human EpCAM and VEGFA
promoters [37,38]. Theoretically, this observation can
be explained by extensive looping of the DNA in this
region, which in turn would allow the tethered DNA
methyltransferase to reach more distant regions of the
DNA sequence. In a more interesting hypothesis, the
spreading might be explained by a polymerization of
Dnmt3a on the EpCAM and VEGFA promoters. Indeed,
it has been shown that Dnmt3a cooperatively polymerases
along the DNA molecule [124-126] and that its methyla-
tion activity is stimulated by the filament formation [127].
In this model, the targeted molecule of Dnmt3a would re-
cruit additional molecules of the enzyme (maybe even the
endogenous protein) to the modified region, leading to an
efficient methylation of a larger genomic region adjacent
to the targeted sequence (nucleation point). Whether the
experimentally observed broad modification of these re-
gions is due to DNA looping and nucleosome wrapping or
the proposed spreading mechanism needs to be further
investigated.
Whereas most of the studies were designed to achieve

widespread DNA methylation of the targeted locus,
Chaikind and colleagues developed an opposite strategy
to selectively methylate a single CpG site in the genome
using a split enzyme approach [128,129]. Two inactive
parts of a DNA methyltransferase (M.SssI, M.HhaI) are
separately directed to sites flanking the selected CpG,
where they assemble to an active enzyme and methylate
that target site, thus allowing to study the epigenetic
consequences of a single methylation event. Addition-
ally, the split enzyme approach would limit the extent
of off-target effects, because the functional enzyme is
only reconstituted at the targeted locus.
Delivery of programmable epigenetic editors for
epigenetic therapy
The efficiency of introducing epigenetic change and
therefore possible biomedical application depend in big
part on the vehicle used for delivery of the constructs.

http://structure.usc.edu/make-na/server.html
http://structure.usc.edu/make-na/server.html
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So far, only cultured cells and not whole organisms were
used for epigenetic editing applications. However, similar
delivery methods as used for genome engineering can be
applied for this purpose as well. Besides the traditional
approaches, like transfections of transient expression
plasmids, transduction of adeno-associated viral (AAV)
[130], lenti-, retro- or adeno-viral vectors, new ways to de-
liver the gene or protein cargo to the cells have been dis-
covered. One intrinsic problem with the aforementioned
viral delivery systems is their limited insert size capacity
(in particular AAV and lenti-viruses), which can become a
restricting factor because the epigenome editing con-
structs tend to be very large (in particular Cas9 fusions)
and targeting of multiple loci at once may become diffi-
cult. To overcome these constraints, new delivery strat-
egies were developed. An interesting approach is the
hydrodynamic injection method, in which the plasmids
encoding the targeting constructs are injected directly into
the bloodstream of an animal. Subsequently, the cells can
internalize the DNA and express the protein, which can in
turn exert the desired effect in the cells [131]. Another in-
teresting novel approach is to deliver purified proteins to
the cells by attaching cell-penetrating peptides to the puri-
fied protein constructs or RNA:protein complexes (in the
case of CRISPR/Cas9), therefore allowing spontaneous up-
take by the cells [132-134]. Likewise, zinc finger arrays
were shown to be intrinsically cell permeable and there-
fore could be easily delivered [135]. However, not all the
proteins are intrinsically cell permeable. To overcome
this limitation, in the most recent report, the authors have
tethered TALE-VP64 proteins with negatively supercharged
domains (containing large amounts of acidic residues) to de-
liver the proteins using poly-cationic transfection reagents.
Interestingly, Cas9 when complexed with guide RNA could
be delivered without this additional domain [136].

Conclusions
From the time when the field of epigenetics was defined by
Waddington until nowadays, we have learned a lot about
epigenetic regulation of gene expression and maintenance
of cellular identity. Substantial progress was achieved in
identification and understanding the role of various epigen-
etic marks, their distribution in healthy and diseased tissues
and the enzymatic machinery responsible for depositing,
reading and removing these marks. This progress was ac-
companied or rather preceded by technological develop-
ment, like chromatin immunoprecipitation (ChIP), bisulfite
sequencing, high-throughput proteomic and whole genome
approaches. The bottom-up synthetic epigenetics (targeted
epigenome editing), although still in its infancy, constitutes
an area of extensive research. New technological develop-
ments will likely increase the specificity of targeting devices
and the efficiency of effector domains in setting the desired
epigenetic marks and will supply engineered systems for
spreading the modification across the whole locus, provid-
ing efficient and reliable tools for stable modification of the
epigenome. The most exciting progress is expected from
the CRISPR/Cas9 system, as it allows the biggest flexibility
and ease of design of new targets and the possibility to con-
struct target libraries [137,138], which will allow unprece-
dented control of the epigenetic states at desired loci.
Synthetic epigenetics has the potential to address so

far unapproachable areas of basic and clinical research.
It provides tools and methods, which allow dissection
of the epigenetic signalling cascades and to identify the
driver and passenger modifications. It can widen our
understanding of epigenetic dynamics and the basis of
signal inheritance. Top-down synthetic epigenetic ap-
proaches have already made a big contribution in gen-
erating disease model cell lines. Epigenetic editing will
further foster biomedical research by addressing the
epigenetic contribution to complex and simple diseases,
through discovery and validation of disease-promoting
epimutations and provide means for reverting them. It
also offers tools to probe factors responsible for cell
identity and allows intelligent control of the cell fate.
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